Skip to main content
Top

2018 | OriginalPaper | Chapter

4. Mechanical Properties of Liquid Metal After Solidified

Authors : Jing Liu, Liting Yi

Published in: Liquid Metal Biomaterials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mechanical properties of liquid metal are significant for various applications in biomedical category. This chapter investigates several classical mechanical issues of bone tissue and typical liquid metal biomaterials. Besides the changes in compositions and ratios of the alloy, representative methods for modifying liquid metal after solidified such as reinforcing with nano particles, casting with different processing technologies etc. are explained. Experimental ways to test mechanical performance and improvement of the low melting point metals were discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hukins DWL, Leahy JC, Mathias KJ (1999) Biomaterials: defining the mechanical properties of natural tissues and selection of replacement materials. J Mater Chem 9(3):629–636CrossRef Hukins DWL, Leahy JC, Mathias KJ (1999) Biomaterials: defining the mechanical properties of natural tissues and selection of replacement materials. J Mater Chem 9(3):629–636CrossRef
2.
go back to reference Fisher JP, Dean D, Mikos AG (2002) Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Biomaterials 23(22):4333–4343CrossRef Fisher JP, Dean D, Mikos AG (2002) Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Biomaterials 23(22):4333–4343CrossRef
3.
go back to reference de Guzman RC, Merrill MR, Richter JR et al (2011) Mechanical and biological properties of keratose biomaterials. Biomaterials 32(32):8205–8217CrossRef de Guzman RC, Merrill MR, Richter JR et al (2011) Mechanical and biological properties of keratose biomaterials. Biomaterials 32(32):8205–8217CrossRef
4.
go back to reference Poinern GEJ, Brundavanam S, Fawcett D et al (2012) Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. Am J Biomed Eng 2(6):218–240CrossRef Poinern GEJ, Brundavanam S, Fawcett D et al (2012) Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. Am J Biomed Eng 2(6):218–240CrossRef
5.
go back to reference Staiger M, Pietak A, Huadmai J et al (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728–1734CrossRef Staiger M, Pietak A, Huadmai J et al (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728–1734CrossRef
6.
go back to reference Valiathan MS, Krishnan VK (1999) Biomaterials: an overview. Natl Med J India 12(6):270–274 Valiathan MS, Krishnan VK (1999) Biomaterials: an overview. Natl Med J India 12(6):270–274
7.
go back to reference Ridzwan MIZ, Shuib S, Hassan AY et al (2007) Problem of stress shielding and improvement to the hip implant designs: a review. J Med Sci 3:460–467 Ridzwan MIZ, Shuib S, Hassan AY et al (2007) Problem of stress shielding and improvement to the hip implant designs: a review. J Med Sci 3:460–467
8.
go back to reference Yi L, Liu J (2017) Liquid metal biomaterials: a newly emerging area to tackle modern biomedical challenges. Int Mater Rev 62(7):415–440CrossRef Yi L, Liu J (2017) Liquid metal biomaterials: a newly emerging area to tackle modern biomedical challenges. Int Mater Rev 62(7):415–440CrossRef
9.
go back to reference Wang L, Liu J (2014) Liquid phase 3D printing for quickly manufacturing conductive metal objects with low melting point alloy ink. Sci Chin Technol Sci 57(9):1721–1728CrossRef Wang L, Liu J (2014) Liquid phase 3D printing for quickly manufacturing conductive metal objects with low melting point alloy ink. Sci Chin Technol Sci 57(9):1721–1728CrossRef
10.
go back to reference Wang L, Liu J (2014) Compatible hybrid 3D printing of metal and nonmetal inks for direct manufacture of end functional devices. Sci Chin Technol Sci 57(11):2089–2095CrossRef Wang L, Liu J (2014) Compatible hybrid 3D printing of metal and nonmetal inks for direct manufacture of end functional devices. Sci Chin Technol Sci 57(11):2089–2095CrossRef
11.
go back to reference Yu Y, Liu F, Liu J (2017) Direct 3D printing of low melting point alloy via adhesion mechanism. Rapid Prototyp J 23(3):642–650CrossRef Yu Y, Liu F, Liu J (2017) Direct 3D printing of low melting point alloy via adhesion mechanism. Rapid Prototyp J 23(3):642–650CrossRef
12.
go back to reference Yi L, Jin C, Wang L et al (2014) Liquid-solid phase transition alloy as reversible and rapid molding bone cement. Biomaterials 35(37):9789–9801CrossRef Yi L, Jin C, Wang L et al (2014) Liquid-solid phase transition alloy as reversible and rapid molding bone cement. Biomaterials 35(37):9789–9801CrossRef
13.
go back to reference International Organization for Standardization ISO 5833. Implants for surgeryacrylic resin cements (2002) International Organization for Standardization ISO 5833. Implants for surgeryacrylic resin cements (2002)
14.
go back to reference Chow LC, Takagi S (2001) A natural bone cement-A laboratory novelty led to the development of revolutionary new biomaterials. J Res Nat Inst Stand Technol 106(106):1029–1033CrossRef Chow LC, Takagi S (2001) A natural bone cement-A laboratory novelty led to the development of revolutionary new biomaterials. J Res Nat Inst Stand Technol 106(106):1029–1033CrossRef
15.
go back to reference Nilsson M, Fernández E, Sarda S et al (2002) Characterization of a novel calcium phosphate/sulphate bone cement. J Biomed Mater Res 61(4):600–607CrossRef Nilsson M, Fernández E, Sarda S et al (2002) Characterization of a novel calcium phosphate/sulphate bone cement. J Biomed Mater Res 61(4):600–607CrossRef
16.
go back to reference Fukase Y, Eanes ED, Takagi S et al (1990) Setting reactions and compressive strengths of calcium phosphate cements. J Dent Res 69(12):1852–1856CrossRef Fukase Y, Eanes ED, Takagi S et al (1990) Setting reactions and compressive strengths of calcium phosphate cements. J Dent Res 69(12):1852–1856CrossRef
17.
go back to reference Schmitz JP, Hollinger JO, Milam SB (1999) Reconstruction of bone using calcium phosphate bone cements: a critical review. J Oral Maxillofac Surg (Official Journal of the American Association of Oral & Maxillofacial Surgeons) 57(9):1122–1126CrossRef Schmitz JP, Hollinger JO, Milam SB (1999) Reconstruction of bone using calcium phosphate bone cements: a critical review. J Oral Maxillofac Surg (Official Journal of the American Association of Oral & Maxillofacial Surgeons) 57(9):1122–1126CrossRef
18.
go back to reference Graham J, Pruitt L, Ries M et al (2000) Fracture and fatigue properties of acrylic bone cement: the effects of mixing method, sterilization treatment, and molecular weight. J Arthroplast 15(8):1028–1035CrossRef Graham J, Pruitt L, Ries M et al (2000) Fracture and fatigue properties of acrylic bone cement: the effects of mixing method, sterilization treatment, and molecular weight. J Arthroplast 15(8):1028–1035CrossRef
19.
go back to reference International Organization for Standardization ISO 12737. Metallic materialsdetermination of plane-strain fracture toughness (2005) International Organization for Standardization ISO 12737. Metallic materialsdetermination of plane-strain fracture toughness (2005)
20.
go back to reference Lewis G, Nyman JS (2000) Toward standardization of methods of determination of fracture properties of acrylic bone cement and statistical analysis of test results. J Biomed Mater Res 53(6):748–768CrossRef Lewis G, Nyman JS (2000) Toward standardization of methods of determination of fracture properties of acrylic bone cement and statistical analysis of test results. J Biomed Mater Res 53(6):748–768CrossRef
21.
go back to reference Lewis G, Mladsi S (2000) Correlation between impact strength and fracture toughness of PMMA-based bone cements. Biomaterials 21(8):775–7781CrossRef Lewis G, Mladsi S (2000) Correlation between impact strength and fracture toughness of PMMA-based bone cements. Biomaterials 21(8):775–7781CrossRef
22.
go back to reference Baleani M, Cristofolini L, Minari C et al (2003) Fatigue strength of PMMA bone cement mixed with gentamicin and barium sulphate vs pure PMMA. Proc Inst Mech Eng [H] 217(1):9–12CrossRef Baleani M, Cristofolini L, Minari C et al (2003) Fatigue strength of PMMA bone cement mixed with gentamicin and barium sulphate vs pure PMMA. Proc Inst Mech Eng [H] 217(1):9–12CrossRef
23.
go back to reference Lewis G, Janna S (2003) Effect of test specimen cross-sectional shape on the in vitro fatigue life of acrylic bone cement. Biomaterials 24(23):4315–4321CrossRef Lewis G, Janna S (2003) Effect of test specimen cross-sectional shape on the in vitro fatigue life of acrylic bone cement. Biomaterials 24(23):4315–4321CrossRef
24.
go back to reference Lewis G, Janna S, Carroll M (2003) Effect of test frequency on the in vitro fatigue life of acrylic bone cement. Biomaterials 24(6):1111–1117CrossRef Lewis G, Janna S, Carroll M (2003) Effect of test frequency on the in vitro fatigue life of acrylic bone cement. Biomaterials 24(6):1111–1117CrossRef
25.
go back to reference Krause W, Mathis RS (1988) Fatigue properties of acrylic bone cements: review of the literature. J Biomed Mater Res 22(A1 Suppl):37–53 Krause W, Mathis RS (1988) Fatigue properties of acrylic bone cements: review of the literature. J Biomed Mater Res 22(A1 Suppl):37–53
26.
go back to reference Lewis G (2003) Fatigue testing and performance of acrylic bone-cement materials: state-of-the-art review. J Biomed Mater Res B Appl Biomater 66(1):457–486CrossRef Lewis G (2003) Fatigue testing and performance of acrylic bone-cement materials: state-of-the-art review. J Biomed Mater Res B Appl Biomater 66(1):457–486CrossRef
27.
go back to reference Felton LE, Raeder CH, Knorr DB (1993) The properties of tin-bismuth alloy solders. J Miner Met Mater Soc 45(7):28–32CrossRef Felton LE, Raeder CH, Knorr DB (1993) The properties of tin-bismuth alloy solders. J Miner Met Mater Soc 45(7):28–32CrossRef
28.
go back to reference Çadırlı E, Böyük U, Kaya H et al (2011) Determination of mechanical, electrical and thermal properties of the Sn-Bi-Zn ternary alloy. J Non-Cryst Solids 357(15):2876–2881CrossRef Çadırlı E, Böyük U, Kaya H et al (2011) Determination of mechanical, electrical and thermal properties of the Sn-Bi-Zn ternary alloy. J Non-Cryst Solids 357(15):2876–2881CrossRef
29.
go back to reference Efzan MNE, Faziera MNN, Abdullah MMAB (2016) Mechanical and physical properties of In-Zn-Ga lead-free solder alloy for low energy consumption. IOP Conf Ser Mater Sci Eng 133(1):012048CrossRef Efzan MNE, Faziera MNN, Abdullah MMAB (2016) Mechanical and physical properties of In-Zn-Ga lead-free solder alloy for low energy consumption. IOP Conf Ser Mater Sci Eng 133(1):012048CrossRef
30.
go back to reference Wadud MA, Gafur MA, Qadir MR et al (2015) Effect of bismuth sddition on structure and mechanical properties of tin-9zinc soldering alloy. Mater Sci Appl 6(6):792–798 Wadud MA, Gafur MA, Qadir MR et al (2015) Effect of bismuth sddition on structure and mechanical properties of tin-9zinc soldering alloy. Mater Sci Appl 6(6):792–798
31.
go back to reference Kuzumaki T, Miyazawa K, Ichinose H, Kuzumaki T et al (1998) Processing of carbon nanotube reinforced aluminum composite. J Mater Res 13(9):2445–2449CrossRef Kuzumaki T, Miyazawa K, Ichinose H, Kuzumaki T et al (1998) Processing of carbon nanotube reinforced aluminum composite. J Mater Res 13(9):2445–2449CrossRef
32.
go back to reference Kwon H, Estili M, Takagi K et al (2009) Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47(3):570–577CrossRef Kwon H, Estili M, Takagi K et al (2009) Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47(3):570–577CrossRef
33.
go back to reference Dong SR, Tu JP, Zhang XB (2001) An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes. Mater Sci Eng A 313(1):83–87CrossRef Dong SR, Tu JP, Zhang XB (2001) An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes. Mater Sci Eng A 313(1):83–87CrossRef
34.
go back to reference Kim KT, Cha SI, Hong SH et al (2006) Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites. Mater Sci Eng A 430(1–2):27–33CrossRef Kim KT, Cha SI, Hong SH et al (2006) Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites. Mater Sci Eng A 430(1–2):27–33CrossRef
35.
go back to reference Chu K, Wu Q, Jia C et al (2010) Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications. Compos Sci Technol 70(2):298–304CrossRef Chu K, Wu Q, Jia C et al (2010) Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications. Compos Sci Technol 70(2):298–304CrossRef
36.
go back to reference Esawi AMK, Borady MAE (2008) Carbon nanotube-reinforced aluminium strips. Compos Sci Technol 68(2):486–492CrossRef Esawi AMK, Borady MAE (2008) Carbon nanotube-reinforced aluminium strips. Compos Sci Technol 68(2):486–492CrossRef
Metadata
Title
Mechanical Properties of Liquid Metal After Solidified
Authors
Jing Liu
Liting Yi
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5607-9_4

Premium Partners