Mechanical Metamaterials and Metadevices | springerprofessional.de Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2018 | OriginalPaper | Chapter

11. Mechanical Metamaterials and Metadevices

Author : Xingcun Colin Tong

Published in: Functional Metamaterials and Metadevices

Publisher: Springer International Publishing

share
SHARE

Abstract

Building upon the success of electromagnetic and acoustic metamaterials, mechanical metamaterials have been developed for obtaining extraordinary or extreme elasticity tensors and mass-density tensors to thereby mold static stress fields or the flow of longitudinal/transverse elastic vibrations in unprecedented ways. With the advances in additive manufacturing techniques that have enabled fabricating materials with arbitrarily complex micro-/nano-architectures, the rationally designed micro-/nano-architecture of mechanical metamaterials gives rise to unprecedented or rare mechanical properties that could be exploited to create advanced materials with novel functionalities. For instance, extremal metamaterials are extremely stiff in certain modes of deformation, while they are extremely soft in other modes of deformation; proper micro- and nano-architectural control can allow for unique material performance such as ultra-lightweight, high stiffness and high strength materials, negative Poisson’s ratio, negative stiffness, and negative thermal expansion coefficient. This chapter will give a brief review focusing on recent advances and remaining challenges in this emerging field. Examples are auxetic, ultra-lightweight, negative mass density, negative modulus, penta-mode, dilational, anisotropic mass density, origami, nonlinear, bistable, reprogrammable, and seismic shielding mechanical metamaterials.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
go back to reference Alderson A, Rasburn J, Ameer-Beg S, Mullarkey PG, Perrie W, Evans KE (2000) An auxetic filter: a tuneable filter displaying enhanced size selectivity or defouling properties. Ind Eng Chem Res 39(3):654–665 CrossRef Alderson A, Rasburn J, Ameer-Beg S, Mullarkey PG, Perrie W, Evans KE (2000) An auxetic filter: a tuneable filter displaying enhanced size selectivity or defouling properties. Ind Eng Chem Res 39(3):654–665 CrossRef
go back to reference Babaee S, Shim J, Weaver JC, Chen ER, Patel N, Bertoldi K (2013) 3D soft metamaterials with negative Poisson’s ratio. Adv Mater 2013:1–6. doi:10.1002/adma.201301986 Babaee S, Shim J, Weaver JC, Chen ER, Patel N, Bertoldi K (2013) 3D soft metamaterials with negative Poisson’s ratio. Adv Mater 2013:1–6. doi:10.1002/adma.201301986
go back to reference Bückmann T, Schittny R, Thiel M, Kadic M, Milton GW, Wegener M (2014) On three-dimensional dilational elastic metamaterials. New J Phys 16:033032 CrossRef Bückmann T, Schittny R, Thiel M, Kadic M, Milton GW, Wegener M (2014) On three-dimensional dilational elastic metamaterials. New J Phys 16:033032 CrossRef
go back to reference Caddock B, Evans K (1989) Microporous materials with negative Poisson’s ratios – I. Microstructure and mechanical properties. J Phys D Appl Phys 22(12):1877 CrossRef Caddock B, Evans K (1989) Microporous materials with negative Poisson’s ratios – I. Microstructure and mechanical properties. J Phys D Appl Phys 22(12):1877 CrossRef
go back to reference Choi J, Lakes R (1995) Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson’s ratio. Int J Mech Sci 37(1):51–59 CrossRef Choi J, Lakes R (1995) Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson’s ratio. Int J Mech Sci 37(1):51–59 CrossRef
go back to reference Christensen J, Kadic M, Wegener M, Kraft O, Wegener M (2015) Vibrant times for mechanical metamaterials. MRS Commun 5:453 CrossRef Christensen J, Kadic M, Wegener M, Kraft O, Wegener M (2015) Vibrant times for mechanical metamaterials. MRS Commun 5:453 CrossRef
go back to reference Grima JN, Gatt R, Alderson A, Evans K (2005) On the potential of connected stars as auxetic systems. Mol Simul 31(13):925–935 CrossRef Grima JN, Gatt R, Alderson A, Evans K (2005) On the potential of connected stars as auxetic systems. Mol Simul 31(13):925–935 CrossRef
go back to reference Grima JN, Manicaro E, Attard D (2011) Auxetic behaviour from connected different-sized squares and rectangles. Proc R Soc A 467:439–458 CrossRef Grima JN, Manicaro E, Attard D (2011) Auxetic behaviour from connected different-sized squares and rectangles. Proc R Soc A 467:439–458 CrossRef
go back to reference Ha CS, Plesha ME, Lakes RS (2016) Chiral three-dimensional lattices with tunable Poisson’s ratio. Smart Mater Struct 25(5):054005 CrossRef Ha CS, Plesha ME, Lakes RS (2016) Chiral three-dimensional lattices with tunable Poisson’s ratio. Smart Mater Struct 25(5):054005 CrossRef
go back to reference Hopkins JB, Culpepper ML (2010a) Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT) – part I: principles. Precis Eng 34(2):259–270 CrossRef Hopkins JB, Culpepper ML (2010a) Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT) – part I: principles. Precis Eng 34(2):259–270 CrossRef
go back to reference Hopkins JB, Culpepper ML (2010b) Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT)-part II: practice. Precis Eng 34(2):271–278 CrossRef Hopkins JB, Culpepper ML (2010b) Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT)-part II: practice. Precis Eng 34(2):271–278 CrossRef
go back to reference Hou X, Silberschmidt VV (2015) Metamaterials with negative poisson’s ratio: a review of mechanical properties and deformation mechanisms. In: Silberschmidt VV, Matveenko VP (eds) Mechanics of advanced materials -analysis of properties and performance. Springer International Publishing, Switzerland pp 155–179 Hou X, Silberschmidt VV (2015) Metamaterials with negative poisson’s ratio: a review of mechanical properties and deformation mechanisms. In: Silberschmidt VV, Matveenko VP (eds) Mechanics of advanced materials -analysis of properties and performance. Springer International Publishing, Switzerland pp 155–179
go back to reference Janbaz S, Weinans H, Zadpoor AA (2016) Geometry-based control of instability patterns in cellular soft matter. RSC Adv 6:20431–20436 CrossRef Janbaz S, Weinans H, Zadpoor AA (2016) Geometry-based control of instability patterns in cellular soft matter. RSC Adv 6:20431–20436 CrossRef
go back to reference Kolken HMA, Zadpoor AA (2017) Auxetic mechanical metamaterials. RSC Adv 7:5111–5129 CrossRef Kolken HMA, Zadpoor AA (2017) Auxetic mechanical metamaterials. RSC Adv 7:5111–5129 CrossRef
go back to reference Larsen UD, Signund O, Bouwsta S (1997) Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. J Microelectromech Syst 6(2):99–106 CrossRef Larsen UD, Signund O, Bouwsta S (1997) Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. J Microelectromech Syst 6(2):99–106 CrossRef
go back to reference Lehman J, Lakes R (2013) Stiff lattices with zero thermal expansion and enhanced stiffness via rib cross section optimization. Int J Mech Mater Des 9:213–225 CrossRef Lehman J, Lakes R (2013) Stiff lattices with zero thermal expansion and enhanced stiffness via rib cross section optimization. Int J Mech Mater Des 9:213–225 CrossRef
go back to reference Lu X, Hu G (2016) Elastic metamaterials making use of chirality: a review. J Mech Eng 62(7–8):403–418 CrossRef Lu X, Hu G (2016) Elastic metamaterials making use of chirality: a review. J Mech Eng 62(7–8):403–418 CrossRef
go back to reference Meza LR, Das S, Greer JR (2014) Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345:1322–1326 CrossRef Meza LR, Das S, Greer JR (2014) Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345:1322–1326 CrossRef
go back to reference Miller W, Hook P, Smith CW, Wang X, Evans KE (2009) The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite. Compos Sci Technol 69(5):651–655 CrossRef Miller W, Hook P, Smith CW, Wang X, Evans KE (2009) The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite. Compos Sci Technol 69(5):651–655 CrossRef
go back to reference Milton GW (2013) Complete characterization of the macroscopic deformations of periodic unimode metamaterials of rigid bars and pivots. J Mech Phys Solids 61:1543–1560 CrossRef Milton GW (2013) Complete characterization of the macroscopic deformations of periodic unimode metamaterials of rigid bars and pivots. J Mech Phys Solids 61:1543–1560 CrossRef
go back to reference Mousanezhad D, Babaee S, Ebrahimi H, Ghosh R, Hamouda AS, Bertoldi K, Ashkan V (2015) Hierarchical honeycomb auxetic metamaterials. Sci Rep 5:18306 CrossRef Mousanezhad D, Babaee S, Ebrahimi H, Ghosh R, Hamouda AS, Bertoldi K, Ashkan V (2015) Hierarchical honeycomb auxetic metamaterials. Sci Rep 5:18306 CrossRef
go back to reference Schenk M, Guest SD (2013) Geometry of Miura-folded metamaterials. Proc Natl Acad Sci U S A 110:3276–3281 CrossRef Schenk M, Guest SD (2013) Geometry of Miura-folded metamaterials. Proc Natl Acad Sci U S A 110:3276–3281 CrossRef
go back to reference Smith CW, Grima J, Evans K (2000) A novel mechanism for generating auxetic behavior in reticulated foams: missing rib foam model. Acta Mater 48(17):4349–4356 CrossRef Smith CW, Grima J, Evans K (2000) A novel mechanism for generating auxetic behavior in reticulated foams: missing rib foam model. Acta Mater 48(17):4349–4356 CrossRef
go back to reference Spadaccini C (2015) Mechanical metamaterials: design, fabrication, and performance. In: Frontiers of engineering: reports on leading-edge engineering from the 2015 symposium. National Academies Press, Washington pp 85–98. http://​www.​nap.​edu/​21825 Spadaccini C (2015) Mechanical metamaterials: design, fabrication, and performance. In: Frontiers of engineering: reports on leading-edge engineering from the 2015 symposium. National Academies Press, Washington pp 85–98. http://​www.​nap.​edu/​21825
go back to reference Xu H, Pasini D (2016) Structurally efficient three-dimensional metamaterials with controllable thermal expansion. Sci Rep 6(34924):2016. doi:10.1038/srep34924 Xu H, Pasini D (2016) Structurally efficient three-dimensional metamaterials with controllable thermal expansion. Sci Rep 6(34924):2016. doi:10.1038/srep34924
go back to reference Zheng X, Lee H, Weisgraber TH, Shusteff M, DeOtte J, Duoss EB et al (2014) Ultralight, ultrastiff mechanical metamaterials. Science 344:1373–1377 CrossRef Zheng X, Lee H, Weisgraber TH, Shusteff M, DeOtte J, Duoss EB et al (2014) Ultralight, ultrastiff mechanical metamaterials. Science 344:1373–1377 CrossRef
Metadata
Title
Mechanical Metamaterials and Metadevices
Author
Xingcun Colin Tong
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-66044-8_11