Skip to main content
Top
Published in: Journal of Materials Science 22/2016

01-08-2016 | Original Paper

Mechanical, morphological, and solid-state viscoelastic responses of poly(lactic acid)/ethylene-co-vinyl-acetate super-tough blend reinforced with halloysite nanotubes

Authors: Rajendra Kumar Singla, Saurindra N. Maiti, Anup K. Ghosh

Published in: Journal of Materials Science | Issue 22/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, ternary nanocomposites of poly(lactic acid)/ethylene-co-vinyl-acetate (PLA/EVA, 70:30) containing varying concentrations (0.4–9.1 wt%) of halloysite nanotubes (HNTs) were prepared through melt compounding. Enhanced tensile modulus and impact strength demonstrated the strengthening and toughening effects of halloysite in the nanocomposites, simultaneously. The impact-fractured surface morphologies and halloysite-induced morphological changes of the nanocomposites were evaluated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. FT-IR investigation revealed interactions between HNT and PLA. Glass transition behavior of the nanocomposites, as shown by dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC), presents strong evidence in favor of phase interaction and the reinforcing effect of halloysite. Enhanced tensile strength and elongation-at-break demonstrated the toughening effect of halloysite.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference De Silva R, Pasbakhsh P, Goh K, Chai SP, Chen J (2014) Synthesis and characterisation of poly (lactic acid)/halloysite bionanocomposite films. J Compos Mater 48(30):3705–3717CrossRef De Silva R, Pasbakhsh P, Goh K, Chai SP, Chen J (2014) Synthesis and characterisation of poly (lactic acid)/halloysite bionanocomposite films. J Compos Mater 48(30):3705–3717CrossRef
2.
go back to reference Hashima K, Nishitsuji S, Inoue T (2010) Structure-properties of super-tough PLA alloy with excellent heat resistance. Polymer 51(17):3934–3939CrossRef Hashima K, Nishitsuji S, Inoue T (2010) Structure-properties of super-tough PLA alloy with excellent heat resistance. Polymer 51(17):3934–3939CrossRef
3.
go back to reference Raquez J-M, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10):1504–1542CrossRef Raquez J-M, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10):1504–1542CrossRef
4.
go back to reference Liu M, Jia Z, Jia D, Zhou C (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39(8):1498–1525CrossRef Liu M, Jia Z, Jia D, Zhou C (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39(8):1498–1525CrossRef
5.
go back to reference De Silva RT, Pasbakhsh P, Lee SM, Kit AY (2015) ZnO deposited/encapsulated halloysite–poly (lactic acid)(PLA) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties. Appl Clay Sci 111:10–20CrossRef De Silva RT, Pasbakhsh P, Lee SM, Kit AY (2015) ZnO deposited/encapsulated halloysite–poly (lactic acid)(PLA) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties. Appl Clay Sci 111:10–20CrossRef
6.
go back to reference Ma P, Hristova-Bogaerds D, Goossens J, Spoelstra A, Zhang Y, Lemstra P (2012) Toughening of poly (lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Eur Polym J 48(1):146–154CrossRef Ma P, Hristova-Bogaerds D, Goossens J, Spoelstra A, Zhang Y, Lemstra P (2012) Toughening of poly (lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Eur Polym J 48(1):146–154CrossRef
7.
go back to reference Shi Y, Li Y, Wu J, Huang T, Chen C, Peng Y (2011) Toughening of poly (l-lactide)/multiwalled carbon nanotubes nanocomposite with ethylene-co-vinyl acetate. J Polym Sci Part B Polym Phys 49(4):267–276CrossRef Shi Y, Li Y, Wu J, Huang T, Chen C, Peng Y (2011) Toughening of poly (l-lactide)/multiwalled carbon nanotubes nanocomposite with ethylene-co-vinyl acetate. J Polym Sci Part B Polym Phys 49(4):267–276CrossRef
8.
go back to reference Singla RK, Maiti SN, Ghosh AK (2016) Fabrication of super tough poly(lactic acid)/ethylene-co-vinyl-acetate blends via melt recirculation approach: static-short term mechanical and morphological interpretation. RSC Adv 6:14580–14588CrossRef Singla RK, Maiti SN, Ghosh AK (2016) Fabrication of super tough poly(lactic acid)/ethylene-co-vinyl-acetate blends via melt recirculation approach: static-short term mechanical and morphological interpretation. RSC Adv 6:14580–14588CrossRef
9.
go back to reference Anderson KS, Hillmyer MA (2004) The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer 45(26):8809–8823CrossRef Anderson KS, Hillmyer MA (2004) The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer 45(26):8809–8823CrossRef
10.
go back to reference Oyama HT (2009) Super-tough poly (lactic acid) materials: reactive blending with ethylene copolymer. Polymer 50(3):747–751CrossRef Oyama HT (2009) Super-tough poly (lactic acid) materials: reactive blending with ethylene copolymer. Polymer 50(3):747–751CrossRef
11.
go back to reference Ojijo V, Ray SS (2015) Super toughened biodegradable polylactide blends with non-linear copolymer interfacial architecture obtained via facile in situ reactive compatibilization. Polymer 80:1–17CrossRef Ojijo V, Ray SS (2015) Super toughened biodegradable polylactide blends with non-linear copolymer interfacial architecture obtained via facile in situ reactive compatibilization. Polymer 80:1–17CrossRef
12.
go back to reference Shi YY, Du XC, Yang JH, Huang T, Zhang N, Wang Y (2014) Super toughened poly (l-lactide)/thermoplastic polyurethane blends achieved by adding dicumyl peroxide. Polym Plast Technol Eng 53(13):1344–1353CrossRef Shi YY, Du XC, Yang JH, Huang T, Zhang N, Wang Y (2014) Super toughened poly (l-lactide)/thermoplastic polyurethane blends achieved by adding dicumyl peroxide. Polym Plast Technol Eng 53(13):1344–1353CrossRef
13.
go back to reference Zhou Y, Xiu H, Dai J, Bai H, Zhang Q, Fu Q (2015) Largely reinforced polyurethane via simultaneous incorporation of poly (lactic acid) and multiwalled carbon nanotubes. RSC Adv 5(39):30912–30919CrossRef Zhou Y, Xiu H, Dai J, Bai H, Zhang Q, Fu Q (2015) Largely reinforced polyurethane via simultaneous incorporation of poly (lactic acid) and multiwalled carbon nanotubes. RSC Adv 5(39):30912–30919CrossRef
14.
go back to reference Feng Y, Hu Y, Yin J, Zhao G, Jiang W (2013) High impact poly (lactic acid)/poly (ethylene octene) blends prepared by reactive blending. Polym Eng Sci 53(2):389–396CrossRef Feng Y, Hu Y, Yin J, Zhao G, Jiang W (2013) High impact poly (lactic acid)/poly (ethylene octene) blends prepared by reactive blending. Polym Eng Sci 53(2):389–396CrossRef
15.
go back to reference Ma P, Spoelstra AB, Schmit P, Lemstra PJ (2013) Toughening of poly (lactic acid) by poly (b-hydroxybutyrate-co-b-hydroxyvalerate) with high b-hydroxyvalerate content. Eur Polym J 49(6):1523–1531CrossRef Ma P, Spoelstra AB, Schmit P, Lemstra PJ (2013) Toughening of poly (lactic acid) by poly (b-hydroxybutyrate-co-b-hydroxyvalerate) with high b-hydroxyvalerate content. Eur Polym J 49(6):1523–1531CrossRef
16.
go back to reference Jiang L, Zhang J, Wolcott MP (2007) Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer 48(26):7632–7644CrossRef Jiang L, Zhang J, Wolcott MP (2007) Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer 48(26):7632–7644CrossRef
17.
go back to reference Singh S, Ghosh AK, Maiti SN, Raha S, Gupta RK, Bhattacharya S (2012) Morphology and rheological behavior of polylactic acid/clay nanocomposites. Polym Eng Sci 52(1):225–232CrossRef Singh S, Ghosh AK, Maiti SN, Raha S, Gupta RK, Bhattacharya S (2012) Morphology and rheological behavior of polylactic acid/clay nanocomposites. Polym Eng Sci 52(1):225–232CrossRef
18.
go back to reference Aghjeh MR, Nazari M, Khonakdar HA, Jafari SH, Wagenknecht U, Heinrich G (2015) In depth analysis of micro-mechanism of mechanical property alternations in PLA/EVA/clay nanocomposites: a combined theoretical and experimental approach. Mater Des 88:1277–1289 Aghjeh MR, Nazari M, Khonakdar HA, Jafari SH, Wagenknecht U, Heinrich G (2015) In depth analysis of micro-mechanism of mechanical property alternations in PLA/EVA/clay nanocomposites: a combined theoretical and experimental approach. Mater Des 88:1277–1289
19.
go back to reference Liu W, Wei J, Chen Y, Huo P, Wei Y (2013) Electrospinning of poly (l-lactide) nanofibers encapsulated with water-soluble fullerenes for bioimaging application. ACS Appl Mater Interfaces 5(3):680–685CrossRef Liu W, Wei J, Chen Y, Huo P, Wei Y (2013) Electrospinning of poly (l-lactide) nanofibers encapsulated with water-soluble fullerenes for bioimaging application. ACS Appl Mater Interfaces 5(3):680–685CrossRef
20.
go back to reference Pluta M, Jeszka J, Boiteux G (2007) Polylactide/montmorillonite nanocomposites: structure, dielectric, viscoelastic and thermal properties. Eur Polym J 43(7):2819–2835CrossRef Pluta M, Jeszka J, Boiteux G (2007) Polylactide/montmorillonite nanocomposites: structure, dielectric, viscoelastic and thermal properties. Eur Polym J 43(7):2819–2835CrossRef
21.
go back to reference Hapuarachchi TD, Peijs T (2010) Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Compos Part A Appl Sci Manuf 41(8):954–963CrossRef Hapuarachchi TD, Peijs T (2010) Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Compos Part A Appl Sci Manuf 41(8):954–963CrossRef
22.
go back to reference Fukushima K, Tabuani D, Camino G (2009) Nanocomposites of PLA and PCL based on montmorillonite and sepiolite. Mater Sci Eng C 29(4):1433–1441CrossRef Fukushima K, Tabuani D, Camino G (2009) Nanocomposites of PLA and PCL based on montmorillonite and sepiolite. Mater Sci Eng C 29(4):1433–1441CrossRef
23.
go back to reference Su Z, Li Q, Liu Y, Hu GH, Wu C (2009) Multiple melting behavior of poly (lactic acid) filled with modified carbon black. J Polym Sci Part B Polym Phys 47(20):1971–1980CrossRef Su Z, Li Q, Liu Y, Hu GH, Wu C (2009) Multiple melting behavior of poly (lactic acid) filled with modified carbon black. J Polym Sci Part B Polym Phys 47(20):1971–1980CrossRef
24.
go back to reference Balakrishnan H, Masoumi I, Yussuf A, Imran M, Hassan A, Wahit MU (2012) Ethylene copolymer toughened polylactic acid nanocomposites. Polym Plast Technol Eng 51(1):19–27CrossRef Balakrishnan H, Masoumi I, Yussuf A, Imran M, Hassan A, Wahit MU (2012) Ethylene copolymer toughened polylactic acid nanocomposites. Polym Plast Technol Eng 51(1):19–27CrossRef
25.
go back to reference Wu TM, Wu CY (2006) Biodegradable poly (lactic acid)/chitosan-modified montmorillonite nanocomposites: preparation and characterization. Polym Degrad Stab 91(9):2198–2204CrossRef Wu TM, Wu CY (2006) Biodegradable poly (lactic acid)/chitosan-modified montmorillonite nanocomposites: preparation and characterization. Polym Degrad Stab 91(9):2198–2204CrossRef
26.
go back to reference Balakrishnan H, Hassan A, Wahit MU, Yussuf AA, Razak SBA (2010) Novel toughened polylactic acid nanocomposite: mechanical, thermal and morphological properties. Mater Des 31(7):3289–3298CrossRef Balakrishnan H, Hassan A, Wahit MU, Yussuf AA, Razak SBA (2010) Novel toughened polylactic acid nanocomposite: mechanical, thermal and morphological properties. Mater Des 31(7):3289–3298CrossRef
27.
go back to reference Rancan F, Papakostas D, Hadam S, Hackbarth S, Delair T, Primard C (2009) Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy. Pharm Res 26(8):2027–2036CrossRef Rancan F, Papakostas D, Hadam S, Hackbarth S, Delair T, Primard C (2009) Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy. Pharm Res 26(8):2027–2036CrossRef
28.
go back to reference Zhang L, Webster TJ (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4(1):66–80CrossRef Zhang L, Webster TJ (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4(1):66–80CrossRef
29.
go back to reference Prashantha K, Lacrampe M, Krawczak P (2011) Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties. Express Polym Lett 5(4):295–307CrossRef Prashantha K, Lacrampe M, Krawczak P (2011) Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties. Express Polym Lett 5(4):295–307CrossRef
30.
go back to reference Liu M, Zhang Y, Zhou C (2013) Nanocomposites of halloysite and polylactide. Appl Clay Sci 75:52–59CrossRef Liu M, Zhang Y, Zhou C (2013) Nanocomposites of halloysite and polylactide. Appl Clay Sci 75:52–59CrossRef
32.
go back to reference Cavallaro G, Lazzara G, Milioto S (2013) Sustainable nanocomposites based on halloysite nanotubes and pectin/polyethylene glycol blend. Polym Degrad Stab 98(12):2529–2536CrossRef Cavallaro G, Lazzara G, Milioto S (2013) Sustainable nanocomposites based on halloysite nanotubes and pectin/polyethylene glycol blend. Polym Degrad Stab 98(12):2529–2536CrossRef
33.
go back to reference Lvov Y, Wang W, Zhang L, Fakhrullin R (2016) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28(6):1227–1250CrossRef Lvov Y, Wang W, Zhang L, Fakhrullin R (2016) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28(6):1227–1250CrossRef
34.
go back to reference Liu HY, Du L, Zhao YT, Tian WQ (2015) In vitro hemocompatibility and cytotoxicity evaluation of halloysite nanotubes for biomedical application. J Nanomater. doi:10.1155/2015/685323 Liu HY, Du L, Zhao YT, Tian WQ (2015) In vitro hemocompatibility and cytotoxicity evaluation of halloysite nanotubes for biomedical application. J Nanomater. doi:10.​1155/​2015/​685323
35.
go back to reference Lvov Y, Aerov A, Fakhrullin R (2014) Clay nanotube encapsulation for functional biocomposites. Adv Colloid Interface Sci 207:189–198CrossRef Lvov Y, Aerov A, Fakhrullin R (2014) Clay nanotube encapsulation for functional biocomposites. Adv Colloid Interface Sci 207:189–198CrossRef
36.
go back to reference Luo BH, Hsu CE, Li JH, Zhao LF, Liu MX, Wang XY (2013) Nano-composite of poly (l-lactide) and halloysite nanotubes surface-grafted with l-lactide oligomer under microwave irradiation. J Biomed Nanotechnol 9(4):649–658CrossRef Luo BH, Hsu CE, Li JH, Zhao LF, Liu MX, Wang XY (2013) Nano-composite of poly (l-lactide) and halloysite nanotubes surface-grafted with l-lactide oligomer under microwave irradiation. J Biomed Nanotechnol 9(4):649–658CrossRef
37.
go back to reference Hughes AD, King MR (2010) Use of naturally occurring halloysite nanotubes for enhanced capture of flowing cells. Langmuir 26(14):12155–12164CrossRef Hughes AD, King MR (2010) Use of naturally occurring halloysite nanotubes for enhanced capture of flowing cells. Langmuir 26(14):12155–12164CrossRef
38.
go back to reference Ma P, Hristova-Bogaerds DG, Schmit P, Goossens JGP, Lemstra PJ (2012) Tailoring the morphology and properties of poly(lactic acid)/poly(ethylene)-co-(vinyl acetate)/starch blends via reactive compatibilization. Polym Int 61(8):1284–1293CrossRef Ma P, Hristova-Bogaerds DG, Schmit P, Goossens JGP, Lemstra PJ (2012) Tailoring the morphology and properties of poly(lactic acid)/poly(ethylene)-co-(vinyl acetate)/starch blends via reactive compatibilization. Polym Int 61(8):1284–1293CrossRef
39.
go back to reference Sharma R, Maiti SN (2014) Effects of crystallinity of PP and flexibility of SEBS-g-MA copolymer on the mechanical properties of PP/SEBS-g-MA blends. Polym Plast Technol Eng 53(3):229–238CrossRef Sharma R, Maiti SN (2014) Effects of crystallinity of PP and flexibility of SEBS-g-MA copolymer on the mechanical properties of PP/SEBS-g-MA blends. Polym Plast Technol Eng 53(3):229–238CrossRef
40.
go back to reference Harris AM, Lee EC (2008) Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci 107(4):2246–2255CrossRef Harris AM, Lee EC (2008) Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci 107(4):2246–2255CrossRef
41.
go back to reference Li Y, Liu L, Shi Y, Xiang F, Huang T, Wang Y (2011) Morphology, rheological, crystallization behavior, and mechanical properties of poly (l-lactide)/ethylene-co-vinyl acetate blends with different VA contents. J Appl Polym Sci 121(5):2688–2698CrossRef Li Y, Liu L, Shi Y, Xiang F, Huang T, Wang Y (2011) Morphology, rheological, crystallization behavior, and mechanical properties of poly (l-lactide)/ethylene-co-vinyl acetate blends with different VA contents. J Appl Polym Sci 121(5):2688–2698CrossRef
42.
go back to reference Singla RK, Maiti SN, Ghosh AK (2016) Crystallization, morphological, and mechanical response of poly (lactic acid)/lignin-based biodegradable composites. Polym Plast Technol Eng 55(5):475–485CrossRef Singla RK, Maiti SN, Ghosh AK (2016) Crystallization, morphological, and mechanical response of poly (lactic acid)/lignin-based biodegradable composites. Polym Plast Technol Eng 55(5):475–485CrossRef
43.
go back to reference Rasal RM, Janorkar AV, Hirt DE (2009) Poly(lactic acid) modifications. Prog Polym Sci 35(3):338–356CrossRef Rasal RM, Janorkar AV, Hirt DE (2009) Poly(lactic acid) modifications. Prog Polym Sci 35(3):338–356CrossRef
44.
go back to reference Chow WS, Lok SK (2009) Thermal properties of poly(lactic acid)/organo-montmorillonite nanocomposites. J Therm Anal Calorim 95:627–632CrossRef Chow WS, Lok SK (2009) Thermal properties of poly(lactic acid)/organo-montmorillonite nanocomposites. J Therm Anal Calorim 95:627–632CrossRef
45.
go back to reference Gorrasi G, Senatore V, Vigliotta G, Belviso S, Pucciariello R (2014) PET—halloysite nanotubes composites for packaging application: preparation, characterization and analysis of physical properties. Eur Polym J 61:145–156CrossRef Gorrasi G, Senatore V, Vigliotta G, Belviso S, Pucciariello R (2014) PET—halloysite nanotubes composites for packaging application: preparation, characterization and analysis of physical properties. Eur Polym J 61:145–156CrossRef
46.
go back to reference Costache MC, Jiang DD, Wilkie CA (2005) Thermal degradation of ethylene–vinyl acetate copolymer nanocomposites. Polymer 46(18):6947–6958CrossRef Costache MC, Jiang DD, Wilkie CA (2005) Thermal degradation of ethylene–vinyl acetate copolymer nanocomposites. Polymer 46(18):6947–6958CrossRef
47.
go back to reference Fortunati E, Puglia D, Kenny JM, Minhaz-Ul Haque M, Pracella M (2013) Effect of ethylene-co-vinyl acetate-glycidylmethacrylate and cellulose microfibers on the thermal, rheological and biodegradation properties of poly(lactic acid) based systems. Polym Degrad Stab 98(12):2742–2751CrossRef Fortunati E, Puglia D, Kenny JM, Minhaz-Ul Haque M, Pracella M (2013) Effect of ethylene-co-vinyl acetate-glycidylmethacrylate and cellulose microfibers on the thermal, rheological and biodegradation properties of poly(lactic acid) based systems. Polym Degrad Stab 98(12):2742–2751CrossRef
48.
go back to reference Liu M, Jia Z, Liu F, Jia D, Guo B (2010) Tailoring the wettability of polypropylene surfaces with halloysite nanotubes. J Colloid Interface Sci 350(1):186–193CrossRef Liu M, Jia Z, Liu F, Jia D, Guo B (2010) Tailoring the wettability of polypropylene surfaces with halloysite nanotubes. J Colloid Interface Sci 350(1):186–193CrossRef
49.
go back to reference Murariu M, Dechief A-L, Paint Y, Peeterbroeck S, Bonnaud L, Dubois P (2012) Polylactide (PLA)—halloysite nanocomposites: production, morphology and key-properties. J Polym Environ 20(4):932–943CrossRef Murariu M, Dechief A-L, Paint Y, Peeterbroeck S, Bonnaud L, Dubois P (2012) Polylactide (PLA)—halloysite nanocomposites: production, morphology and key-properties. J Polym Environ 20(4):932–943CrossRef
50.
go back to reference Shi Y, Li Y, Xiang F, Huang T, Chen C, Peng Y (2012) Carbon nanotubes induced microstructure and mechanical properties changes in cocontinuous poly (l-lactide)/ethylene-co-vinyl acetate blends. Polym Adv Technol 23(4):783–790CrossRef Shi Y, Li Y, Xiang F, Huang T, Chen C, Peng Y (2012) Carbon nanotubes induced microstructure and mechanical properties changes in cocontinuous poly (l-lactide)/ethylene-co-vinyl acetate blends. Polym Adv Technol 23(4):783–790CrossRef
51.
go back to reference Shen Y, Zhang TT, Yang JH, Zhang N, Huang T, Wang Y (2015) Selective localization of reduced graphene oxides at the interface of PLA/EVA blend and its resultant electrical resistivity. Polym Compos. doi:10.1002/pc.23769 Shen Y, Zhang TT, Yang JH, Zhang N, Huang T, Wang Y (2015) Selective localization of reduced graphene oxides at the interface of PLA/EVA blend and its resultant electrical resistivity. Polym Compos. doi:10.​1002/​pc.​23769
52.
go back to reference Li Y, Wang Y, Liu L, Han L, Xiang F, Zhou Z (2009) Crystallization improvement of poly (L-lactide) induced by functionalized multiwalled carbon nanotubes. J Polym Sci Part B Polym Phys 47(3):326–339CrossRef Li Y, Wang Y, Liu L, Han L, Xiang F, Zhou Z (2009) Crystallization improvement of poly (L-lactide) induced by functionalized multiwalled carbon nanotubes. J Polym Sci Part B Polym Phys 47(3):326–339CrossRef
53.
go back to reference Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59(5):574–582 Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59(5):574–582
54.
go back to reference Wang XF, Zhang ZX, Yang JH, Wang Y, Zhang JH (2015) Largely improved fracture toughness of an immiscible poly (l-lactide)/ethylene-co-vinyl acetate blend achieved by adding carbon nanotubes. RSC Adv 5(85):69522–69533CrossRef Wang XF, Zhang ZX, Yang JH, Wang Y, Zhang JH (2015) Largely improved fracture toughness of an immiscible poly (l-lactide)/ethylene-co-vinyl acetate blend achieved by adding carbon nanotubes. RSC Adv 5(85):69522–69533CrossRef
55.
go back to reference Ma P, Hristova-Bogaerds DG, Goossens JGP, Spoelstra AB, Zhang Y, Lemstra PJ (2011) Toughening of poly (lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Eur Polym J 48(1):146–154CrossRef Ma P, Hristova-Bogaerds DG, Goossens JGP, Spoelstra AB, Zhang Y, Lemstra PJ (2011) Toughening of poly (lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Eur Polym J 48(1):146–154CrossRef
56.
go back to reference Rashmi B, Prashantha K, Lacrampe M, Krawczak P (2015) Toughening of poly (lactic acid) without sacrificing stiffness and strength by melt-blending with polyamide 11 and selective localization of halloysite nanotubes. Express Polym Lett 9(8):721–735CrossRef Rashmi B, Prashantha K, Lacrampe M, Krawczak P (2015) Toughening of poly (lactic acid) without sacrificing stiffness and strength by melt-blending with polyamide 11 and selective localization of halloysite nanotubes. Express Polym Lett 9(8):721–735CrossRef
57.
go back to reference Shi YY, Yang JH, Huang T, Zhang N, Chen C, Wang Y (2013) Selective localization of carbon nanotubes at the interface of poly (l-lactide)/ethylene-co-vinyl acetate resulting in lowered electrical resistivity. Compos Part B Eng 55:463–469CrossRef Shi YY, Yang JH, Huang T, Zhang N, Chen C, Wang Y (2013) Selective localization of carbon nanotubes at the interface of poly (l-lactide)/ethylene-co-vinyl acetate resulting in lowered electrical resistivity. Compos Part B Eng 55:463–469CrossRef
58.
go back to reference Akbari A, Jawaid M, Hassan A, Balakrishnan H (2014) Epoxidized natural rubber toughened polylactic acid/talc composites: mechanical, thermal, and morphological properties. J Compos Mater 48(7):769–781CrossRef Akbari A, Jawaid M, Hassan A, Balakrishnan H (2014) Epoxidized natural rubber toughened polylactic acid/talc composites: mechanical, thermal, and morphological properties. J Compos Mater 48(7):769–781CrossRef
59.
go back to reference Petinakis E, Yu L, Edward G, Dean K, Liu H, Scully AD (2009) Effect of matrix—particle interfacial adhesion on the mechanical properties of poly (lactic acid)/wood-flour micro-composites. J Polym Environ 17(2):83–94CrossRef Petinakis E, Yu L, Edward G, Dean K, Liu H, Scully AD (2009) Effect of matrix—particle interfacial adhesion on the mechanical properties of poly (lactic acid)/wood-flour micro-composites. J Polym Environ 17(2):83–94CrossRef
60.
61.
go back to reference Ornaghi HL, Bolner AS, Fiorio R, Zattera AJ, Amico SC (2010) Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding. J Appl Polym Sci 118(2):887–896 Ornaghi HL, Bolner AS, Fiorio R, Zattera AJ, Amico SC (2010) Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding. J Appl Polym Sci 118(2):887–896
62.
go back to reference Mofokeng J, Luyt A (2015) Dynamic mechanical properties of PLA/PHBV, PLA/PCL, PHBV/PCL blends and their nanocomposites with TiO2 as nanofiller. Thermochim Acta 613:41–53CrossRef Mofokeng J, Luyt A (2015) Dynamic mechanical properties of PLA/PHBV, PLA/PCL, PHBV/PCL blends and their nanocomposites with TiO2 as nanofiller. Thermochim Acta 613:41–53CrossRef
63.
go back to reference Hassan E, Wei Y, Jiao H, Muhuo Y (2013) Dynamic mechanical properties and thermal stability of poly (lactic acid) and poly (butylene succinate) blends composites. J Fiber Bioeng Inf 6(1):85–94CrossRef Hassan E, Wei Y, Jiao H, Muhuo Y (2013) Dynamic mechanical properties and thermal stability of poly (lactic acid) and poly (butylene succinate) blends composites. J Fiber Bioeng Inf 6(1):85–94CrossRef
64.
go back to reference Sewda K, Maiti S (2011) Effect of bark flour on viscoelastic behavior of high density polyethylene. J Compos Mater 45(9):1007–1016CrossRef Sewda K, Maiti S (2011) Effect of bark flour on viscoelastic behavior of high density polyethylene. J Compos Mater 45(9):1007–1016CrossRef
65.
go back to reference Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites. CRC Press, Boston Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites. CRC Press, Boston
66.
go back to reference Klein N, Marom G, Pegoretti A, Migliaresi C (1995) Determining the role of interfacial transcrystallinity in composite materials by dynamic mechanical thermal analysis. Composites 26(10):707–712CrossRef Klein N, Marom G, Pegoretti A, Migliaresi C (1995) Determining the role of interfacial transcrystallinity in composite materials by dynamic mechanical thermal analysis. Composites 26(10):707–712CrossRef
Metadata
Title
Mechanical, morphological, and solid-state viscoelastic responses of poly(lactic acid)/ethylene-co-vinyl-acetate super-tough blend reinforced with halloysite nanotubes
Authors
Rajendra Kumar Singla
Saurindra N. Maiti
Anup K. Ghosh
Publication date
01-08-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 22/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0255-3

Other articles of this Issue 22/2016

Journal of Materials Science 22/2016 Go to the issue

Premium Partners