Skip to main content
Top

2018 | OriginalPaper | Chapter

11. Mechanical Metamaterials and Metadevices

Author : Xingcun Colin Tong

Published in: Functional Metamaterials and Metadevices

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Building upon the success of electromagnetic and acoustic metamaterials, mechanical metamaterials have been developed for obtaining extraordinary or extreme elasticity tensors and mass-density tensors to thereby mold static stress fields or the flow of longitudinal/transverse elastic vibrations in unprecedented ways. With the advances in additive manufacturing techniques that have enabled fabricating materials with arbitrarily complex micro-/nano-architectures, the rationally designed micro-/nano-architecture of mechanical metamaterials gives rise to unprecedented or rare mechanical properties that could be exploited to create advanced materials with novel functionalities. For instance, extremal metamaterials are extremely stiff in certain modes of deformation, while they are extremely soft in other modes of deformation; proper micro- and nano-architectural control can allow for unique material performance such as ultra-lightweight, high stiffness and high strength materials, negative Poisson’s ratio, negative stiffness, and negative thermal expansion coefficient. This chapter will give a brief review focusing on recent advances and remaining challenges in this emerging field. Examples are auxetic, ultra-lightweight, negative mass density, negative modulus, penta-mode, dilational, anisotropic mass density, origami, nonlinear, bistable, reprogrammable, and seismic shielding mechanical metamaterials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alderson A, Rasburn J, Ameer-Beg S, Mullarkey PG, Perrie W, Evans KE (2000) An auxetic filter: a tuneable filter displaying enhanced size selectivity or defouling properties. Ind Eng Chem Res 39(3):654–665CrossRef Alderson A, Rasburn J, Ameer-Beg S, Mullarkey PG, Perrie W, Evans KE (2000) An auxetic filter: a tuneable filter displaying enhanced size selectivity or defouling properties. Ind Eng Chem Res 39(3):654–665CrossRef
go back to reference Babaee S, Shim J, Weaver JC, Chen ER, Patel N, Bertoldi K (2013) 3D soft metamaterials with negative Poisson’s ratio. Adv Mater 2013:1–6. doi:10.1002/adma.201301986 Babaee S, Shim J, Weaver JC, Chen ER, Patel N, Bertoldi K (2013) 3D soft metamaterials with negative Poisson’s ratio. Adv Mater 2013:1–6. doi:10.1002/adma.201301986
go back to reference Bückmann T, Schittny R, Thiel M, Kadic M, Milton GW, Wegener M (2014) On three-dimensional dilational elastic metamaterials. New J Phys 16:033032CrossRef Bückmann T, Schittny R, Thiel M, Kadic M, Milton GW, Wegener M (2014) On three-dimensional dilational elastic metamaterials. New J Phys 16:033032CrossRef
go back to reference Caddock B, Evans K (1989) Microporous materials with negative Poisson’s ratios – I. Microstructure and mechanical properties. J Phys D Appl Phys 22(12):1877CrossRef Caddock B, Evans K (1989) Microporous materials with negative Poisson’s ratios – I. Microstructure and mechanical properties. J Phys D Appl Phys 22(12):1877CrossRef
go back to reference Choi J, Lakes R (1995) Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson’s ratio. Int J Mech Sci 37(1):51–59CrossRef Choi J, Lakes R (1995) Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson’s ratio. Int J Mech Sci 37(1):51–59CrossRef
go back to reference Christensen J, Kadic M, Wegener M, Kraft O, Wegener M (2015) Vibrant times for mechanical metamaterials. MRS Commun 5:453CrossRef Christensen J, Kadic M, Wegener M, Kraft O, Wegener M (2015) Vibrant times for mechanical metamaterials. MRS Commun 5:453CrossRef
go back to reference Grima JN, Gatt R, Alderson A, Evans K (2005) On the potential of connected stars as auxetic systems. Mol Simul 31(13):925–935CrossRef Grima JN, Gatt R, Alderson A, Evans K (2005) On the potential of connected stars as auxetic systems. Mol Simul 31(13):925–935CrossRef
go back to reference Grima JN, Manicaro E, Attard D (2011) Auxetic behaviour from connected different-sized squares and rectangles. Proc R Soc A 467:439–458CrossRef Grima JN, Manicaro E, Attard D (2011) Auxetic behaviour from connected different-sized squares and rectangles. Proc R Soc A 467:439–458CrossRef
go back to reference Ha CS, Plesha ME, Lakes RS (2016) Chiral three-dimensional lattices with tunable Poisson’s ratio. Smart Mater Struct 25(5):054005CrossRef Ha CS, Plesha ME, Lakes RS (2016) Chiral three-dimensional lattices with tunable Poisson’s ratio. Smart Mater Struct 25(5):054005CrossRef
go back to reference Hopkins JB, Culpepper ML (2010a) Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT) – part I: principles. Precis Eng 34(2):259–270CrossRef Hopkins JB, Culpepper ML (2010a) Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT) – part I: principles. Precis Eng 34(2):259–270CrossRef
go back to reference Hopkins JB, Culpepper ML (2010b) Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT)-part II: practice. Precis Eng 34(2):271–278CrossRef Hopkins JB, Culpepper ML (2010b) Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT)-part II: practice. Precis Eng 34(2):271–278CrossRef
go back to reference Hou X, Silberschmidt VV (2015) Metamaterials with negative poisson’s ratio: a review of mechanical properties and deformation mechanisms. In: Silberschmidt VV, Matveenko VP (eds) Mechanics of advanced materials -analysis of properties and performance. Springer International Publishing, Switzerland pp 155–179 Hou X, Silberschmidt VV (2015) Metamaterials with negative poisson’s ratio: a review of mechanical properties and deformation mechanisms. In: Silberschmidt VV, Matveenko VP (eds) Mechanics of advanced materials -analysis of properties and performance. Springer International Publishing, Switzerland pp 155–179
go back to reference Janbaz S, Weinans H, Zadpoor AA (2016) Geometry-based control of instability patterns in cellular soft matter. RSC Adv 6:20431–20436CrossRef Janbaz S, Weinans H, Zadpoor AA (2016) Geometry-based control of instability patterns in cellular soft matter. RSC Adv 6:20431–20436CrossRef
go back to reference Kolken HMA, Zadpoor AA (2017) Auxetic mechanical metamaterials. RSC Adv 7:5111–5129CrossRef Kolken HMA, Zadpoor AA (2017) Auxetic mechanical metamaterials. RSC Adv 7:5111–5129CrossRef
go back to reference Larsen UD, Signund O, Bouwsta S (1997) Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. J Microelectromech Syst 6(2):99–106CrossRef Larsen UD, Signund O, Bouwsta S (1997) Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. J Microelectromech Syst 6(2):99–106CrossRef
go back to reference Lehman J, Lakes R (2013) Stiff lattices with zero thermal expansion and enhanced stiffness via rib cross section optimization. Int J Mech Mater Des 9:213–225CrossRef Lehman J, Lakes R (2013) Stiff lattices with zero thermal expansion and enhanced stiffness via rib cross section optimization. Int J Mech Mater Des 9:213–225CrossRef
go back to reference Lu X, Hu G (2016) Elastic metamaterials making use of chirality: a review. J Mech Eng 62(7–8):403–418CrossRef Lu X, Hu G (2016) Elastic metamaterials making use of chirality: a review. J Mech Eng 62(7–8):403–418CrossRef
go back to reference Meza LR, Das S, Greer JR (2014) Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345:1322–1326CrossRef Meza LR, Das S, Greer JR (2014) Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345:1322–1326CrossRef
go back to reference Miller W, Hook P, Smith CW, Wang X, Evans KE (2009) The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite. Compos Sci Technol 69(5):651–655CrossRef Miller W, Hook P, Smith CW, Wang X, Evans KE (2009) The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite. Compos Sci Technol 69(5):651–655CrossRef
go back to reference Milton GW (2013) Complete characterization of the macroscopic deformations of periodic unimode metamaterials of rigid bars and pivots. J Mech Phys Solids 61:1543–1560CrossRef Milton GW (2013) Complete characterization of the macroscopic deformations of periodic unimode metamaterials of rigid bars and pivots. J Mech Phys Solids 61:1543–1560CrossRef
go back to reference Mousanezhad D, Babaee S, Ebrahimi H, Ghosh R, Hamouda AS, Bertoldi K, Ashkan V (2015) Hierarchical honeycomb auxetic metamaterials. Sci Rep 5:18306CrossRef Mousanezhad D, Babaee S, Ebrahimi H, Ghosh R, Hamouda AS, Bertoldi K, Ashkan V (2015) Hierarchical honeycomb auxetic metamaterials. Sci Rep 5:18306CrossRef
go back to reference Schenk M, Guest SD (2013) Geometry of Miura-folded metamaterials. Proc Natl Acad Sci U S A 110:3276–3281CrossRef Schenk M, Guest SD (2013) Geometry of Miura-folded metamaterials. Proc Natl Acad Sci U S A 110:3276–3281CrossRef
go back to reference Smith CW, Grima J, Evans K (2000) A novel mechanism for generating auxetic behavior in reticulated foams: missing rib foam model. Acta Mater 48(17):4349–4356CrossRef Smith CW, Grima J, Evans K (2000) A novel mechanism for generating auxetic behavior in reticulated foams: missing rib foam model. Acta Mater 48(17):4349–4356CrossRef
go back to reference Spadaccini C (2015) Mechanical metamaterials: design, fabrication, and performance. In: Frontiers of engineering: reports on leading-edge engineering from the 2015 symposium. National Academies Press, Washington pp 85–98. http://www.nap.edu/21825 Spadaccini C (2015) Mechanical metamaterials: design, fabrication, and performance. In: Frontiers of engineering: reports on leading-edge engineering from the 2015 symposium. National Academies Press, Washington pp 85–98. http://​www.​nap.​edu/​21825
go back to reference Xu H, Pasini D (2016) Structurally efficient three-dimensional metamaterials with controllable thermal expansion. Sci Rep 6(34924):2016. doi:10.1038/srep34924 Xu H, Pasini D (2016) Structurally efficient three-dimensional metamaterials with controllable thermal expansion. Sci Rep 6(34924):2016. doi:10.1038/srep34924
go back to reference Zheng X, Lee H, Weisgraber TH, Shusteff M, DeOtte J, Duoss EB et al (2014) Ultralight, ultrastiff mechanical metamaterials. Science 344:1373–1377CrossRef Zheng X, Lee H, Weisgraber TH, Shusteff M, DeOtte J, Duoss EB et al (2014) Ultralight, ultrastiff mechanical metamaterials. Science 344:1373–1377CrossRef
Metadata
Title
Mechanical Metamaterials and Metadevices
Author
Xingcun Colin Tong
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-66044-8_11