Skip to main content
Top
Published in: Acta Mechanica 8/2020

06-06-2020 | Original Paper

Mechanical properties and energy absorption of FCC lattice structures with different orientation angles

Authors: Peng Wang, Yijie Bian, Fan Yang, Hualin Fan, Bailin Zheng

Published in: Acta Mechanica | Issue 8/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The dynamic crushing behaviors of FCC lattice structures with various rotation angles are explored by numerical simulations. According to the localization band formed by the cell collapse, several deformation modes are distinguished. The effects of the orientation angle and the crushing velocity on the mechanical properties of the lattice are investigated. It is shown that the deformation mode depends strongly on the orientation angle and the impact velocity, which can be plotted on a mode classification map. It also indicates that there exists an optimal orientation angle of the FCC lattice structure which corresponds to the highest plateau stress and thus the best energy absorption capacity.
Literature
1.
go back to reference Zhang, X.Y., Fang, G., Zhou, J.: Additively manufactured scaffolds for bone tissue engineering and the prediction of their mechanical behavior: a review. Materials 10(1), 50 (2017)CrossRef Zhang, X.Y., Fang, G., Zhou, J.: Additively manufactured scaffolds for bone tissue engineering and the prediction of their mechanical behavior: a review. Materials 10(1), 50 (2017)CrossRef
2.
go back to reference Evans, A.G., Hutchinson, J.W., Fleck, N.A., Ashby, M.F., Wadley, H.N.G.: The topological design of multifunctional cellular metals. Prog. Mater. Sci. 46(1), 309–27 (2001)CrossRef Evans, A.G., Hutchinson, J.W., Fleck, N.A., Ashby, M.F., Wadley, H.N.G.: The topological design of multifunctional cellular metals. Prog. Mater. Sci. 46(1), 309–27 (2001)CrossRef
3.
go back to reference Zhao, M., Liu, F., Fu, G., Zhang, D., Zhang, T., Zhou, H.: Improved mechanical properties and energy absorption of BCC lattice structures with triply periodic minimal surfaces fabricated by SLM. Materials 11(12), 2411 (2018)CrossRef Zhao, M., Liu, F., Fu, G., Zhang, D., Zhang, T., Zhou, H.: Improved mechanical properties and energy absorption of BCC lattice structures with triply periodic minimal surfaces fabricated by SLM. Materials 11(12), 2411 (2018)CrossRef
4.
go back to reference Mines, R.A.W., Tsopanos, S., Shen, Y., Hasan, R., Mckown, S.T.: Drop weight impact behaviour of sandwich panels with metallic micro lattice cores. Int. J. Impact Eng. 60(Complete), 120–32 (2013)CrossRef Mines, R.A.W., Tsopanos, S., Shen, Y., Hasan, R., Mckown, S.T.: Drop weight impact behaviour of sandwich panels with metallic micro lattice cores. Int. J. Impact Eng. 60(Complete), 120–32 (2013)CrossRef
5.
go back to reference Karagiozova, D., Yu, T.X.: Plastic deformation modes of regular hexagonal honeycombs under in-plane biaxial compression. Int. J. Mech. Sci. 46(10), 1489–515 (2004)CrossRef Karagiozova, D., Yu, T.X.: Plastic deformation modes of regular hexagonal honeycombs under in-plane biaxial compression. Int. J. Mech. Sci. 46(10), 1489–515 (2004)CrossRef
6.
go back to reference Hu, L.L., Yu, T.X., Gao, Z.Y., Huang, X.Q.: The inhomogeneous deformation of polycarbonate circular honeycombs under in-plane compression. Int. J. Mech. Sci. 50(7), 1224–36 (2008)CrossRef Hu, L.L., Yu, T.X., Gao, Z.Y., Huang, X.Q.: The inhomogeneous deformation of polycarbonate circular honeycombs under in-plane compression. Int. J. Mech. Sci. 50(7), 1224–36 (2008)CrossRef
7.
go back to reference Balawi, S., Abot, J.L.: A refined model for the effective in-plane elastic moduli of hexagonal honeycombs. Compos. Struct. 84(2), 147–58 (2008)CrossRef Balawi, S., Abot, J.L.: A refined model for the effective in-plane elastic moduli of hexagonal honeycombs. Compos. Struct. 84(2), 147–58 (2008)CrossRef
8.
go back to reference Papka, S.D., Kyriakides, S.: Biaxial crushing of honeycombs–part 1: experiments. Int. J. Solids Struct. 36(29), 4367–96 (1999)CrossRef Papka, S.D., Kyriakides, S.: Biaxial crushing of honeycombs–part 1: experiments. Int. J. Solids Struct. 36(29), 4367–96 (1999)CrossRef
9.
go back to reference Papka, S.D., Kyriakides, S.: In-plane compressive response and crushing of honeycomb. J. Mech. Phys. Solids 42(10), 1499–532 (1994)CrossRef Papka, S.D., Kyriakides, S.: In-plane compressive response and crushing of honeycomb. J. Mech. Phys. Solids 42(10), 1499–532 (1994)CrossRef
10.
go back to reference Wu, E., Jiang, W.: Axial crush of metallic honeycombs. Int. J. Impact Eng. 19(5–6), 439–56 (1997)CrossRef Wu, E., Jiang, W.: Axial crush of metallic honeycombs. Int. J. Impact Eng. 19(5–6), 439–56 (1997)CrossRef
11.
go back to reference Zhao, H., Gary, G.: Crushing behaviour of aluminium honeycombs under impact loading. Int. J. Impact Eng. 21(10), 827–36 (1998)CrossRef Zhao, H., Gary, G.: Crushing behaviour of aluminium honeycombs under impact loading. Int. J. Impact Eng. 21(10), 827–36 (1998)CrossRef
12.
go back to reference Zou, Z., Reid, S.R., Tan, P.J., Li, S., Harrigan, J.J.: Dynamic crushing of honeycombs and features of shock fronts. Int. J. Impact Eng. 36(1), 165–76 (2009)CrossRef Zou, Z., Reid, S.R., Tan, P.J., Li, S., Harrigan, J.J.: Dynamic crushing of honeycombs and features of shock fronts. Int. J. Impact Eng. 36(1), 165–76 (2009)CrossRef
13.
go back to reference GUO, X.E., GIBSON, L.J.: Behavior of intact and damaged honeycombs: a finite element study. Int. J. Mech. Sci. 41(1), 85–105 (1999)CrossRef GUO, X.E., GIBSON, L.J.: Behavior of intact and damaged honeycombs: a finite element study. Int. J. Mech. Sci. 41(1), 85–105 (1999)CrossRef
14.
go back to reference PAPKA, S.D.: KYRIAKIDES: experiments and full-scale numerical simulations of in-plane crushing of a honeycomb. Acta Mater. 46(8), 2765–76 (1998)CrossRef PAPKA, S.D.: KYRIAKIDES: experiments and full-scale numerical simulations of in-plane crushing of a honeycomb. Acta Mater. 46(8), 2765–76 (1998)CrossRef
15.
go back to reference Li, Q.M., Reid, S.R.: About one-dimensional shock propagation in a cellular material. Int. J. Impact Eng. 32(7), 1898–906 (2006)CrossRef Li, Q.M., Reid, S.R.: About one-dimensional shock propagation in a cellular material. Int. J. Impact Eng. 32(7), 1898–906 (2006)CrossRef
16.
go back to reference Ruan, D., Lu, G., Wang, B., Yu, T.X.: In-plane dynamic crushing of honeycombs—a finite element study. Int. J. Impact Eng. 28(2), 161–82 (2003)CrossRef Ruan, D., Lu, G., Wang, B., Yu, T.X.: In-plane dynamic crushing of honeycombs—a finite element study. Int. J. Impact Eng. 28(2), 161–82 (2003)CrossRef
17.
go back to reference Liao, S., Zheng, Z., Yu, J.: Dynamic crushing of 2D cellular structures: local strain field and shock wave velocity. Int. J. Impact Eng. 57, 7–16 (2013)CrossRef Liao, S., Zheng, Z., Yu, J.: Dynamic crushing of 2D cellular structures: local strain field and shock wave velocity. Int. J. Impact Eng. 57, 7–16 (2013)CrossRef
18.
go back to reference Zheng, Z., Jilin, Y.U., Jianrong, L.I.: Dynamic crushing of 2D cellular structures: a finite element study. Int. J. Impact Eng. 32(1), 650–64 (2005)CrossRef Zheng, Z., Jilin, Y.U., Jianrong, L.I.: Dynamic crushing of 2D cellular structures: a finite element study. Int. J. Impact Eng. 32(1), 650–64 (2005)CrossRef
19.
go back to reference Hu, L., You, F., Yu, T.: Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs. Mater. Des. 46, 511–23 (2013)CrossRef Hu, L., You, F., Yu, T.: Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs. Mater. Des. 46, 511–23 (2013)CrossRef
20.
go back to reference CHUANG, ChengHsin, HUANG, JongShin: Theoretical expressions for describing the stiffness and strength of regular hexagonal honeycombs with Plateau borders. Mater. Des. 24(2), 263–72 (2003)CrossRef CHUANG, ChengHsin, HUANG, JongShin: Theoretical expressions for describing the stiffness and strength of regular hexagonal honeycombs with Plateau borders. Mater. Des. 24(2), 263–72 (2003)CrossRef
21.
go back to reference Hu, L.L., He, X.L., Wu, G.P., Yu, T.X.: Dynamic crushing of the circular-celled honeycombs under out-of-plane impact. Int. J. Impact Eng. 75, 150–61 (2015)CrossRef Hu, L.L., He, X.L., Wu, G.P., Yu, T.X.: Dynamic crushing of the circular-celled honeycombs under out-of-plane impact. Int. J. Impact Eng. 75, 150–61 (2015)CrossRef
22.
go back to reference Liu, Y., Zhang, X.: The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs. Int. J. Impact Eng. 36(1), 98–109 (2009)CrossRef Liu, Y., Zhang, X.: The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs. Int. J. Impact Eng. 36(1), 98–109 (2009)CrossRef
23.
go back to reference Qiu, X.M., Zhang, J., Yu, T.X.: Collapse of periodic planar lattices under uniaxial compression, part II: dynamic crushing based on finite element simulation. Int. J. Impact Eng. 36(10–11), 1231–41 (2009)CrossRef Qiu, X.M., Zhang, J., Yu, T.X.: Collapse of periodic planar lattices under uniaxial compression, part II: dynamic crushing based on finite element simulation. Int. J. Impact Eng. 36(10–11), 1231–41 (2009)CrossRef
24.
go back to reference Ushijima, K., Cantwell, W., Mines, R., Tsopanos, S., Smith, M.: An investigation into the compressive properties of stainless steel micro-lattice structures. J. Sandw. Struct. Mater. 13(1), 303–29 (2011)CrossRef Ushijima, K., Cantwell, W., Mines, R., Tsopanos, S., Smith, M.: An investigation into the compressive properties of stainless steel micro-lattice structures. J. Sandw. Struct. Mater. 13(1), 303–29 (2011)CrossRef
25.
go back to reference Ptochos, E., Labeas, G.: Elastic modulus and Poisson’s ratio determination of micro-lattice cellular structures by analytical, numerical and homogenisation methods. J. Sandw. Struct. Mater. 14(5), 597–626 (2012)CrossRef Ptochos, E., Labeas, G.: Elastic modulus and Poisson’s ratio determination of micro-lattice cellular structures by analytical, numerical and homogenisation methods. J. Sandw. Struct. Mater. 14(5), 597–626 (2012)CrossRef
26.
go back to reference Smith, M., Guan, Z., Cantwell, W.J.: Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int. J. Mech. Sci. 67, 28–41 (2013)CrossRef Smith, M., Guan, Z., Cantwell, W.J.: Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int. J. Mech. Sci. 67, 28–41 (2013)CrossRef
27.
go back to reference Bonatti, C., Mohr, D.: Large deformation response of additively-manufactured FCC metamaterials: from octet truss lattices towards continuous shell mesostructures. Int. J. Plast. 92, 122–47 (2017)CrossRef Bonatti, C., Mohr, D.: Large deformation response of additively-manufactured FCC metamaterials: from octet truss lattices towards continuous shell mesostructures. Int. J. Plast. 92, 122–47 (2017)CrossRef
28.
go back to reference Mueller, J., Matlack, K.H., Shea, K., Daraio, C.: Energy absorption properties of periodic and stochastic 3D lattice materials. Adv. Theory Simul. 2(10), 1900081 (2019)CrossRef Mueller, J., Matlack, K.H., Shea, K., Daraio, C.: Energy absorption properties of periodic and stochastic 3D lattice materials. Adv. Theory Simul. 2(10), 1900081 (2019)CrossRef
29.
go back to reference Qiu, X.M., Zhang, J., Yu, T.X.: Collapse of periodic planar lattices under uniaxial compression, part I: quasi-static strength predicted by limit analysis. Int. J. Impact Eng. 36(10–11), 1223–30 (2009)CrossRef Qiu, X.M., Zhang, J., Yu, T.X.: Collapse of periodic planar lattices under uniaxial compression, part I: quasi-static strength predicted by limit analysis. Int. J. Impact Eng. 36(10–11), 1223–30 (2009)CrossRef
30.
go back to reference MarkelAlaña, A.A.S.: Analytical model of the elastic behavior of a modified face-centered cubic lattice structure. J. Mech. Behav. Biomed. Mater. 98, 357–368 (2019) CrossRef MarkelAlaña, A.A.S.: Analytical model of the elastic behavior of a modified face-centered cubic lattice structure. J. Mech. Behav. Biomed. Mater. 98, 357–368 (2019) CrossRef
31.
go back to reference Merrett, R.P., Langdon, G.S., Theobald, M.D.: The blast and impact loading of aluminium foam. Mater. Des. 44, 311–9 (2013)CrossRef Merrett, R.P., Langdon, G.S., Theobald, M.D.: The blast and impact loading of aluminium foam. Mater. Des. 44, 311–9 (2013)CrossRef
Metadata
Title
Mechanical properties and energy absorption of FCC lattice structures with different orientation angles
Authors
Peng Wang
Yijie Bian
Fan Yang
Hualin Fan
Bailin Zheng
Publication date
06-06-2020
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 8/2020
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02710-x

Other articles of this Issue 8/2020

Acta Mechanica 8/2020 Go to the issue

Premium Partners