Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 1/2022

01-01-2022 | STRENGTH AND PLASTICITY

Mechanical Properties of Metal Matrix Composites with Graphene and Carbon Nanotubes

Author: A. G. Sheinerman

Published in: Physics of Metals and Metallography | Issue 1/2022

Login to get access
share
SHARE

Abstract

The results of recent experiments and computer simulations and theoretical modeling of the mechanical properties of metal matrix composites with graphene and carbon nanotubes are reviewed. The mechanisms involved in strengthening of such composites and the results of simulation of their plastic deformation and strength properties are considered. The effects of the size of inclusions and interface characteristics on the strength and plasticity of such composites are analyzed. Various processes of plastic deformation and fracture of metal matrix composites with graphene and carbon nanotubes and the effects of these processes on the mechanical properties of composites of these kinds are discussed. The influence of the nonuniform grain size distribution of the metal matrix on the strength and plasticity of metal matrix composites with graphene and carbon nanotubes is considered.
Literature
1.
go back to reference S. I. Ahmad, H. Hamoudi, A. Abdala, Z. K. Ghouri, and K. M. Youssef, “Graphene-reinforced bulk metal matrix composites: synthesis, microstructure, and properties,” Rev. Adv. Mater. Sci. 59, 67–114 (2020). S. I. Ahmad, H. Hamoudi, A. Abdala, Z. K. Ghouri, and K. M. Youssef, “Graphene-reinforced bulk metal matrix composites: synthesis, microstructure, and properties,” Rev. Adv. Mater. Sci. 59, 67–114 (2020).
2.
go back to reference A. Nieto, A. Bisht, D. Lahiri, C. Zhang, and A. Agarwal, “Graphene reinforced metal and ceramic matrix composites: a review,” Int. Mater. Rev. 62, 241–302 (2016). A. Nieto, A. Bisht, D. Lahiri, C. Zhang, and A. Agarwal, “Graphene reinforced metal and ceramic matrix composites: a review,” Int. Mater. Rev. 62, 241–302 (2016).
3.
go back to reference Z. Hu, G. Tong, D. Lin, C. Chen, H. Guo, J. Xu, and L. Zhou, “Graphene-reinforced metal matrix nanocomposites – a review,” Mater. Sci. Technol. 32, 930–953 (2016). Z. Hu, G. Tong, D. Lin, C. Chen, H. Guo, J. Xu, and L. Zhou, “Graphene-reinforced metal matrix nanocomposites – a review,” Mater. Sci. Technol. 32, 930–953 (2016).
4.
go back to reference P. Hidalgo-Manrique, X. Lei, R. Xu, M. Zhou, I. A. Kinloch, and R. J. Young, “Copper/graphene composites: a review,” J. Mater. Sci. 54, 12236–12289 (2019). P. Hidalgo-Manrique, X. Lei, R. Xu, M. Zhou, I. A. Kinloch, and R. J. Young, “Copper/graphene composites: a review,” J. Mater. Sci. 54, 12236–12289 (2019).
5.
go back to reference Ö. Güler and N. Bağcı, “A short review on mechanical properties of graphene reinforced metal matrix composites,” J. Mater. Res. Technol. 9, 6808–6833 (2020). Ö. Güler and N. Bağcı, “A short review on mechanical properties of graphene reinforced metal matrix composites,” J. Mater. Res. Technol. 9, 6808–6833 (2020).
6.
go back to reference N. Seyed Pourmand and H. Asgharzadeh, “Aluminum matrix composites reinforced with graphene: a review on production, microstructure, and properties,” Crit. Rev. Solid State Mater. Sci. 45, 289–337 (2019). N. Seyed Pourmand and H. Asgharzadeh, “Aluminum matrix composites reinforced with graphene: a review on production, microstructure, and properties,” Crit. Rev. Solid State Mater. Sci. 45, 289–337 (2019).
7.
go back to reference A. Saboori, M. Dadkhah, P. Fino, and M. Pavese, “An overview of metal matrix nanocomposites reinforced with graphene nanoplatelets; mechanical, electrical and thermophysical properties,” Metals 8, 423 (2018). A. Saboori, M. Dadkhah, P. Fino, and M. Pavese, “An overview of metal matrix nanocomposites reinforced with graphene nanoplatelets; mechanical, electrical and thermophysical properties,” Metals 8, 423 (2018).
8.
go back to reference I. A. Ovid’ko, “Metal-graphene nanocomposites with enhanced mechanical properties: a review,” Rev. Adv. Mater. Sci. 38, 190–200 (2014). I. A. Ovid’ko, “Metal-graphene nanocomposites with enhanced mechanical properties: a review,” Rev. Adv. Mater. Sci. 38, 190–200 (2014).
9.
go back to reference X. Zhang, N. Zhao, and C. He, “The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design—A review,” Prog. Mater. Sci. 113, 100672 (2020). X. Zhang, N. Zhao, and C. He, “The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design—A review,” Prog. Mater. Sci. 113, 100672 (2020).
10.
go back to reference M. Yang, Y. Liu, T. Fan, and D. Zhang, “Metal-graphene interfaces in epitaxial and bulk systems: A review,” Prog. Mater. Sci. 110, 100652 (2020). M. Yang, Y. Liu, T. Fan, and D. Zhang, “Metal-graphene interfaces in epitaxial and bulk systems: A review,” Prog. Mater. Sci. 110, 100652 (2020).
11.
go back to reference S. C. Tjong, “Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets,” Mater. Sci. Eng., R 74, 281–350 (2013). S. C. Tjong, “Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets,” Mater. Sci. Eng., R 74, 281–350 (2013).
12.
go back to reference M. Tabandeh-Khorshid, K. Ajay, E. Omrani, C. Kim, and P. Rohatgi, “Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites,” Composites, Part B 183, 107664 (2020). M. Tabandeh-Khorshid, K. Ajay, E. Omrani, C. Kim, and P. Rohatgi, “Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites,” Composites, Part B 183, 107664 (2020).
13.
go back to reference Z. Y. Zhao, P. K. Bai, W. B. Du, B. Liu, D. Pan, R. Das, C. T. Liu, and Z. H. Guo, “An overview of graphene and its derivatives reinforced metal matrix composites: Preparation, properties and applications,” Carbon 170, 302–326 (2020). Z. Y. Zhao, P. K. Bai, W. B. Du, B. Liu, D. Pan, R. Das, C. T. Liu, and Z. H. Guo, “An overview of graphene and its derivatives reinforced metal matrix composites: Preparation, properties and applications,” Carbon 170, 302–326 (2020).
14.
go back to reference V. Khanna, V. Kumar, and S. A. Bansal, “Mechanical properties of aluminium-graphene/carbon nanotubes (CNTs) metal matrix composites: Advancement, opportunities and perspective,” Mater. Res. Bull. 138, 111224 (2021). V. Khanna, V. Kumar, and S. A. Bansal, “Mechanical properties of aluminium-graphene/carbon nanotubes (CNTs) metal matrix composites: Advancement, opportunities and perspective,” Mater. Res. Bull. 138, 111224 (2021).
15.
go back to reference S. M. A. K. Mohammed and D. L. Chen, “Carbon nanotube-reinforced aluminum matrix composites,” Adv. Eng. Mater. 22, 1901176 (2019). S. M. A. K. Mohammed and D. L. Chen, “Carbon nanotube-reinforced aluminum matrix composites,” Adv. Eng. Mater. 22, 1901176 (2019).
16.
go back to reference R. Islam Rubel, M. Hasan Ali, M. Abu Jafor, and M. Mahmodul Alam, “Carbon nanotubes agglomeration in reinforced composites: A review,” AIMS Mater. Sci. 6, 756–780 (2019). R. Islam Rubel, M. Hasan Ali, M. Abu Jafor, and M. Mahmodul Alam, “Carbon nanotubes agglomeration in reinforced composites: A review,” AIMS Mater. Sci. 6, 756–780 (2019).
17.
go back to reference M. Jagannatham, P. Chandran, S. Sankaran, P. Haridoss, N. Nayan, and S. R. Bakshi, “Tensile properties of carbon nanotubes reinforced aluminum matrix composites: A review,” Carbon 160, 14–44 (2020). M. Jagannatham, P. Chandran, S. Sankaran, P. Haridoss, N. Nayan, and S. R. Bakshi, “Tensile properties of carbon nanotubes reinforced aluminum matrix composites: A review,” Carbon 160, 14–44 (2020).
18.
go back to reference K. S. Munir, P. Kingshott, and C. Wen, “Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy–A review,” Crit. Rev. Sol. State Mater. Sci. 40, 38–55 (2014). K. S. Munir, P. Kingshott, and C. Wen, “Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy–A review,” Crit. Rev. Sol. State Mater. Sci. 40, 38–55 (2014).
19.
go back to reference S. R. Bakshi, D. Lahiri, and A. Agarwal, “Carbon nanotube reinforced metal matrix composites—a review,” Int. Mater. Rev. 55, 41–64 (2013). S. R. Bakshi, D. Lahiri, and A. Agarwal, “Carbon nanotube reinforced metal matrix composites—a review,” Int. Mater. Rev. 55, 41–64 (2013).
20.
go back to reference P. J. F. Harris, “Carbon nanotube composites,” Int. Mater. Rev. 49, 31–43 (2013). P. J. F. Harris, “Carbon nanotube composites,” Int. Mater. Rev. 49, 31–43 (2013).
21.
go back to reference S. Abazari, A. Shamsipur, H. R. Bakhsheshi-Rad, A. F. Ismail, S. Sharif, M. Razzaghi, S. Ramakrishna, and F. Berto, “Carbon nanotubes (CNTs)-reinforced magnesium-based matrix composites: a comprehensive review,” Materials 13, 4421 (2020). S. Abazari, A. Shamsipur, H. R. Bakhsheshi-Rad, A. F. Ismail, S. Sharif, M. Razzaghi, S. Ramakrishna, and F. Berto, “Carbon nanotubes (CNTs)-reinforced magnesium-based matrix composites: a comprehensive review,” Materials 13, 4421 (2020).
22.
go back to reference R. M. Sundaram, I. A. Sekiguch, M. Sekiya, T. Yamada, and K. Hata, “Copper/carbon nanotube composites: research trends and outlook,” R. Soc. Open Sci. 5, 180814 (2018). R. M. Sundaram, I. A. Sekiguch, M. Sekiya, T. Yamada, and K. Hata, “Copper/carbon nanotube composites: research trends and outlook,” R. Soc. Open Sci. 5, 180814 (2018).
23.
go back to reference H. Hashim, M. S. Salleh, and M. Z. Omar, “Homogenous dispersion and interfacial bonding of carbon nanotube reinforced with aluminum matrix composite: A review,” Rev. Adv. Mater. Sci. 58, 295–303 (2019). H. Hashim, M. S. Salleh, and M. Z. Omar, “Homogenous dispersion and interfacial bonding of carbon nanotube reinforced with aluminum matrix composite: A review,” Rev. Adv. Mater. Sci. 58, 295–303 (2019).
24.
go back to reference I. G. Shirinkina, I. G. Brodova, D. Y. Rasposienko, R. V. Muradymov, L. A. Elshina, E. V. Shorokhov, S. V. Razorenov, and G. V. Garkushin, “The Effect of graphene additives on the structure and properties of aluminum,” Phys. Met. Metallogr. 121, 1193–1202 (2020). I. G. Shirinkina, I. G. Brodova, D. Y. Rasposienko, R. V. Muradymov, L. A. Elshina, E. V. Shorokhov, S. V. Razorenov, and G. V. Garkushin, “The Effect of graphene additives on the structure and properties of aluminum,” Phys. Met. Metallogr. 121, 1193–1202 (2020).
25.
go back to reference I. A. Kinloch, J. Suhr, J. Lou, R. J. Young, and P. M. Ajayan, “Composites with carbon nanotubes and graphene: An outlook,” Science 362, 547–553 (2018). I. A. Kinloch, J. Suhr, J. Lou, R. J. Young, and P. M. Ajayan, “Composites with carbon nanotubes and graphene: An outlook,” Science 362, 547–553 (2018).
26.
go back to reference M. Batzill, “The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects,” Surf. Sci. Rep. 67, 83–115 (2012). M. Batzill, “The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects,” Surf. Sci. Rep. 67, 83–115 (2012).
27.
go back to reference D. G. Papageorgiou, I. A. Kinloch, and R. J. Young, “Mechanical properties of graphene and graphene-based nanocomposites,” Prog. Mater. Sci. 90, 75–127 (2017). D. G. Papageorgiou, I. A. Kinloch, and R. J. Young, “Mechanical properties of graphene and graphene-based nanocomposites,” Prog. Mater. Sci. 90, 75–127 (2017).
28.
go back to reference L. Safina, J. Baimova, K. Krylova, R. Murzaev, and R. Mulyukov, “Simulation of metal-graphene composites by molecular dynamics: a review,” Lett. Mater. 10, 351–360 (2020). L. Safina, J. Baimova, K. Krylova, R. Murzaev, and R. Mulyukov, “Simulation of metal-graphene composites by molecular dynamics: a review,” Lett. Mater. 10, 351–360 (2020).
29.
go back to reference K. Chu and C. Jia, “Enhanced strength in bulk graphene-copper composites,” Phys. Status Solidi A 211, 184–190 (2014). K. Chu and C. Jia, “Enhanced strength in bulk graphene-copper composites,” Phys. Status Solidi A 211, 184–190 (2014).
30.
go back to reference H. J. Choi, J. H. Shin, and D. H. Bae, “Grain size effect on the strengthening behavior of aluminum-based composites containing multi-walled carbon nanotubes,” Compos. Sci. Technol. 71, 1699–1705 (2011). H. J. Choi, J. H. Shin, and D. H. Bae, “Grain size effect on the strengthening behavior of aluminum-based composites containing multi-walled carbon nanotubes,” Compos. Sci. Technol. 71, 1699–1705 (2011).
31.
go back to reference R. R. Jiang, X. F. Zhou, and Z. P. Liu, “Electroless Ni-plated graphene for tensile strength enhancement of copper,” Mater. Sci. Eng., A 679, 323–328 (2017). R. R. Jiang, X. F. Zhou, and Z. P. Liu, “Electroless Ni-plated graphene for tensile strength enhancement of copper,” Mater. Sci. Eng., A 679, 323–328 (2017).
32.
go back to reference H. Y. Yue, L. H. Yao, X. Gao, S. L. Zhang, E. Guo, H. Zhang, X. Y. Lin, and B. Wang, “Effect of ball-milling and graphene contents on the mechanical properties and fracture mechanisms of graphene nanosheets reinforced copper matrix composites,” J. Alloy Compd. 691, 755–762 (2017). H. Y. Yue, L. H. Yao, X. Gao, S. L. Zhang, E. Guo, H. Zhang, X. Y. Lin, and B. Wang, “Effect of ball-milling and graphene contents on the mechanical properties and fracture mechanisms of graphene nanosheets reinforced copper matrix composites,” J. Alloy Compd. 691, 755–762 (2017).
33.
go back to reference D. D. Zhang and Z. J. Zhan, “Strengthening effect of graphene derivatives in copper matrix composites,” J. Alloy Compd. 654, 226–233 (2016). D. D. Zhang and Z. J. Zhan, “Strengthening effect of graphene derivatives in copper matrix composites,” J. Alloy Compd. 654, 226–233 (2016).
34.
go back to reference D. D. Zhang and Z. J. Zhan, “Experimental investigation of interfaces in graphene materials/copper composites from a new perspective,” RSC Adv. 6, 52219–52226 (2016). D. D. Zhang and Z. J. Zhan, “Experimental investigation of interfaces in graphene materials/copper composites from a new perspective,” RSC Adv. 6, 52219–52226 (2016).
35.
go back to reference Y. K. Chen, X. Zhang, E. Z. Liu, C. N. He, C. S. Shi, J. J. Li, P. Nash, and N. Q. Zhao, “Fabrication of in-situ grown graphene reinforced Cu matrix composites,” Sci. Rep. 6, 19363 (2016). Y. K. Chen, X. Zhang, E. Z. Liu, C. N. He, C. S. Shi, J. J. Li, P. Nash, and N. Q. Zhao, “Fabrication of in-situ grown graphene reinforced Cu matrix composites,” Sci. Rep. 6, 19363 (2016).
36.
go back to reference K. Duan, F. Zhu, K. Tang, L. He, Y. Chen, and S. Liu, “Effects of chirality and number of graphene layers on the mechanical properties of graphene-embedded copper nanocomposites,” Compos. Mater. Sci. 117, 294–299 (2016). K. Duan, F. Zhu, K. Tang, L. He, Y. Chen, and S. Liu, “Effects of chirality and number of graphene layers on the mechanical properties of graphene-embedded copper nanocomposites,” Compos. Mater. Sci. 117, 294–299 (2016).
37.
go back to reference S. Zhang, P. Huang, and F. Wang, “Graphene-boundary strengthening mechanism in Cu/graphene nanocomposites: A molecular dynamics simulation,” Mater. Des. 190, 108555 (2020). S. Zhang, P. Huang, and F. Wang, “Graphene-boundary strengthening mechanism in Cu/graphene nanocomposites: A molecular dynamics simulation,” Mater. Des. 190, 108555 (2020).
38.
go back to reference S. Weng, H. Ning, T. Fu, N. Hu, Y. Zhao, C. Huang, and X. Peng, “Molecular dynamics study of strengthening mechanism of nanolaminated graphene/Cu composites under compression,” Sci. Rep. 8, 3089 (2018). S. Weng, H. Ning, T. Fu, N. Hu, Y. Zhao, C. Huang, and X. Peng, “Molecular dynamics study of strengthening mechanism of nanolaminated graphene/Cu composites under compression,” Sci. Rep. 8, 3089 (2018).
39.
go back to reference X. Liu, F. Wang, W. Wang, and H. Wu, “Interfacial strengthening and self-healing effect in graphene-copper nanolayered composites under shear deformation,” Carbon 107, 680–688 (2016). X. Liu, F. Wang, W. Wang, and H. Wu, “Interfacial strengthening and self-healing effect in graphene-copper nanolayered composites under shear deformation,” Carbon 107, 680–688 (2016).
40.
go back to reference J. Liu, Y. Y. Zhang, H. N. Zhang, and J. Yang, “Mechanical properties of graphene-reinforced aluminium composite with modified substrate surface: a molecular dynamics study,” Nanotechnology 32, 085712 (2021). J. Liu, Y. Y. Zhang, H. N. Zhang, and J. Yang, “Mechanical properties of graphene-reinforced aluminium composite with modified substrate surface: a molecular dynamics study,” Nanotechnology 32, 085712 (2021).
41.
go back to reference Z. Y. Liu, L. H. Wang, Y. N. Zan, W. G. Wang, B. L. Xiao, D. Wang, Q. Z. Wang, D. R. Ni, and Z. Y. Ma, “Enhancing strengthening efficiency of graphene nano-sheets in aluminum matrix composite by improving interface bonding,” Composites, Part B 199, 108268 (2020). Z. Y. Liu, L. H. Wang, Y. N. Zan, W. G. Wang, B. L. Xiao, D. Wang, Q. Z. Wang, D. R. Ni, and Z. Y. Ma, “Enhancing strengthening efficiency of graphene nano-sheets in aluminum matrix composite by improving interface bonding,” Composites, Part B 199, 108268 (2020).
42.
go back to reference X. Gao, H. Yue, E. Guo, H. Zhang, X. Lin, L. Yao, and B. Wang, “Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites,” Mater. Des. 94, 54–60 (2016). X. Gao, H. Yue, E. Guo, H. Zhang, X. Lin, L. Yao, and B. Wang, “Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites,” Mater. Des. 94, 54–60 (2016).
43.
go back to reference Z. Y. Yang, D. D. Wang, Z. X. Lu, and W. J. Hu, “Atomistic simulation on the plastic deformation and fracture of bio-inspired graphene/Ni nanocomposites,” Appl. Phys. Lett. 109, 191909 (2016). Z. Y. Yang, D. D. Wang, Z. X. Lu, and W. J. Hu, “Atomistic simulation on the plastic deformation and fracture of bio-inspired graphene/Ni nanocomposites,” Appl. Phys. Lett. 109, 191909 (2016).
44.
go back to reference F. Shuang and K. E. Aifantis, “Dislocation-graphene interactions in Cu/graphene composites and the effect of boundary conditions: a molecular dynamics study,” Carbon 172, 50–70 (2021). F. Shuang and K. E. Aifantis, “Dislocation-graphene interactions in Cu/graphene composites and the effect of boundary conditions: a molecular dynamics study,” Carbon 172, 50–70 (2021).
45.
go back to reference X. Zhou, X. Liu, J. Shang, and Q. Yang, “Grain-size effect on plastic flow stress of nanolaminated polycrystalline aluminum/graphene composites,” Mech. Mater. 148, 103530 (2020). X. Zhou, X. Liu, J. Shang, and Q. Yang, “Grain-size effect on plastic flow stress of nanolaminated polycrystalline aluminum/graphene composites,” Mech. Mater. 148, 103530 (2020).
46.
go back to reference R. Q. Han, H. Y. Song, J. Y. Wang, and Y. L. Li, “Strengthening mechanism of Al matrix composites reinforced by nickel-coated graphene: Insights from molecular dynamics simulation,” Phys. B (Amsterdam, Neth.) 601, 412620 (2021). R. Q. Han, H. Y. Song, J. Y. Wang, and Y. L. Li, “Strengthening mechanism of Al matrix composites reinforced by nickel-coated graphene: Insights from molecular dynamics simulation,” Phys. B (Amsterdam, Neth.) 601, 412620 (2021).
47.
go back to reference X. Zhou, X. Liu, J. Lei, and Q. Yang, “Atomic simulations of the formation of twist grain boundary and mechanical properties of graphene/aluminum nanolaminated composites,” Compos. Mater. Sci. 172, 109342 (2020). X. Zhou, X. Liu, J. Lei, and Q. Yang, “Atomic simulations of the formation of twist grain boundary and mechanical properties of graphene/aluminum nanolaminated composites,” Compos. Mater. Sci. 172, 109342 (2020).
48.
go back to reference F. Shuang and K. E. Aifantis, “Relating the strength of graphene/metal composites to the graphene orientation and position,” Scr. Mater. 181, 70–75 (2020). F. Shuang and K. E. Aifantis, “Relating the strength of graphene/metal composites to the graphene orientation and position,” Scr. Mater. 181, 70–75 (2020).
49.
go back to reference C. Zhang, C. Lu, L. Q. Pei, J. Q. Li, and R. Wang, “The structural rearrangement with secondary reinforcement in graphene/nanotwinned copper nanocomposites: A molecular dynamics study,” Composites, Part B 182, 107610 (2020). C. Zhang, C. Lu, L. Q. Pei, J. Q. Li, and R. Wang, “The structural rearrangement with secondary reinforcement in graphene/nanotwinned copper nanocomposites: A molecular dynamics study,” Composites, Part B 182, 107610 (2020).
50.
go back to reference R. Rezaei, C. Deng, H. Tavakoli-Anbaran, and M. Shariati, “Deformation twinning-mediated pseudoelasticity in metal-graphene nanolayered membrane,” Philos. Mag. Lett. 96, 322–329 (2016). R. Rezaei, C. Deng, H. Tavakoli-Anbaran, and M. Shariati, “Deformation twinning-mediated pseudoelasticity in metal-graphene nanolayered membrane,” Philos. Mag. Lett. 96, 322–329 (2016).
51.
go back to reference C. Zhang, C. Lu, L. Q. Pei, J. Q. Li, and R. Wang, “Molecular dynamics simulation of the negative Poisson’s ratio in graphene/Cu nanolayered composites: Implications for scaffold design and telecommunication cables,” ACS Appl. Nano Mater. 3, 496–505 (2020). C. Zhang, C. Lu, L. Q. Pei, J. Q. Li, and R. Wang, “Molecular dynamics simulation of the negative Poisson’s ratio in graphene/Cu nanolayered composites: Implications for scaffold design and telecommunication cables,” ACS Appl. Nano Mater. 3, 496–505 (2020).
52.
go back to reference C. Zhang, C. Lu, L. Q. Pei, J. Q. Li, R. Wang, and K. Tieu, “The negative Poisson’s ratio and strengthening mechanism of nanolayered graphene/Cu composites,” Carbon 143, 125–137 (2019). C. Zhang, C. Lu, L. Q. Pei, J. Q. Li, R. Wang, and K. Tieu, “The negative Poisson’s ratio and strengthening mechanism of nanolayered graphene/Cu composites,” Carbon 143, 125–137 (2019).
53.
go back to reference X. Y. Liu, F. C. Wang, H. A. Wu, and W. Q. Wang, “Strengthening metal nanolaminates under shock compression through dual effect of strong and weak graphene interface,” Appl. Phys. Lett. 104, 231901 (2014). X. Y. Liu, F. C. Wang, H. A. Wu, and W. Q. Wang, “Strengthening metal nanolaminates under shock compression through dual effect of strong and weak graphene interface,” Appl. Phys. Lett. 104, 231901 (2014).
54.
go back to reference C. Zhang, A. Godbole, G. Michal, and C. Lu, “High shock resistance and self-healing ability of graphene/nanotwinned Cu nanolayered composites,” J. Alloy Compd. 860, 158435 (2021). C. Zhang, A. Godbole, G. Michal, and C. Lu, “High shock resistance and self-healing ability of graphene/nanotwinned Cu nanolayered composites,” J. Alloy Compd. 860, 158435 (2021).
55.
go back to reference X. J. Long, B. Li, L. Wang, J. Y. Huang, J. Zhu, and S. N. Luo, “Shock response of Cu/graphene nanolayered composites,” Carbon 103, 457–463 (2016). X. J. Long, B. Li, L. Wang, J. Y. Huang, J. Zhu, and S. N. Luo, “Shock response of Cu/graphene nanolayered composites,” Carbon 103, 457–463 (2016).
56.
go back to reference S. Bashirvand and A. Montazeri, “New aspects on the metal reinforcement by carbon nanofillers: A molecular dynamics study,” Mater. Des. 91, 306–313 (2016). S. Bashirvand and A. Montazeri, “New aspects on the metal reinforcement by carbon nanofillers: A molecular dynamics study,” Mater. Des. 91, 306–313 (2016).
57.
go back to reference R. Ishraaq, M. Rashid, and S. M. Nahid, “A novel theoretical model for predicting the optimum number of layers of multiwall carbon nanotube for reinforcing iron and molecular dynamics investigation of the failure mechanism of multi-grained matrix,” Compos. Mater. Sci. 196, Art. 110558 (2021). R. Ishraaq, M. Rashid, and S. M. Nahid, “A novel theoretical model for predicting the optimum number of layers of multiwall carbon nanotube for reinforcing iron and molecular dynamics investigation of the failure mechanism of multi-grained matrix,” Compos. Mater. Sci. 196, Art. 110558 (2021).
58.
go back to reference B. K. Choi, G. H. Yoon, and S. Lee, “Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading,” Composites, Part B 91, 119–125 (2016). B. K. Choi, G. H. Yoon, and S. Lee, “Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading,” Composites, Part B 91, 119–125 (2016).
59.
go back to reference S. Dong, J. Zhou, H. Liu, and D. Qi, “Computational prediction of waviness and orientation effects in carbon nanotube reinforced metal matrix composites,” Compos. Mater. Sci. 101, 8–15 (2015). S. Dong, J. Zhou, H. Liu, and D. Qi, “Computational prediction of waviness and orientation effects in carbon nanotube reinforced metal matrix composites,” Compos. Mater. Sci. 101, 8–15 (2015).
60.
go back to reference R. Ishraaq, S. M. Nahid, S. Chhetri, O. Gautam, and A. M. Afsar, “A molecular dynamics investigation for predicting the optimum fiber radius and the effect of various parameters on the mechanical properties of carbon nanotube reinforced iron composite,” Compos. Mater. Sci. 174, 109486 (2020). R. Ishraaq, S. M. Nahid, S. Chhetri, O. Gautam, and A. M. Afsar, “A molecular dynamics investigation for predicting the optimum fiber radius and the effect of various parameters on the mechanical properties of carbon nanotube reinforced iron composite,” Compos. Mater. Sci. 174, 109486 (2020).
61.
go back to reference D. M. Park, J. H. Kim, S. J. Lee, and G. H. Yoon, “Analysis of geometrical characteristics of CNT-Al composite using molecular dynamics and the modified rule of mixture (MROM),” J. Mech. Sci. Technol. 32, 5845–5853 (2018). D. M. Park, J. H. Kim, S. J. Lee, and G. H. Yoon, “Analysis of geometrical characteristics of CNT-Al composite using molecular dynamics and the modified rule of mixture (MROM),” J. Mech. Sci. Technol. 32, 5845–5853 (2018).
62.
go back to reference M. E. Suk, “Enhanced tensile properties of weight-reduced nanoporous carbon nanotube-aluminum composites,” Mater. Express 9, 801–807 (2019). M. E. Suk, “Enhanced tensile properties of weight-reduced nanoporous carbon nanotube-aluminum composites,” Mater. Express 9, 801–807 (2019).
63.
go back to reference P. Wang, Q. Cao, H. Wang, Y. Nie, S. Liu, and Q. Peng, “Fivefold enhancement of yield and toughness of copper nanowires via coating carbon nanotubes,” Nanotechnology 31, 115703 (2020). P. Wang, Q. Cao, H. Wang, Y. Nie, S. Liu, and Q. Peng, “Fivefold enhancement of yield and toughness of copper nanowires via coating carbon nanotubes,” Nanotechnology 31, 115703 (2020).
64.
go back to reference X. Zhou, S. Song, L. Li, and R. Zhang, “Molecular dynamics simulation for mechanical properties of magnesium matrix composites reinforced with nickel-coated single-walled carbon nanotubes,” J. Compos. Mater. 50, 191–200 (2015). X. Zhou, S. Song, L. Li, and R. Zhang, “Molecular dynamics simulation for mechanical properties of magnesium matrix composites reinforced with nickel-coated single-walled carbon nanotubes,” J. Compos. Mater. 50, 191–200 (2015).
65.
go back to reference Y. Jiang, R. Xu, Z. Tan, G. Ji, G. Fan, Z. Li, D.‑B. Xiong, Q. Guo, Z. Li, and D. Zhang, “Interface-induced strain hardening of graphene nanosheet/aluminum composites,” Carbon 146, 17–27 (2019). Y. Jiang, R. Xu, Z. Tan, G. Ji, G. Fan, Z. Li, D.‑B. Xiong, Q. Guo, Z. Li, and D. Zhang, “Interface-induced strain hardening of graphene nanosheet/aluminum composites,” Carbon 146, 17–27 (2019).
66.
go back to reference X. Liu, J. Li, E. Liu, C. He, C. Shi, and N. Zhao, “Towards strength-ductility synergy with favorable strengthening effect through the formation of a quasi-continuous graphene nanosheets coated Ni structure in aluminum matrix composite,” Mater. Sci. Eng., A 748, 52–58 (2019). X. Liu, J. Li, E. Liu, C. He, C. Shi, and N. Zhao, “Towards strength-ductility synergy with favorable strengthening effect through the formation of a quasi-continuous graphene nanosheets coated Ni structure in aluminum matrix composite,” Mater. Sci. Eng., A 748, 52–58 (2019).
67.
go back to reference A. G. Sheinerman and M. Y. Gutkin, “Model of enhanced strength and ductility of metal/graphene composites with bimodal grain size distribution,” Metall. Mater. Trans. A 51, 189–199 (2020). A. G. Sheinerman and M. Y. Gutkin, “Model of enhanced strength and ductility of metal/graphene composites with bimodal grain size distribution,” Metall. Mater. Trans. A 51, 189–199 (2020).
68.
go back to reference V. C. Nardone and K. M. Prewo, “On the strength of discontinuous silicon-carbide reinforced aluminum composites,” Scr. Metall. 20, 43–48 (1986). V. C. Nardone and K. M. Prewo, “On the strength of discontinuous silicon-carbide reinforced aluminum composites,” Scr. Metall. 20, 43–48 (1986).
69.
go back to reference R. J. Young, I. A. Kinloch, L. Gong, and K. S. Novoselov, “The mechanics of graphene nanocomposites: A review,” Compos. Sci. Technol. 72, 1459–1476 (2012). R. J. Young, I. A. Kinloch, L. Gong, and K. S. Novoselov, “The mechanics of graphene nanocomposites: A review,” Compos. Sci. Technol. 72, 1459–1476 (2012).
70.
go back to reference G. P. Tandon and G. J. Weng, “The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites,” Polym. Compos. 5, 327–333 (1984). G. P. Tandon and G. J. Weng, “The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites,” Polym. Compos. 5, 327–333 (1984).
71.
go back to reference W. Soboyejo, Mechanical Properties of Engineered Materials (CRC Press, New York, 2002). W. Soboyejo, Mechanical Properties of Engineered Materials (CRC Press, New York, 2002).
72.
go back to reference H. L. Cox, “The elasticity and strength of paper and other fibrous materials,” Brit. J. Appl. Phys. 3, 72–79 (1952). H. L. Cox, “The elasticity and strength of paper and other fibrous materials,” Brit. J. Appl. Phys. 3, 72–79 (1952).
73.
go back to reference Z. L. Li, R. J. Young, I. A. Kinloch, N. R. Wilson, A. J. Marsden, and A. P. A. Raju, “Quantitative determination of the spatial orientation of graphene by polarized Raman spectroscopy,” Carbon 88, 215–224 (2015). Z. L. Li, R. J. Young, I. A. Kinloch, N. R. Wilson, A. J. Marsden, and A. P. A. Raju, “Quantitative determination of the spatial orientation of graphene by polarized Raman spectroscopy,” Carbon 88, 215–224 (2015).
74.
go back to reference Z. L. Li, R. J. Young, N. R. Wilson, I. A. Kinloch, C. Valles, and Z. Li, “Effect of the orientation of graphene-based nanoplatelets upon the Young’s modulus of nanocomposites,” Compos. Sci. Technol. 123, 125–133 (2016). Z. L. Li, R. J. Young, N. R. Wilson, I. A. Kinloch, C. Valles, and Z. Li, “Effect of the orientation of graphene-based nanoplatelets upon the Young’s modulus of nanocomposites,” Compos. Sci. Technol. 123, 125–133 (2016).
75.
go back to reference J. C. Halpin and K. L. Kardos, “The Halpin–Tsai equations: a review,” Polym. Eng. Sci. 16, 344–352 (1976). J. C. Halpin and K. L. Kardos, “The Halpin–Tsai equations: a review,” Polym. Eng. Sci. 16, 344–352 (1976).
76.
go back to reference J. A. King, D. R. Klimek, I. Miskioglu, and G. M. Odegard, “Mechanical properties of graphene nanoplatelet/epoxy composites,” J. Appl. Polymer Sci. 128, 4217–4223 (2013). J. A. King, D. R. Klimek, I. Miskioglu, and G. M. Odegard, “Mechanical properties of graphene nanoplatelet/epoxy composites,” J. Appl. Polymer Sci. 128, 4217–4223 (2013).
77.
go back to reference A. Varykhalov and O. Rader, “Graphene grown on Co(0001) films and islands: Electronic structure and its precise magnetization dependence,” Phys. Rev. B 80, 035437 (2009). A. Varykhalov and O. Rader, “Graphene grown on Co(0001) films and islands: Electronic structure and its precise magnetization dependence,” Phys. Rev. B 80, 035437 (2009).
78.
go back to reference M. Gao, Y. Pan, C. D. Zhang, H. Hu, R. Yang, H. L. Lu, J. M. Cai, S. X. Du, F. Liu, and H. J. Gao, “Tunable interfacial properties of epitaxial graphene on metal substrates,” Appl. Phys. Lett. 96, 053109 (2010). M. Gao, Y. Pan, C. D. Zhang, H. Hu, R. Yang, H. L. Lu, J. M. Cai, S. X. Du, F. Liu, and H. J. Gao, “Tunable interfacial properties of epitaxial graphene on metal substrates,” Appl. Phys. Lett. 96, 053109 (2010).
79.
go back to reference L. Zhao, K. T. Rim, H. Zhou, R. He, T. F. Heinz, A. Pinczuk, G. W. Flynn, and A. N. Pasupathy, “Influence of copper crystal surface on the CVD growth of large area monolayer graphene,” Solid State Commun. 151, 509–513 (2011). L. Zhao, K. T. Rim, H. Zhou, R. He, T. F. Heinz, A. Pinczuk, G. W. Flynn, and A. N. Pasupathy, “Influence of copper crystal surface on the CVD growth of large area monolayer graphene,” Solid State Commun. 151, 509–513 (2011).
80.
go back to reference L. Gao, J. R. Guest, and N. P. Guisinger, “Epitaxial Graphene on Cu(111),” Nano Lett. 10, 3512–3516 (2010). L. Gao, J. R. Guest, and N. P. Guisinger, “Epitaxial Graphene on Cu(111),” Nano Lett. 10, 3512–3516 (2010).
81.
go back to reference M. Cao, D.-B. Xiong, Z. Tan, G. Ji, B. Amin-Ahmadi, Q. Guo, G. Fan, C. Guo, Z. Li, and D. Zhang, “Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity,” Carbon 117, 65–74 (2017). M. Cao, D.-B. Xiong, Z. Tan, G. Ji, B. Amin-Ahmadi, Q. Guo, G. Fan, C. Guo, Z. Li, and D. Zhang, “Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity,” Carbon 117, 65–74 (2017).
82.
go back to reference R. J. Arsenault and N. Shi, “Dislocation generation due to differences between the coefficients of thermal expansion,” Mat. Sci. Eng. 81, 175–187 (1986). R. J. Arsenault and N. Shi, “Dislocation generation due to differences between the coefficients of thermal expansion,” Mat. Sci. Eng. 81, 175–187 (1986).
83.
go back to reference Y. Estrin and H. Mecking, “A unified phenomenological description of work-hardening and creep based on one-parameter models,” Acta Metall. 32, 57–70 (1984). Y. Estrin and H. Mecking, “A unified phenomenological description of work-hardening and creep based on one-parameter models,” Acta Metall. 32, 57–70 (1984).
84.
go back to reference W. J. Poole, J. D. Embury, and D. J. Lloyd, “Work hardening in aluminum alloys,” in Fundamentals of Aluminum Metallurgy: Production, Processing and Applications, Ed. by R. Lumley (Woodhead, New Delhi, 2011), pp. 307–344. W. J. Poole, J. D. Embury, and D. J. Lloyd, “Work hardening in aluminum alloys,” in Fundamentals of Aluminum Metallurgy: Production, Processing and Applications, Ed. by R. Lumley (Woodhead, New Delhi, 2011), pp. 307–344.
85.
go back to reference M. E. Kassner, “Taylor hardening in five-power-law creep of metals and Class M alloys,” Acta Mater. 52, 1–9 (2004). M. E. Kassner, “Taylor hardening in five-power-law creep of metals and Class M alloys,” Acta Mater. 52, 1–9 (2004).
86.
go back to reference A. Melander, “Critical resolved shear-stress of dispersion strengthened alloys,” Scand. J. Metall. 7, 109–113 (1978). A. Melander, “Critical resolved shear-stress of dispersion strengthened alloys,” Scand. J. Metall. 7, 109–113 (1978).
87.
go back to reference J. P. Hirth and J. Lothe, Theory of Dislocations (Wiley, New York, 1982). J. P. Hirth and J. Lothe, Theory of Dislocations (Wiley, New York, 1982).
88.
go back to reference G. Fribourg, Y. Brechet, A. Deschamps, and A. Simar, “Microstructure-based modelling of isotropic and kinematic strain hardening in a precipitation-hardened aluminium alloy,” Acta Mater. 59, 3621–3635 (2011). G. Fribourg, Y. Brechet, A. Deschamps, and A. Simar, “Microstructure-based modelling of isotropic and kinematic strain hardening in a precipitation-hardened aluminium alloy,” Acta Mater. 59, 3621–3635 (2011).
89.
go back to reference H. Proudhon, W. J. Poole, X. Wang, and Y. Brechet, “The role of internal stresses on the plastic deformation of the Al–Mg–Si–Cu alloy AA6111,” Philos. Mag. 88, 621–640 (2008). H. Proudhon, W. J. Poole, X. Wang, and Y. Brechet, “The role of internal stresses on the plastic deformation of the Al–Mg–Si–Cu alloy AA6111,” Philos. Mag. 88, 621–640 (2008).
90.
go back to reference J. da Costa Teixeira, L. Bourgeois, C. W. Sinclair, and C. R. Hutchinson, “The effect of shear-resistant, plate-shaped precipitates on the work hardening of Al alloys: Towards a prediction of the strength–elongation correlation,” Acta Mater. 57, 6075–6089 (2009). J. da Costa Teixeira, L. Bourgeois, C. W. Sinclair, and C. R. Hutchinson, “The effect of shear-resistant, plate-shaped precipitates on the work hardening of Al alloys: Towards a prediction of the strength–elongation correlation,” Acta Mater. 57, 6075–6089 (2009).
91.
go back to reference T. W. Clyne and P. J. Withers, An Introduction to Metal Matrix Composites (Cambridge University, Cambridge, 1993). T. W. Clyne and P. J. Withers, An Introduction to Metal Matrix Composites (Cambridge University, Cambridge, 1993).
92.
go back to reference R. Xu, Z. Tan, G. Fan, G. Ji, Z. Li, Q. Guo, Z. Li, and D. Zhang, “Microstructure-based modeling on structure-mechanical property relationships in carbon nanotube/aluminum composites,” Int. J. Plast. 120, 278–295 (2019). R. Xu, Z. Tan, G. Fan, G. Ji, Z. Li, Q. Guo, Z. Li, and D. Zhang, “Microstructure-based modeling on structure-mechanical property relationships in carbon nanotube/aluminum composites,” Int. J. Plast. 120, 278–295 (2019).
93.
go back to reference L. M. Brown and D. R. Clarke, “Work hardening due to internal stresses in composite materials,” Acta Metall. 23, 821–830 (1975). L. M. Brown and D. R. Clarke, “Work hardening due to internal stresses in composite materials,” Acta Metall. 23, 821–830 (1975).
94.
go back to reference Li X. A. Liu, J. T. Robinson, Z. Q. Wei, P. E. Sheehan, B. H. Houston, and E. S. Snow, “Low temperature elastic properties of chemically reduced and CVD-grown graphene thin films,” Diamond Relat. Mater. 19, 875–878 (2010). Li X. A. Liu, J. T. Robinson, Z. Q. Wei, P. E. Sheehan, B. H. Houston, and E. S. Snow, “Low temperature elastic properties of chemically reduced and CVD-grown graphene thin films,” Diamond Relat. Mater. 19, 875–878 (2010).
95.
go back to reference Y. T. Zhu and X. L. Wu, “Perspective on hetero-deformation induced (HDI) hardening and back stress,” Mater. Res. Lett. 7, 393–398 (2019). Y. T. Zhu and X. L. Wu, “Perspective on hetero-deformation induced (HDI) hardening and back stress,” Mater. Res. Lett. 7, 393–398 (2019).
96.
go back to reference C. W. Sinclair, W. J. Poole, and Y. Brechet, “A model for the grain size dependent work hardening of copper,” Scr. Mater. 55, 739–742 (2006). C. W. Sinclair, W. J. Poole, and Y. Brechet, “A model for the grain size dependent work hardening of copper,” Scr. Mater. 55, 739–742 (2006).
97.
go back to reference M. Delince, Y. Brechet, J. D. Embury, M. G. D. Geers, P. J. Jacques, and T. Pardoen, “Structure-property optimization of ultrafine-grained dual-phase steels using a micro structure-based strain hardening model,” Acta Mater. 55, 2337–2350 (2007). M. Delince, Y. Brechet, J. D. Embury, M. G. D. Geers, P. J. Jacques, and T. Pardoen, “Structure-property optimization of ultrafine-grained dual-phase steels using a micro structure-based strain hardening model,” Acta Mater. 55, 2337–2350 (2007).
98.
go back to reference L. Zhao, Q. Guo, Z. Li, D. -B. Xiong, S. Osovski, Y. Su, and D. Zhang, “Strengthening and deformation mechanisms in nanolaminated graphene-Al composite micro-pillars affected by graphene in-plane sizes,” Int. J. Plast. 116, 265–279 (2019). L. Zhao, Q. Guo, Z. Li, D. -B. Xiong, S. Osovski, Y. Su, and D. Zhang, “Strengthening and deformation mechanisms in nanolaminated graphene-Al composite micro-pillars affected by graphene in-plane sizes,” Int. J. Plast. 116, 265–279 (2019).
99.
go back to reference L. Zhao, Q. Guo, Y. Shi, Y. Liu, S. Osovski, Z. Li, D.‑B. Xiong, Y. Su, and D. Zhang, “Interfacial effect on the deformation mechanism of bulk nanolaminated graphene-Al composites,” Metall. Mater. Trans. A 50, 1113–1118 (2019). L. Zhao, Q. Guo, Y. Shi, Y. Liu, S. Osovski, Z. Li, D.‑B. Xiong, Y. Su, and D. Zhang, “Interfacial effect on the deformation mechanism of bulk nanolaminated graphene-Al composites,” Metall. Mater. Trans. A 50, 1113–1118 (2019).
100.
go back to reference Z. Li, H. Wang, Q. Guo, Z. Li, D. B. Xiong, Y. Su, H. Gao, X. Li, and D. Zhang, “Regain strain-hardening in high-strength metals by nanofiller incorporation at grain boundaries,” Nano Lett. 18, 6255–6264 (2018). Z. Li, H. Wang, Q. Guo, Z. Li, D. B. Xiong, Y. Su, H. Gao, X. Li, and D. Zhang, “Regain strain-hardening in high-strength metals by nanofiller incorporation at grain boundaries,” Nano Lett. 18, 6255–6264 (2018).
101.
go back to reference Y. Kim, J. Lee, M. S. Yeom, J. W. Shin, H. Kim, Y. Cui, J. W. Kysar, J. Hone, Y. Jung, S. Jeon, and S. M. Han, “Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites,” Nat. Commun. 4, 2114 (2013). Y. Kim, J. Lee, M. S. Yeom, J. W. Shin, H. Kim, Y. Cui, J. W. Kysar, J. Hone, Y. Jung, S. Jeon, and S. M. Han, “Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites,” Nat. Commun. 4, 2114 (2013).
102.
go back to reference I. A. Ovid’ko and A. G. Sheinerman, “Competition between plastic deformation and fracture processes in metal–graphene layered composites,” J. Phys. D 47, 495302 (2014). I. A. Ovid’ko and A. G. Sheinerman, “Competition between plastic deformation and fracture processes in metal–graphene layered composites,” J. Phys. D 47, 495302 (2014).
103.
go back to reference A. G. Sheinerman, “Modeling of structure and interface controlled strength of laminated metal/graphene composites,” Mech. Mater. 158, Art. 103888 (2021). A. G. Sheinerman, “Modeling of structure and interface controlled strength of laminated metal/graphene composites,” Mech. Mater. 158, Art. 103888 (2021).
104.
go back to reference S. Xiang, X. Wang, M. Gupta, K. Wu, X. Hu, and M. Zheng, “Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties,” Sci. Rep. 6, 38824 (2016). S. Xiang, X. Wang, M. Gupta, K. Wu, X. Hu, and M. Zheng, “Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties,” Sci. Rep. 6, 38824 (2016).
105.
go back to reference M. Khoshghadam-Pireyousefan, R. Rahmanifard, L. Orovcik, P. Švec, and V. Klemm, “Application of a novel method for fabrication of graphene reinforced aluminum matrix nanocomposites: Synthesis, microstructure, and mechanical properties,” Mater. Sci. Eng., A 772, 138820 (2020). M. Khoshghadam-Pireyousefan, R. Rahmanifard, L. Orovcik, P. Švec, and V. Klemm, “Application of a novel method for fabrication of graphene reinforced aluminum matrix nanocomposites: Synthesis, microstructure, and mechanical properties,” Mater. Sci. Eng., A 772, 138820 (2020).
106.
go back to reference O. Y. Kurapova, I. V. Lomakin, S. N. Sergeev, E. N. Solovyeva, A. P. Zhilyaev, I. Y. Archakov, and V. G. Konakov, “Fabrication of nickel–graphene composites with superior hardness,” J. Alloy Compd. 835, 155463 (2020). O. Y. Kurapova, I. V. Lomakin, S. N. Sergeev, E. N. Solovyeva, A. P. Zhilyaev, I. Y. Archakov, and V. G. Konakov, “Fabrication of nickel–graphene composites with superior hardness,” J. Alloy Compd. 835, 155463 (2020).
107.
go back to reference L. L. Zhu, C. S. Wen, C. Y. Gao, X. Guo, Z. Chen, and J. Lu, “Static and dynamic mechanical behaviors of gradient-nanotwinned stainless steel with a composite structure: Experiments and modeling,” Int. J. Plast. 114, 272–288 (2019). L. L. Zhu, C. S. Wen, C. Y. Gao, X. Guo, Z. Chen, and J. Lu, “Static and dynamic mechanical behaviors of gradient-nanotwinned stainless steel with a composite structure: Experiments and modeling,” Int. J. Plast. 114, 272–288 (2019).
108.
go back to reference S. C. Cao, J. B. Liu, L. L. Zhu, L. Li, M. Dao, J. Lu, and R. O. Ritchie, “Nature-inspired hierarchical steels,” Sci. Rep. 8, 5088 (2018). S. C. Cao, J. B. Liu, L. L. Zhu, L. Li, M. Dao, J. Lu, and R. O. Ritchie, “Nature-inspired hierarchical steels,” Sci. Rep. 8, 5088 (2018).
109.
go back to reference Z. W. Ma, J. B. Liu, G. Wang, H. T. Wang, Y. J. Wei, and H. J. Gao, “Strength gradient enhances fatigue resistance of steels,” Sci. Rep. 6, 22156 (2016). Z. W. Ma, J. B. Liu, G. Wang, H. T. Wang, Y. J. Wei, and H. J. Gao, “Strength gradient enhances fatigue resistance of steels,” Sci. Rep. 6, 22156 (2016).
110.
go back to reference X. L. Wu, M. X. Yang, F. P. Yuan, L. Chen, and Y. T. Zhu, “Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility,” Acta Mater. 112, 337–346 (2016). X. L. Wu, M. X. Yang, F. P. Yuan, L. Chen, and Y. T. Zhu, “Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility,” Acta Mater. 112, 337–346 (2016).
111.
go back to reference X. L. Wu, P. Jiang, L. Chen, F. P. Yuan, and Y. T. T. Zhu, “Extraordinary strain hardening by gradient structure,” Proc. Natl. Acad. Sci. U.S.A. 111, 7197–7201 (2014). X. L. Wu, P. Jiang, L. Chen, F. P. Yuan, and Y. T. T. Zhu, “Extraordinary strain hardening by gradient structure,” Proc. Natl. Acad. Sci. U.S.A. 111, 7197–7201 (2014).
112.
go back to reference Y. J. Wei, Y. Q. Li, L. C. Zhu, Y. Liu, X. Q. Lei, G. Wang, Y. X. Wu, Z. L. Mi, J. B. Liu, H. T. Wang, and H. J. Gao, “Evading the strength- ductility trade-off dilemma in steel through gradient hierarchical nanotwins,” Nat. Commun. 5, 3580 (2014). Y. J. Wei, Y. Q. Li, L. C. Zhu, Y. Liu, X. Q. Lei, G. Wang, Y. X. Wu, Z. L. Mi, J. B. Liu, H. T. Wang, and H. J. Gao, “Evading the strength- ductility trade-off dilemma in steel through gradient hierarchical nanotwins,” Nat. Commun. 5, 3580 (2014).
113.
go back to reference H. T. Wang, N. R. Tao, and K. Lu, “Architectured surface layer with a gradient nanotwinned structure in a Fe-Mn austenitic steel,” Scr. Mater. 68, 22–27 (2013). H. T. Wang, N. R. Tao, and K. Lu, “Architectured surface layer with a gradient nanotwinned structure in a Fe-Mn austenitic steel,” Scr. Mater. 68, 22–27 (2013).
114.
go back to reference A. Y. Chen, H. H. Ruan, J. Wang, H. L. Chan, Q. Wang, Q. Li, and J. Lu, “The influence of strain rate on the microstructure transition of 304 stainless steel,” Acta Mater. 59, 3697–3709 (2011). A. Y. Chen, H. H. Ruan, J. Wang, H. L. Chan, Q. Wang, Q. Li, and J. Lu, “The influence of strain rate on the microstructure transition of 304 stainless steel,” Acta Mater. 59, 3697–3709 (2011).
115.
go back to reference T. H. Fang, W. L. Li, N. R. Tao, and K. Lu, “Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper,” Science 331, 1587–1590 (2011). T. H. Fang, W. L. Li, N. R. Tao, and K. Lu, “Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper,” Science 331, 1587–1590 (2011).
116.
go back to reference H. T. Wang, N. R. Tao, and K. Lu, “Strengthening an austenitic Fe-Mn steel using nanotwinned austenitic grains,” Acta Mater. 60, 4027–4040 (2012). H. T. Wang, N. R. Tao, and K. Lu, “Strengthening an austenitic Fe-Mn steel using nanotwinned austenitic grains,” Acta Mater. 60, 4027–4040 (2012).
117.
go back to reference J. G. Kim, N. A. Enikeev, J. B. Seol, M. M. Abramova, M. V. Karavaeva, R. Z. Valiev, C. G. Park, and H. S. Kim, “Superior strength and multiple strengthening mechanisms in nanocrystalline TWIP steel,” Sci. Rep. 8, 11200 (2018). J. G. Kim, N. A. Enikeev, J. B. Seol, M. M. Abramova, M. V. Karavaeva, R. Z. Valiev, C. G. Park, and H. S. Kim, “Superior strength and multiple strengthening mechanisms in nanocrystalline TWIP steel,” Sci. Rep. 8, 11200 (2018).
118.
go back to reference F. K. Yan, N. R. Tao, F. Archie, I. Gutierrez-Urrutia, D. Raabe, and K. Lu, “Deformation mechanisms in an austenitic single-phase duplex microstructured steel with nanotwinned grains,” Acta Mater. 81, 487–500 (2014). F. K. Yan, N. R. Tao, F. Archie, I. Gutierrez-Urrutia, D. Raabe, and K. Lu, “Deformation mechanisms in an austenitic single-phase duplex microstructured steel with nanotwinned grains,” Acta Mater. 81, 487–500 (2014).
119.
go back to reference F. K. Yan, G. Z. Liu, N. R. Tao, and K. Lu, “Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles,” Acta Mater. 60, 1059–1071 (2012). F. K. Yan, G. Z. Liu, N. R. Tao, and K. Lu, “Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles,” Acta Mater. 60, 1059–1071 (2012).
120.
go back to reference K. Lu, F. K. Yan, H. T. Wang, and N. R. Tao, “Strengthening austenitic steels by using nanotwinned austenitic grains,” Scr. Mater. 66, 878–883 (2012). K. Lu, F. K. Yan, H. T. Wang, and N. R. Tao, “Strengthening austenitic steels by using nanotwinned austenitic grains,” Scr. Mater. 66, 878–883 (2012).
121.
go back to reference Y. S. Li, Y. Zhang, N. R. Tao, and K. Lu, “Effect of thermal annealing on mechanical properties of a nanostructured copper prepared by means of dynamic plastic deformation,” Scr. Mater. 59, 475–478 (2008). Y. S. Li, Y. Zhang, N. R. Tao, and K. Lu, “Effect of thermal annealing on mechanical properties of a nanostructured copper prepared by means of dynamic plastic deformation,” Scr. Mater. 59, 475–478 (2008).
122.
go back to reference X. L. Wu, F. P. Yuan, M. X. Yang, P. Jiang, C. X. Zhang, L. Chen, Y. G. Wei, and E. Ma, “Nanodomained nickel unite nanocrystal strength with coarse-grain ductility,” Sci. Rep. 5, 11728 (2015). X. L. Wu, F. P. Yuan, M. X. Yang, P. Jiang, C. X. Zhang, L. Chen, Y. G. Wei, and E. Ma, “Nanodomained nickel unite nanocrystal strength with coarse-grain ductility,” Sci. Rep. 5, 11728 (2015).
123.
go back to reference M. J. Shen, X. J. Wang, M. F. Zhang, M. Y. Zheng, and K. Wu, “Significantly improved strength and ductility in bimodal-size grained microstructural magnesium matrix composites reinforced by bimodal sized SiCp over traditional magnesium matrix composites,” Compos. Sci. Technol. 118, 85–93 (2015). M. J. Shen, X. J. Wang, M. F. Zhang, M. Y. Zheng, and K. Wu, “Significantly improved strength and ductility in bimodal-size grained microstructural magnesium matrix composites reinforced by bimodal sized SiCp over traditional magnesium matrix composites,” Compos. Sci. Technol. 118, 85–93 (2015).
124.
go back to reference K. S. Raju, V. S. Sarma, A. Kauffmann, Z. Hegedus, J. Gubicza, M. Peterlechner, J. Freudenberger, and G. Wilde, “High strength and ductile ultrafine-grained Cu–Ag alloy through bimodal grain size, dislocation density and solute distribution,” Acta Mater. 61, 228–238 (2013). K. S. Raju, V. S. Sarma, A. Kauffmann, Z. Hegedus, J. Gubicza, M. Peterlechner, J. Freudenberger, and G. Wilde, “High strength and ductile ultrafine-grained Cu–Ag alloy through bimodal grain size, dislocation density and solute distribution,” Acta Mater. 61, 228–238 (2013).
125.
go back to reference G. Dirras, J. Gubicza, S. Ramtani, Q. H. Bui, and T. Szilagyi, “Microstructure and mechanical characteristics of bulk polycrystalline Ni consolidated from blends of powders with different particle size,” Mater. Sci. Eng., A 527, 1206–1214 (2013). G. Dirras, J. Gubicza, S. Ramtani, Q. H. Bui, and T. Szilagyi, “Microstructure and mechanical characteristics of bulk polycrystalline Ni consolidated from blends of powders with different particle size,” Mater. Sci. Eng., A 527, 1206–1214 (2013).
126.
go back to reference Y. H. Zhao, T. Topping, J. F. Bingert, J. J. Thornton, A. M. Dangelewicz, Y. Li, W. Liu, Y. T. Zhu, Y. Z. Zhou, and E. L. Lavernia, “High tensile ductility and strength in bulk nanostructured nickel,” Adv. Mater. 20, 3028–3033 (2008). Y. H. Zhao, T. Topping, J. F. Bingert, J. J. Thornton, A. M. Dangelewicz, Y. Li, W. Liu, Y. T. Zhu, Y. Z. Zhou, and E. L. Lavernia, “High tensile ductility and strength in bulk nanostructured nickel,” Adv. Mater. 20, 3028–3033 (2008).
127.
go back to reference D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, and E. Lavernia, “Al–Mg alloy engineered with bimodal grain size for high strength and increased ductility,” Scr. Mater. 49, 297–302 (2003). D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, and E. Lavernia, “Al–Mg alloy engineered with bimodal grain size for high strength and increased ductility,” Scr. Mater. 49, 297–302 (2003).
128.
go back to reference C. C. Koch, “Optimization of strength and ductility in nanocrystalline and ultrafine grained metals,” Scr. Mater. 49, 657–662 (2003). C. C. Koch, “Optimization of strength and ductility in nanocrystalline and ultrafine grained metals,” Scr. Mater. 49, 657–662 (2003).
129.
go back to reference Y. M. Wang, M. W. Chen, F. H. Zhou, and E. Ma, “High tensile ductility in a nanostructured metal,” Nature 419, 912–915 (2002). Y. M. Wang, M. W. Chen, F. H. Zhou, and E. Ma, “High tensile ductility in a nanostructured metal,” Nature 419, 912–915 (2002).
130.
go back to reference V. L. Tellkamp, A. Melmed, and E. J. Lavernia, “Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy,” Metall. Mater. Trans. A 32, 2335–2343 (2001). V. L. Tellkamp, A. Melmed, and E. J. Lavernia, “Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy,” Metall. Mater. Trans. A 32, 2335–2343 (2001).
131.
go back to reference A. Considère, « Memoire sur l’emploi du fer et de l’acier dans les constructions," Ann. Ponts Chaussées 9, 575–775 (1885). A. Considère, « Memoire sur l’emploi du fer et de l’acier dans les constructions," Ann. Ponts Chaussées 9, 575–775 (1885).
132.
go back to reference Z. Liu, S. M. Zhang, J. R. Yang, J. Z. Liu, Y. L. Yang, and Q. S. Zheng, “Interlayer shear strength of single crystalline graphite,” Acta Mech. Sin. 28, 978–982 (2012). Z. Liu, S. M. Zhang, J. R. Yang, J. Z. Liu, Y. L. Yang, and Q. S. Zheng, “Interlayer shear strength of single crystalline graphite,” Acta Mech. Sin. 28, 978–982 (2012).
133.
go back to reference S. V. Bobylev, M. Y. Gutkin, and A. G. Scheinerman, “Yield strength of metal–graphene composites with a homogeneous and bimodal grain structure,” Mech. Solids 55, 22–31 (2020). S. V. Bobylev, M. Y. Gutkin, and A. G. Scheinerman, “Yield strength of metal–graphene composites with a homogeneous and bimodal grain structure,” Mech. Solids 55, 22–31 (2020).
134.
go back to reference E. I. Salama, A. Abbas, and A. M. K. Esawi, “Preparation and properties of dual-matrix carbon nanotube-reinforced aluminum composites,” Composites, Part A 99, 84–93 (2017). E. I. Salama, A. Abbas, and A. M. K. Esawi, “Preparation and properties of dual-matrix carbon nanotube-reinforced aluminum composites,” Composites, Part A 99, 84–93 (2017).
135.
go back to reference Z. Y. Liu, K. Ma, G. H. Fan, K. Zhao, J. F. Zhang, B. L. Xiao, and Z. Y. Ma, “Enhancement of the strength-ductility relationship for carbon nanotube/Al–Cu–Mg nanocomposites by material parameter optimisation,” Carbon 157, 602–613 (2020). Z. Y. Liu, K. Ma, G. H. Fan, K. Zhao, J. F. Zhang, B. L. Xiao, and Z. Y. Ma, “Enhancement of the strength-ductility relationship for carbon nanotube/Al–Cu–Mg nanocomposites by material parameter optimisation,” Carbon 157, 602–613 (2020).
136.
go back to reference X. Fu, Z. Tan, X. Min, Z. Li, Z. Yue, G. Fan, D.‑B. Xiong, and Z. Li, “Trimodal grain structure enables high-strength CNT/Al–Cu–Mg composites higher ductility by powder assembly & alloying,” Mater. Res. Lett. 9, 50–57 (2020). X. Fu, Z. Tan, X. Min, Z. Li, Z. Yue, G. Fan, D.‑B. Xiong, and Z. Li, “Trimodal grain structure enables high-strength CNT/Al–Cu–Mg composites higher ductility by powder assembly & alloying,” Mater. Res. Lett. 9, 50–57 (2020).
Metadata
Title
Mechanical Properties of Metal Matrix Composites with Graphene and Carbon Nanotubes
Author
A. G. Sheinerman
Publication date
01-01-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 1/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22010124