Skip to main content
Top

2017 | OriginalPaper | Chapter

4. Mechanical Properties of High-Energy Ball Milled Nanocrystalline Al Alloys

Authors : Rajeev Kumar Gupta, B. S. Murty, Nick Birbilis

Published in: An Overview of High-energy Ball Milled Nanocrystalline Aluminum Alloys

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanocrystalline metallic materials [1–3] produced by the high-energy ball milling (HEBM) [4] are reported to be much stronger and apparently less ductile than conventional coarse grained materials. This difference in the properties is attributed to the unique grain structure, defects, defect activity and the arrangement of such features in nanocrystalline materials. For example, a paucity of dislocations in nanocrystalline materials is well documented. Dislocation pile-up in deformed specimen has not been reported so far and any dislocation activity is primarily believed to originate and terminate at grain boundaries. Due to the fine grain size, grain boundary sliding and/or Coble creep can dominate deformation, which may cause softening. Various aspects of mechanical properties of nanocrystalline materials produced via several processing routes are discussed in the literature. This chapter is focused on mechanical properties of nanocrystalline Al alloys as prepared by HEBM.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1–29CrossRef Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1–29CrossRef
3.
go back to reference Gleiter H (1995) Nanostructured materials: state of the art and perspectives. Nanostruct Mater 6:3–14CrossRef Gleiter H (1995) Nanostructured materials: state of the art and perspectives. Nanostruct Mater 6:3–14CrossRef
4.
go back to reference Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184CrossRef Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184CrossRef
5.
go back to reference Bonetti E, Pasquini L, Sampaolesi E (1997) The influence of grain size on the mechanical properties of nanocrystalline aluminium. Nanostruct Mater 9:611–614CrossRef Bonetti E, Pasquini L, Sampaolesi E (1997) The influence of grain size on the mechanical properties of nanocrystalline aluminium. Nanostruct Mater 9:611–614CrossRef
6.
go back to reference Zakeri M, Vakili-Ahrarirudi A (2012) Effect of milling speed and shaping method on mechanical properties of nanostructure bulked aluminum. Mater Des 37:487–490CrossRef Zakeri M, Vakili-Ahrarirudi A (2012) Effect of milling speed and shaping method on mechanical properties of nanostructure bulked aluminum. Mater Des 37:487–490CrossRef
7.
go back to reference Cintas J, Montes JM, Cuevas FG, Herrera EJ (2005) Influence of milling media on the microstructure and mechanical properties of mechanically milled and sintered aluminium. J Mater Sci 40:3911–3915CrossRef Cintas J, Montes JM, Cuevas FG, Herrera EJ (2005) Influence of milling media on the microstructure and mechanical properties of mechanically milled and sintered aluminium. J Mater Sci 40:3911–3915CrossRef
8.
go back to reference Witkin D, Lee Z, Rodriguez R, Nutt S, Lavernia E (2003) Al-Mg alloy engineered with bimodal grain size for high strength and increased ductility. Scr Mater 49:297–302CrossRef Witkin D, Lee Z, Rodriguez R, Nutt S, Lavernia E (2003) Al-Mg alloy engineered with bimodal grain size for high strength and increased ductility. Scr Mater 49:297–302CrossRef
9.
go back to reference Youssef KM, Scattergood RO, Murty KL, Koch CC (2006) Nanocrystalline Al-Mg alloy with ultrahigh strength and good ductility. Scr Mater 54:251–256CrossRef Youssef KM, Scattergood RO, Murty KL, Koch CC (2006) Nanocrystalline Al-Mg alloy with ultrahigh strength and good ductility. Scr Mater 54:251–256CrossRef
10.
go back to reference Newbery AP, Ahn B, Topping TD, Pao PS, Nutt SR, Lavernia EJ (2008) Large UFG Al alloy plates from cryomilling. J Mater Process Technol 203:37–45CrossRef Newbery AP, Ahn B, Topping TD, Pao PS, Nutt SR, Lavernia EJ (2008) Large UFG Al alloy plates from cryomilling. J Mater Process Technol 203:37–45CrossRef
11.
go back to reference Tellkamp VL, Lavernia EJ (1999) Processing and mechanical properties of nanocrystalline 5083 Al alloy. Nanostruct Mater 12:249–252CrossRef Tellkamp VL, Lavernia EJ (1999) Processing and mechanical properties of nanocrystalline 5083 Al alloy. Nanostruct Mater 12:249–252CrossRef
12.
go back to reference Shanmugasundaram T, Heilmaier M, Murty BS, Sarma VS (2010) On the Hall-Petch relationship in a nanostructured Al-Cu alloy. Mater Sci Eng A 527:7821–7825CrossRef Shanmugasundaram T, Heilmaier M, Murty BS, Sarma VS (2010) On the Hall-Petch relationship in a nanostructured Al-Cu alloy. Mater Sci Eng A 527:7821–7825CrossRef
13.
go back to reference Shanmugasundaram T, Heilmaier M, Murty BS, Subramanya Sarma V (2009) Microstructure and mechanical properties of nanostructured Al-4Cu alloy produced by mechanical alloying and vacuum hot pressing. Metall Mater Trans A Phys Metall Mater Sci 40:2798–2801CrossRef Shanmugasundaram T, Heilmaier M, Murty BS, Subramanya Sarma V (2009) Microstructure and mechanical properties of nanostructured Al-4Cu alloy produced by mechanical alloying and vacuum hot pressing. Metall Mater Trans A Phys Metall Mater Sci 40:2798–2801CrossRef
14.
go back to reference Srinivasarao B, Suryanarayana C, Oh-ishi K, Hono K (2009) Microstructure and mechanical properties of Al-Zr nanocomposite materials. Mater Sci Eng A 518:100–107CrossRef Srinivasarao B, Suryanarayana C, Oh-ishi K, Hono K (2009) Microstructure and mechanical properties of Al-Zr nanocomposite materials. Mater Sci Eng A 518:100–107CrossRef
15.
go back to reference Sasaki TT, Ohkubo T, Hono K (2009) Microstructure and mechanical properties of bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering. Acta Mater 57:3529–3538CrossRef Sasaki TT, Ohkubo T, Hono K (2009) Microstructure and mechanical properties of bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering. Acta Mater 57:3529–3538CrossRef
16.
go back to reference Sasaki TT, Mukai T, Hono K (2007) A high-strength bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering. Scr Mater 57:189–192CrossRef Sasaki TT, Mukai T, Hono K (2007) A high-strength bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering. Scr Mater 57:189–192CrossRef
17.
go back to reference Cavaliere P (2007) Strain rate sensitivity and fatigue properties of an Al-fe nanocrystalline alloy produced by cryogenic ball milling. Multidiscip Model Mater Struct 3:225–234CrossRef Cavaliere P (2007) Strain rate sensitivity and fatigue properties of an Al-fe nanocrystalline alloy produced by cryogenic ball milling. Multidiscip Model Mater Struct 3:225–234CrossRef
18.
go back to reference Mendis CL, Jhawar HP, Sasaki TT, Oh-ishi K, Sivaprasad K, Fleury E, Hono K (2012) Mechanical properties and microstructures of Al-1Fe-(0-1)Zr bulk nano-crystalline alloy processed by mechanical alloying and spark plasma sintering. Mater Sci Eng A 541:152–158CrossRef Mendis CL, Jhawar HP, Sasaki TT, Oh-ishi K, Sivaprasad K, Fleury E, Hono K (2012) Mechanical properties and microstructures of Al-1Fe-(0-1)Zr bulk nano-crystalline alloy processed by mechanical alloying and spark plasma sintering. Mater Sci Eng A 541:152–158CrossRef
19.
go back to reference Ryu JR, Moon KI, Lee KS (2000) Microstructure and mechanical properties of nanocrystalline Al-Ti alloys consolidated by plasma activated sintering. J Alloys Compd 296:157–165CrossRef Ryu JR, Moon KI, Lee KS (2000) Microstructure and mechanical properties of nanocrystalline Al-Ti alloys consolidated by plasma activated sintering. J Alloys Compd 296:157–165CrossRef
20.
go back to reference Rana JK, Sivaprahasam D, Seetharama Raju K, Subramanya Sarma V (2009) Microstructure and mechanical properties of nanocrystalline high strength Al-Mg-Si (AA6061) alloy by high energy ball milling and spark plasma sintering. Mater Sci Eng A 527:292–296CrossRef Rana JK, Sivaprahasam D, Seetharama Raju K, Subramanya Sarma V (2009) Microstructure and mechanical properties of nanocrystalline high strength Al-Mg-Si (AA6061) alloy by high energy ball milling and spark plasma sintering. Mater Sci Eng A 527:292–296CrossRef
21.
go back to reference Ma K, Wen H, Hu T, Topping TD, Isheim D, Seidman DN, Lavernia EJ, Schoenung JM (2014) Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater 62:141–155CrossRef Ma K, Wen H, Hu T, Topping TD, Isheim D, Seidman DN, Lavernia EJ, Schoenung JM (2014) Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater 62:141–155CrossRef
22.
go back to reference Polukhin P, Gorelik S, Vorontsov V (1984) Physical principles ofplastic deformation. Mir Publisher, Moscow Polukhin P, Gorelik S, Vorontsov V (1984) Physical principles ofplastic deformation. Mir Publisher, Moscow
23.
go back to reference Gupta RK, Fabijanic D, Zhang R, Birbilis N (2015) Corrosion behaviour and hardness of the in situ consolidated Al and Al-Cr alloys produced via high-energy ball milling. Corros Sci 98:643–650CrossRef Gupta RK, Fabijanic D, Zhang R, Birbilis N (2015) Corrosion behaviour and hardness of the in situ consolidated Al and Al-Cr alloys produced via high-energy ball milling. Corros Sci 98:643–650CrossRef
24.
go back to reference Gupta RK, Fabijanic D, Dorin T, Qiu Y, Wang JT, Birbilis N (2015) Simultaneous improvement in the strength and corrosion resistance of Al via high-energy ball milling and Cr alloying. Mater Des 84:270–276CrossRef Gupta RK, Fabijanic D, Dorin T, Qiu Y, Wang JT, Birbilis N (2015) Simultaneous improvement in the strength and corrosion resistance of Al via high-energy ball milling and Cr alloying. Mater Des 84:270–276CrossRef
25.
go back to reference Han BQ, Lavernia EJ, Mohamed FA (2003) Tension and compression behaviours of bulk ultrafine-grained Al-7.5 wt% Mg alloy. Philos Mag Lett 83:89–96CrossRef Han BQ, Lavernia EJ, Mohamed FA (2003) Tension and compression behaviours of bulk ultrafine-grained Al-7.5 wt% Mg alloy. Philos Mag Lett 83:89–96CrossRef
26.
go back to reference Han BQ, Lavernia EJ, Mohamed FA (2003) On the mechanical behavior of a cryomilled Al-Ti-Cu alloy. Mater Sci Eng A 358:318–323CrossRef Han BQ, Lavernia EJ, Mohamed FA (2003) On the mechanical behavior of a cryomilled Al-Ti-Cu alloy. Mater Sci Eng A 358:318–323CrossRef
27.
go back to reference Han BQ, Lavernia EJ, Mohamed FA (2005) Mechanical properties of nanostructured materials. Rev Adv Mater Sci 9:1–16 Han BQ, Lavernia EJ, Mohamed FA (2005) Mechanical properties of nanostructured materials. Rev Adv Mater Sci 9:1–16
28.
go back to reference Han BQ, Matejczyk D, Zhou F, Zhang Z, Bampton C, Lavernia EJ, Mohamed FA (2004) Mechanical behavior of a cryomilled nanostructured Al-7.5 pct Mg alloy. Metall Mater Trans A Phys Metall Mater Sci 35A:947–949CrossRef Han BQ, Matejczyk D, Zhou F, Zhang Z, Bampton C, Lavernia EJ, Mohamed FA (2004) Mechanical behavior of a cryomilled nanostructured Al-7.5 pct Mg alloy. Metall Mater Trans A Phys Metall Mater Sci 35A:947–949CrossRef
29.
go back to reference Han BQ, Mohamed FA, Bampton CC, Lavernia EJ (2005) Improvement of toughness and ductility of a cryomilled Al-Mg alloy via microstructural modification. Metall Mater Trans A Phys Metall Mater Sci 36:2081–2091CrossRef Han BQ, Mohamed FA, Bampton CC, Lavernia EJ (2005) Improvement of toughness and ductility of a cryomilled Al-Mg alloy via microstructural modification. Metall Mater Trans A Phys Metall Mater Sci 36:2081–2091CrossRef
30.
go back to reference Han BQ, Mohamed FA, Lavernia EJ (2003) Tensile behavior of bulk nanostructured and ultrafine grained aluminum alloys. J Mater Sci 38:3319–3324CrossRef Han BQ, Mohamed FA, Lavernia EJ (2003) Tensile behavior of bulk nanostructured and ultrafine grained aluminum alloys. J Mater Sci 38:3319–3324CrossRef
31.
go back to reference Han BQ, Mohamed FA, Lavernia EJ (2004) Deformation mechanisms and ductility of nanostructured Al alloys. MRS Proceed 821:263–268 Han BQ, Mohamed FA, Lavernia EJ (2004) Deformation mechanisms and ductility of nanostructured Al alloys. MRS Proceed 821:263–268
32.
go back to reference Shaw LL, Luo H (2007) Deformation behavior and mechanisms of a nanocrystalline multi-phase aluminum alloy. J Mater Sci 42:1415–1426CrossRef Shaw LL, Luo H (2007) Deformation behavior and mechanisms of a nanocrystalline multi-phase aluminum alloy. J Mater Sci 42:1415–1426CrossRef
33.
go back to reference Moon KI, Park HS, Lee KS (2002) Consolidation of nanocrystalline Al-5 at.% Ti alloy powders by ultra high-pressure hot pressing. Mater Sci Eng A 323:293–300CrossRef Moon KI, Park HS, Lee KS (2002) Consolidation of nanocrystalline Al-5 at.% Ti alloy powders by ultra high-pressure hot pressing. Mater Sci Eng A 323:293–300CrossRef
34.
go back to reference Lee Z, Zhou F, Valiev RZ, Lavernia EJ, Nutt SR (2004) Microstructure and microhardness of cryomilled bulk nanocrystalline Al-7.5%Mg alloy consolidated by high pressure torsion. Scr Mater 51:209–214CrossRef Lee Z, Zhou F, Valiev RZ, Lavernia EJ, Nutt SR (2004) Microstructure and microhardness of cryomilled bulk nanocrystalline Al-7.5%Mg alloy consolidated by high pressure torsion. Scr Mater 51:209–214CrossRef
35.
go back to reference Pradeep KG, Wanderka N, Choi P, Banhart J, Murty BS, Raabe D (2013) Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography. Acta Mater 61:4696–4706CrossRef Pradeep KG, Wanderka N, Choi P, Banhart J, Murty BS, Raabe D (2013) Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography. Acta Mater 61:4696–4706CrossRef
36.
go back to reference Roshan MR, Soltanpour M, Jahromi SAJ (2013) Microstructural evolution of nanocrystalline chips particles produced via large strain machining during ball milling. Powder Technol 249:134–139CrossRef Roshan MR, Soltanpour M, Jahromi SAJ (2013) Microstructural evolution of nanocrystalline chips particles produced via large strain machining during ball milling. Powder Technol 249:134–139CrossRef
37.
go back to reference Senkov ON, Froes FH, Stolyarov VV, Valiev RZ, Liu J (1998) Microstructure and microhardness of an Al-Fe alloy subjected to severe plastic deformation and aging. Nanostruct Mater 10:691–698CrossRef Senkov ON, Froes FH, Stolyarov VV, Valiev RZ, Liu J (1998) Microstructure and microhardness of an Al-Fe alloy subjected to severe plastic deformation and aging. Nanostruct Mater 10:691–698CrossRef
38.
go back to reference Shaw L, Luo H, Villegas J, Miracle D (2004) Effects of internal strains on hardness of nanocrystalline Al-Fe-Cr-Ti alloys. Scr Mater 51:449–453CrossRef Shaw L, Luo H, Villegas J, Miracle D (2004) Effects of internal strains on hardness of nanocrystalline Al-Fe-Cr-Ti alloys. Scr Mater 51:449–453CrossRef
39.
go back to reference Azabou M, Khitouni M, Kolsi A (2009) Characterization of nanocrystalline Al-based alloy produced by mechanical milling followed by cold-pressing consolidation. Mater Charact 60:499–505CrossRef Azabou M, Khitouni M, Kolsi A (2009) Characterization of nanocrystalline Al-based alloy produced by mechanical milling followed by cold-pressing consolidation. Mater Charact 60:499–505CrossRef
40.
go back to reference Akinrinlola B, Gauvin R, Brochu M (2012) Improving the mechanical reliability of cryomilled Al-Mg alloy using a two-stage spark plasma sintering cycle. Scr Mater 66:455–458CrossRef Akinrinlola B, Gauvin R, Brochu M (2012) Improving the mechanical reliability of cryomilled Al-Mg alloy using a two-stage spark plasma sintering cycle. Scr Mater 66:455–458CrossRef
41.
go back to reference Varam S, Narayana PVSL, Prasad MD, Chakravarty D, Rajulapati KV, Bhanu Sankara Rao K (2014) Strain rate sensitivity of bulk multi-phase nanocrystalline Al-W-based alloy. Philos Mag Lett 94:582–591CrossRef Varam S, Narayana PVSL, Prasad MD, Chakravarty D, Rajulapati KV, Bhanu Sankara Rao K (2014) Strain rate sensitivity of bulk multi-phase nanocrystalline Al-W-based alloy. Philos Mag Lett 94:582–591CrossRef
42.
go back to reference Tellkamp VL, Melmed A, Lavernia EJ (2001) Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy. Metall Mater Trans A Phys Metall Mater Sci 32:2335–2343CrossRef Tellkamp VL, Melmed A, Lavernia EJ (2001) Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy. Metall Mater Trans A Phys Metall Mater Sci 32:2335–2343CrossRef
43.
go back to reference Huang X, Kamikawa N, Hansen N (2008) Strengthening mechanisms in nanostructured aluminum. Mater Sci Eng A 483–484:102–104CrossRef Huang X, Kamikawa N, Hansen N (2008) Strengthening mechanisms in nanostructured aluminum. Mater Sci Eng A 483–484:102–104CrossRef
44.
go back to reference Witkin DB, Lavernia EJ (2006) Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog Mater Sci 51:1–60CrossRef Witkin DB, Lavernia EJ (2006) Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog Mater Sci 51:1–60CrossRef
45.
go back to reference Langdon TG (2013) Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement. Acta Mater 61:7035–7059CrossRef Langdon TG (2013) Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement. Acta Mater 61:7035–7059CrossRef
46.
go back to reference Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556CrossRef Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556CrossRef
47.
go back to reference Wolf D, Yamakov V, Phillpot SR, Mukherjee A, Gleiter H (2005) Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments? Acta Mater 53:1–40CrossRef Wolf D, Yamakov V, Phillpot SR, Mukherjee A, Gleiter H (2005) Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments? Acta Mater 53:1–40CrossRef
48.
go back to reference Weertman JR, Farkas D, Hemker K, Kung H, Mayo M, Mitra R, Van Swygenhoven H (1999) Structure and mechanical behavior of bulk nanocrystalline materials. MRS Bull 24:44–50CrossRef Weertman JR, Farkas D, Hemker K, Kung H, Mayo M, Mitra R, Van Swygenhoven H (1999) Structure and mechanical behavior of bulk nanocrystalline materials. MRS Bull 24:44–50CrossRef
49.
go back to reference Padmanabhan KA, Gleiter H (2012) A mechanism for the deformation of disordered states of matter. Curr Opin Solid State Mater Sci 16:243–253CrossRef Padmanabhan KA, Gleiter H (2012) A mechanism for the deformation of disordered states of matter. Curr Opin Solid State Mater Sci 16:243–253CrossRef
50.
go back to reference Dieter GE (1988) Mechanical metallurgy. McGraw-Hill, New York Dieter GE (1988) Mechanical metallurgy. McGraw-Hill, New York
51.
go back to reference Cahn RW, Haasen P (1997) Physical metallurgy. North-Holland, Amsterdam Cahn RW, Haasen P (1997) Physical metallurgy. North-Holland, Amsterdam
52.
go back to reference Hayes RW, Witkin D, Zhou F, Lavernia EJ (2004) Deformation and activation volumes of cryomilled ultrafine-grained aluminum. Acta Mater 52:4259CrossRef Hayes RW, Witkin D, Zhou F, Lavernia EJ (2004) Deformation and activation volumes of cryomilled ultrafine-grained aluminum. Acta Mater 52:4259CrossRef
53.
go back to reference Lloyd DJ, Court SA (2003) Influence of grain size on tensile properties of Al-Mg alloys. Mater Sci Tech 19:1349CrossRef Lloyd DJ, Court SA (2003) Influence of grain size on tensile properties of Al-Mg alloys. Mater Sci Tech 19:1349CrossRef
54.
go back to reference Wu D, Zhang J, Huang JC, Bei H, Nieh TG (2013) Grain-boundary strengthening in nanocrystalline chromium and the Hall-Petch coefficient of body-centered cubic metals. Scr Mater 68:118–121CrossRef Wu D, Zhang J, Huang JC, Bei H, Nieh TG (2013) Grain-boundary strengthening in nanocrystalline chromium and the Hall-Petch coefficient of body-centered cubic metals. Scr Mater 68:118–121CrossRef
55.
go back to reference Scattergood RO, Koch CC (1992) A modified model for hall-petch behavior in nanocrystalline materials. Scr Metall Mater 27:1195–1200CrossRef Scattergood RO, Koch CC (1992) A modified model for hall-petch behavior in nanocrystalline materials. Scr Metall Mater 27:1195–1200CrossRef
56.
go back to reference Wang N, Wang Z, Aust KT, Erb U (1995) Effect of grain size on mechanical properties of nanocrystalline materials. Acta Metall Mater 43:519–528CrossRef Wang N, Wang Z, Aust KT, Erb U (1995) Effect of grain size on mechanical properties of nanocrystalline materials. Acta Metall Mater 43:519–528CrossRef
57.
go back to reference Jang JSC, Koch CC (1990) The hall-petch relationship in nanocrystalline iron produced by ball milling. Scr Metall Mater 24:1599–1604CrossRef Jang JSC, Koch CC (1990) The hall-petch relationship in nanocrystalline iron produced by ball milling. Scr Metall Mater 24:1599–1604CrossRef
58.
go back to reference Chen Z, Jiang S, Gan Y (2012) The “Inverse Hall-Petch” effect on the impact response of single crystal copper. Acta Mech Sinica/Lixue Xuebao 28:1042–1048CrossRef Chen Z, Jiang S, Gan Y (2012) The “Inverse Hall-Petch” effect on the impact response of single crystal copper. Acta Mech Sinica/Lixue Xuebao 28:1042–1048CrossRef
59.
go back to reference Tang Y, Bringa EM, Meyers MA (2013) Inverse Hall-Petch relationship in nanocrystalline tantalum. Mater Sci EngA 580:414–426CrossRef Tang Y, Bringa EM, Meyers MA (2013) Inverse Hall-Petch relationship in nanocrystalline tantalum. Mater Sci EngA 580:414–426CrossRef
60.
go back to reference Hahn H, Mondal P, Padmanabhan KA (1997) Plastic deformation of nanocrystalline materials. Nanostruct Mater 9:603–606CrossRef Hahn H, Mondal P, Padmanabhan KA (1997) Plastic deformation of nanocrystalline materials. Nanostruct Mater 9:603–606CrossRef
61.
go back to reference Carlton CE, Ferreira PJ (2007) What is behind the inverse Hall-Petch effect in nanocrystalline materials? Acta Mater 55:3749–3756CrossRef Carlton CE, Ferreira PJ (2007) What is behind the inverse Hall-Petch effect in nanocrystalline materials? Acta Mater 55:3749–3756CrossRef
62.
go back to reference Cao Z, Meng X (2012) Inverse hall-petch effect of hardness in nanocrystalline ta films. Adv Mater Res 378–379:575–579 Cao Z, Meng X (2012) Inverse hall-petch effect of hardness in nanocrystalline ta films. Adv Mater Res 378–379:575–579
63.
go back to reference Takeuchi S (2001) The mechanism of the inverse Hall-Petch relation of nanocrystals. Scr Mater 44:1483–1487CrossRef Takeuchi S (2001) The mechanism of the inverse Hall-Petch relation of nanocrystals. Scr Mater 44:1483–1487CrossRef
64.
go back to reference Koch CC, Scattergood RO, Youssef KM, Chan E, Zhu YT (2010) Nanostructured materials by mechanical alloying: new results on property enhancement. J Mater Sci 45:4725–4732CrossRef Koch CC, Scattergood RO, Youssef KM, Chan E, Zhu YT (2010) Nanostructured materials by mechanical alloying: new results on property enhancement. J Mater Sci 45:4725–4732CrossRef
65.
go back to reference Sanders PG, Youngdahl CJ, Weertman JR (1997) The strength of nanocrystalline metals with and without flaws. Mater Sci Eng A 234–236:77–82CrossRef Sanders PG, Youngdahl CJ, Weertman JR (1997) The strength of nanocrystalline metals with and without flaws. Mater Sci Eng A 234–236:77–82CrossRef
66.
go back to reference Wang Y, Chen M, Zhou F, Ma E (2002) High tensile ductility in a nanostructured metal. Nature 419:912–915CrossRef Wang Y, Chen M, Zhou F, Ma E (2002) High tensile ductility in a nanostructured metal. Nature 419:912–915CrossRef
67.
go back to reference Koch CC, Morris DG, Lu K, Inoue A (1999) Ductility of nanostructured materials. MRS Bull 24:54–58CrossRef Koch CC, Morris DG, Lu K, Inoue A (1999) Ductility of nanostructured materials. MRS Bull 24:54–58CrossRef
68.
go back to reference Darling KA, Roberts AJ, Armstrong L, Kapoor D, Tschopp MA, Kecskes LJ, Mathaudhu SN (2013) Influence of Mn solute content on grain size reduction and improved strength in mechanically alloyed Al-Mn alloys. Mater Sci Eng A 589:57–65CrossRef Darling KA, Roberts AJ, Armstrong L, Kapoor D, Tschopp MA, Kecskes LJ, Mathaudhu SN (2013) Influence of Mn solute content on grain size reduction and improved strength in mechanically alloyed Al-Mn alloys. Mater Sci Eng A 589:57–65CrossRef
Metadata
Title
Mechanical Properties of High-Energy Ball Milled Nanocrystalline Al Alloys
Authors
Rajeev Kumar Gupta
B. S. Murty
Nick Birbilis
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-57031-0_4

Premium Partners