Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2018

05-01-2018

Mechanical Properties and Microstructure Evolution During Bending–Unbending Deformation of Pure Titanium Sheet

Authors: Daming Nie, Zhen Lu, Kaifeng Zhang

Published in: Journal of Materials Engineering and Performance | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, the pure titanium sheets with thickness of 1 mm are deformed 1-5 times in the form of bending–unbending cyclic deformation. The bending angles before and after unbending are 120° and 180°, respectively. Mechanical properties of samples during cyclic deformation, including \(M /(BH)^{2}\)-surface strain curve and spring back in each bending cycle, have been investigated. Moreover, the twinning/detwinning behavior and texture evolution in three typical bending layers (i.e., the tensile layer, neutral layer and compressive layer) in cyclic deformation have been tested by EBSD and TEM, and analyzed systematically. The results indicate that the most intensive twins, consist of similar proportion of tensile and compressive ones, distribute in the inner layer after 1st bending. While they disappear almost entirely after 1st unbending. The twins in outer layer could also be detwinned, and the new twins could be activated during 1st unbending. Besides, the twin density increases obviously and the residual twins could not be detwinned clearly after multiple passes of cyclic deformation. Moreover, the Schmid factor along the \(\sigma_{2}\) direction functions in the activation of twin variants regardless of the three-direction stress states.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Gall and H.J. Maier, Cyclic Deformation Mechanisms in Precipitated NiTi Shape Memory Alloys, Acta Mater., 2002, 50, p 4643–4657CrossRef K. Gall and H.J. Maier, Cyclic Deformation Mechanisms in Precipitated NiTi Shape Memory Alloys, Acta Mater., 2002, 50, p 4643–4657CrossRef
2.
go back to reference I.N. Vladimirov, M.P. Pietryga, and S. Reese, Anisotropic Finite Elastoplasticity with Nonlinear Kinematic and Isotropic Hardening and Application to Sheet Metal Forming, Int J Plast., 2010, 26, p 659–687CrossRef I.N. Vladimirov, M.P. Pietryga, and S. Reese, Anisotropic Finite Elastoplasticity with Nonlinear Kinematic and Isotropic Hardening and Application to Sheet Metal Forming, Int J Plast., 2010, 26, p 659–687CrossRef
3.
go back to reference I. Hayashi, M. Sato, and M. Kuroda, Strain Hardening in Bent Copper Foils, J. Mech. Phys. Solids, 2011, 59, p 1731–1751CrossRef I. Hayashi, M. Sato, and M. Kuroda, Strain Hardening in Bent Copper Foils, J. Mech. Phys. Solids, 2011, 59, p 1731–1751CrossRef
4.
go back to reference F. Yoshida and T. Uemori, A Model of Large-Strain Cyclic Plasticity and Its Application to Springback Simulation, Key Eng. Mater., 2003, 233–236, p 1687–1702 F. Yoshida and T. Uemori, A Model of Large-Strain Cyclic Plasticity and Its Application to Springback Simulation, Key Eng. Mater., 2003, 233–236, p 1687–1702
5.
go back to reference W. Prager, A New Method of Analyzing Stresses and Strains in Work Hardening Plastic Solids, J. Appl. Mech, 1956, 23, p 493–496 W. Prager, A New Method of Analyzing Stresses and Strains in Work Hardening Plastic Solids, J. Appl. Mech, 1956, 23, p 493–496
6.
go back to reference M. Brunet, F. Morestin, and S. Godereaux, Nonlinear Kinematic Hardening Identification for Anisotropic Sheet Metals With Bending-Unbending Tests, J. Eng. Mater. Technol., 2001, 123, p 378–383CrossRef M. Brunet, F. Morestin, and S. Godereaux, Nonlinear Kinematic Hardening Identification for Anisotropic Sheet Metals With Bending-Unbending Tests, J. Eng. Mater. Technol., 2001, 123, p 378–383CrossRef
7.
go back to reference J.L. Chaboche, Time-Independent Constitutive Theories for Cyclic Plasticity, Int. J. Plast., 1986, 2, p 149–188CrossRef J.L. Chaboche, Time-Independent Constitutive Theories for Cyclic Plasticity, Int. J. Plast., 1986, 2, p 149–188CrossRef
8.
go back to reference M. Habibnejad-Korayem, M.K. Jain, and R.K. Mishra, Microstructure Modification and Bendability Improvement of AZ31 Magnesium Sheet by Bending-Unbending and Annealing Process, Mater. Sci. Eng. A Struct., 2015, 648, p 371–384CrossRef M. Habibnejad-Korayem, M.K. Jain, and R.K. Mishra, Microstructure Modification and Bendability Improvement of AZ31 Magnesium Sheet by Bending-Unbending and Annealing Process, Mater. Sci. Eng. A Struct., 2015, 648, p 371–384CrossRef
9.
go back to reference G.A. Lucachick and L.R. Sanchez, Surface Topography Changes in Aluminum Alloy Sheet During Large Plastic Straining Under Cyclic Pure Bending, J. Mater. Process. Technol., 2013, 213, p 300–307CrossRef G.A. Lucachick and L.R. Sanchez, Surface Topography Changes in Aluminum Alloy Sheet During Large Plastic Straining Under Cyclic Pure Bending, J. Mater. Process. Technol., 2013, 213, p 300–307CrossRef
10.
go back to reference Q. Huo, X. Yang, J. Ma, H. Sun, J. Qin, and Y. Jiang, Microstructural and Textural Evolution of AZ61 Magnesium Alloy Sheet During Bidirectional Cyclic Bending, Mater. Charact., 2013, 79, p 43–51CrossRef Q. Huo, X. Yang, J. Ma, H. Sun, J. Qin, and Y. Jiang, Microstructural and Textural Evolution of AZ61 Magnesium Alloy Sheet During Bidirectional Cyclic Bending, Mater. Charact., 2013, 79, p 43–51CrossRef
11.
go back to reference H. Ning, Y. Yu, K. Lin, and L. Wen, Superplastic Properties of AZ31 and AZ31-1.0Y-1.3Sr Alloy Produced by Twin-Roll Casting and Sequential Hot Rolling, J. Mater. Eng. Perform., 2016, 25, p 1–7CrossRef H. Ning, Y. Yu, K. Lin, and L. Wen, Superplastic Properties of AZ31 and AZ31-1.0Y-1.3Sr Alloy Produced by Twin-Roll Casting and Sequential Hot Rolling, J. Mater. Eng. Perform., 2016, 25, p 1–7CrossRef
12.
go back to reference J.Y. Liu and K.F. Zhang, Promotion Mechanism of Electric Current on SiC/Al Composite Material Deformation, Mater. Sci. Technol. (Lond.), 2015, 31, p 468–473CrossRef J.Y. Liu and K.F. Zhang, Promotion Mechanism of Electric Current on SiC/Al Composite Material Deformation, Mater. Sci. Technol. (Lond.), 2015, 31, p 468–473CrossRef
13.
go back to reference J.W. Won, D. Kim, S.G. Hong, and S.L. Chong, Anisotropy in Twinning Characteristics and Texture Evolution of Rolling Textured High Purity Alpha Phase Titanium, J. Alloys Compd., 2016, 683, p 92–99CrossRef J.W. Won, D. Kim, S.G. Hong, and S.L. Chong, Anisotropy in Twinning Characteristics and Texture Evolution of Rolling Textured High Purity Alpha Phase Titanium, J. Alloys Compd., 2016, 683, p 92–99CrossRef
14.
go back to reference J. Xu, J. Li, L. Shi, D. Shan, and B. Guo, Effects of Temperature, Strain Rate and Specimen Size on the Deformation Behaviors at Micro/Meso-Scale in Ultrafine-Grained Pure Al, Mater. Charact., 2015, 109, p 181–188CrossRef J. Xu, J. Li, L. Shi, D. Shan, and B. Guo, Effects of Temperature, Strain Rate and Specimen Size on the Deformation Behaviors at Micro/Meso-Scale in Ultrafine-Grained Pure Al, Mater. Charact., 2015, 109, p 181–188CrossRef
15.
go back to reference D.-K. Leu and Z.-W. Zhuang, Springback Prediction of the Vee Bending Process for High-Strength Steel Sheets, J. Mech. Sci. Technol., 2016, 30, p 1077–1084CrossRef D.-K. Leu and Z.-W. Zhuang, Springback Prediction of the Vee Bending Process for High-Strength Steel Sheets, J. Mech. Sci. Technol., 2016, 30, p 1077–1084CrossRef
16.
go back to reference S. Nemat-Nasser, W.G. Guo, and J.Y. Cheng, Mechanical Properties and Deformation Mechanisms of a Commercially Pure Titanium, Acta Mater., 1999, 47, p 3705–3720CrossRef S. Nemat-Nasser, W.G. Guo, and J.Y. Cheng, Mechanical Properties and Deformation Mechanisms of a Commercially Pure Titanium, Acta Mater., 1999, 47, p 3705–3720CrossRef
17.
go back to reference T. Hama, H. Nagao, A. Kobuki, H. Fujimoto, and H. Takuda, Work-Hardening and Twinning Behaviors in a Commercially Pure Titanium Sheet Under Various Loading Paths, Mater. Sci. Eng. A Struct., 2014, 620, p 390–398CrossRef T. Hama, H. Nagao, A. Kobuki, H. Fujimoto, and H. Takuda, Work-Hardening and Twinning Behaviors in a Commercially Pure Titanium Sheet Under Various Loading Paths, Mater. Sci. Eng. A Struct., 2014, 620, p 390–398CrossRef
18.
go back to reference J. Carbonnière, S. Thuillier, F. Sabourin, M. Brunet, and P.Y. Manach, Comparison of the Work Hardening of Metallic Sheets in Bending–Unbending and Simple Shear, Int. J. Mech. Sci., 2009, 51, p 122–130CrossRef J. Carbonnière, S. Thuillier, F. Sabourin, M. Brunet, and P.Y. Manach, Comparison of the Work Hardening of Metallic Sheets in Bending–Unbending and Simple Shear, Int. J. Mech. Sci., 2009, 51, p 122–130CrossRef
19.
go back to reference F. Yoshida, M. Urabe, and V.V. Toropov, Identification of Material Parameters in Constitutive Model for Sheet Metals from Cyclic Bending Tests, Int. J. Mech. Sci., 1998, 40, p 237–249CrossRef F. Yoshida, M. Urabe, and V.V. Toropov, Identification of Material Parameters in Constitutive Model for Sheet Metals from Cyclic Bending Tests, Int. J. Mech. Sci., 1998, 40, p 237–249CrossRef
20.
go back to reference D. Nie, L. Zhen, and K. Zhang, Folding/Unfolding Properties of Metal Foils in Transformable Structure, J. Mater. Eng. Perform., 2017, 26, p 1–12CrossRef D. Nie, L. Zhen, and K. Zhang, Folding/Unfolding Properties of Metal Foils in Transformable Structure, J. Mater. Eng. Perform., 2017, 26, p 1–12CrossRef
21.
go back to reference D. Deng and H. Murakawa, Numerical Simulation of Temperature Field and Residual Stress in Multi-pass Welds in Stainless Steel Pipe and Comparison with Experimental Measurements, Comput. Mater. Sci., 2006, 37, p 269–277CrossRef D. Deng and H. Murakawa, Numerical Simulation of Temperature Field and Residual Stress in Multi-pass Welds in Stainless Steel Pipe and Comparison with Experimental Measurements, Comput. Mater. Sci., 2006, 37, p 269–277CrossRef
22.
go back to reference S.K. Sahoo, R.K. Sabat, B.D. Bishoyi, A.G.S. Anjani, and S. Suwas, Effect of Strain-Paths on Mechanical Properties of Hot Rolled Commercially Pure Titanium, Mater. Lett., 2016, 180, p 166–169CrossRef S.K. Sahoo, R.K. Sabat, B.D. Bishoyi, A.G.S. Anjani, and S. Suwas, Effect of Strain-Paths on Mechanical Properties of Hot Rolled Commercially Pure Titanium, Mater. Lett., 2016, 180, p 166–169CrossRef
23.
go back to reference H. Nie, W. Liang, L. Zheng, X. Ren, C. Chi, and H. Fan, The Microstructure, Texture and Mechanical Properties of the Rolled Al/Mg/Al Clad Sheets, J. Mater. Eng. Perform., 2016, 25, p 4695–4705CrossRef H. Nie, W. Liang, L. Zheng, X. Ren, C. Chi, and H. Fan, The Microstructure, Texture and Mechanical Properties of the Rolled Al/Mg/Al Clad Sheets, J. Mater. Eng. Perform., 2016, 25, p 4695–4705CrossRef
24.
go back to reference K. Ahn, H. Huh, and J. Yoon, Strain Hardening Model of Pure Titanium Considering Effects of Deformation Twinning, Met. Mater. Int., 2013, 19, p 749–758CrossRef K. Ahn, H. Huh, and J. Yoon, Strain Hardening Model of Pure Titanium Considering Effects of Deformation Twinning, Met. Mater. Int., 2013, 19, p 749–758CrossRef
25.
go back to reference D. Sarker, J. Friedman, and D.L. Chen, De-twinning and Texture Change in an Extruded AM30 Magnesium Alloy During Compression Along Normal Direction, J. Mater. Sci. Technol., 2015, 31, p 264–268CrossRef D. Sarker, J. Friedman, and D.L. Chen, De-twinning and Texture Change in an Extruded AM30 Magnesium Alloy During Compression Along Normal Direction, J. Mater. Sci. Technol., 2015, 31, p 264–268CrossRef
26.
go back to reference H. Becker and W. Pantleon, Work-Hardening Stages and Deformation Mechanism Maps During Tensile Deformation of Commercially Pure Titanium, Comput. Mater. Sci., 2013, 76, p 52–59CrossRef H. Becker and W. Pantleon, Work-Hardening Stages and Deformation Mechanism Maps During Tensile Deformation of Commercially Pure Titanium, Comput. Mater. Sci., 2013, 76, p 52–59CrossRef
Metadata
Title
Mechanical Properties and Microstructure Evolution During Bending–Unbending Deformation of Pure Titanium Sheet
Authors
Daming Nie
Zhen Lu
Kaifeng Zhang
Publication date
05-01-2018
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2018
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-3109-5

Other articles of this Issue 2/2018

Journal of Materials Engineering and Performance 2/2018 Go to the issue

Premium Partners