Skip to main content
Top
Published in: Mechanics of Composite Materials 3/2022

18-07-2022

Mechanical Stability of Eccentrically Stiffened Auxetic Truncated Conical Sandwich Shells Surrounded by Elastic Foundations

Authors: Nguyen Dinh Duc, Duong Tuan Manh, Nguyen Dinh Khoa, Pham Dinh Nguyen

Published in: Mechanics of Composite Materials | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The static stability of auxetic truncated conical sandwich shells reinforced by stiffeners surrounded by elastic foundations is investigated. The shells are made from two isotropic outer layers and an auxetic core layer with a negative Poisson ratio. Based on the classical shell theory, combined with the displacement and Bubnov–Galerkin methods, the governing equations of the shells are derived and solved. The critical buckling load of the shells as a function of their geometrical parameters, the honeycomb structure, stiffeners, and types of elastic foundations are examined in detail.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference A. H. Sofiyev and Z. Karaca, “The vibration and buckling of laminated non-homogeneous orthotropic conical shells subjected to external pressure,” Eur. J. Mech. A-Solid., 28, 317-328 (2018).CrossRef A. H. Sofiyev and Z. Karaca, “The vibration and buckling of laminated non-homogeneous orthotropic conical shells subjected to external pressure,” Eur. J. Mech. A-Solid., 28, 317-328 (2018).CrossRef
2.
go back to reference A. H. Sofiyev, N. Kuruoglu, and M. Turkmen, “Buckling of FGM hybrid truncated conical shells subjected to hydrostatic pressure,” Thin-Walled Struct., 47, 61-72 (2009).CrossRef A. H. Sofiyev, N. Kuruoglu, and M. Turkmen, “Buckling of FGM hybrid truncated conical shells subjected to hydrostatic pressure,” Thin-Walled Struct., 47, 61-72 (2009).CrossRef
3.
go back to reference A. H. Sofiyev, “The buckling of FGM truncated conical shells subjected to axial compressive load and resting on Winkler–Pasternak foundations,” Int. J. Pres. Ves. Pip., 87, 753-761 (2010).CrossRef A. H. Sofiyev, “The buckling of FGM truncated conical shells subjected to axial compressive load and resting on Winkler–Pasternak foundations,” Int. J. Pres. Ves. Pip., 87, 753-761 (2010).CrossRef
4.
go back to reference A. H. Sofiyev, “Influence of the initial imperfection on the non-linear buckling response of FGM truncated conical shells,” Int. J. Mech. Sci., 53, 753-761 (2011).CrossRef A. H. Sofiyev, “Influence of the initial imperfection on the non-linear buckling response of FGM truncated conical shells,” Int. J. Mech. Sci., 53, 753-761 (2011).CrossRef
5.
go back to reference A. M. Najafov and A. H. Sofiyev, “The non-linear dynamics of FGM truncated conical shells surrounded by an elastic medium,” Int. J. Mech. Sci., 66, 33-44 (2013).CrossRef A. M. Najafov and A. H. Sofiyev, “The non-linear dynamics of FGM truncated conical shells surrounded by an elastic medium,” Int. J. Mech. Sci., 66, 33-44 (2013).CrossRef
6.
go back to reference A. H. Sofiyev and E. Osmancelebioglu, “The free vibration of sandwich truncated conical shells containing functionally graded layers within the shear deformation theory,” Compos. Part B Eng., 120, 197-211 (2017).CrossRef A. H. Sofiyev and E. Osmancelebioglu, “The free vibration of sandwich truncated conical shells containing functionally graded layers within the shear deformation theory,” Compos. Part B Eng., 120, 197-211 (2017).CrossRef
7.
go back to reference A. H. Sofiyev, F. Tornabene, R. Dimitri, and N. Kuruoglu, “Buckling behavior of FG-CNT reinforced composite conical shells subjected to a combined loading,” Nanomaterials., 10, No. 3, 1-19 (2020).CrossRef A. H. Sofiyev, F. Tornabene, R. Dimitri, and N. Kuruoglu, “Buckling behavior of FG-CNT reinforced composite conical shells subjected to a combined loading,” Nanomaterials., 10, No. 3, 1-19 (2020).CrossRef
8.
go back to reference D. V. Dung, L. K. Hoa, and N. T. Nga, “On the stability of functionally graded truncated conical shells reinforced by functionally graded stiffeners and surrounded by an elastic medium,” Compos. Struct., 108, 77-90 (2014).CrossRef D. V. Dung, L. K. Hoa, and N. T. Nga, “On the stability of functionally graded truncated conical shells reinforced by functionally graded stiffeners and surrounded by an elastic medium,” Compos. Struct., 108, 77-90 (2014).CrossRef
9.
go back to reference D. V. Dung and D. Q. Chan, “Analytical investigation on mechanical buckling of FGM truncated conical shells reinforced by orthogonal stiffeners based on FSDT,” Compos. Struct., 159, 827-841 (2017).CrossRef D. V. Dung and D. Q. Chan, “Analytical investigation on mechanical buckling of FGM truncated conical shells reinforced by orthogonal stiffeners based on FSDT,” Compos. Struct., 159, 827-841 (2017).CrossRef
10.
go back to reference N. D. Duc and P. H. Cong, “Nonlinear thermal stability of eccentrically stiffened functionally graded truncated conical shells surrounded on elastic foundations,” Eur. J. Mech. A-Solid., 50, 120-131 (2015).CrossRef N. D. Duc and P. H. Cong, “Nonlinear thermal stability of eccentrically stiffened functionally graded truncated conical shells surrounded on elastic foundations,” Eur. J. Mech. A-Solid., 50, 120-131 (2015).CrossRef
11.
go back to reference N. D. Duc, P. H. Cong, N. D. Tuan, P. Tran, and N. V. Thanh, “Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations,” Thin-Walled Struct., 115, 300-310 (2017).CrossRef N. D. Duc, P. H. Cong, N. D. Tuan, P. Tran, and N. V. Thanh, “Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations,” Thin-Walled Struct., 115, 300-310 (2017).CrossRef
12.
go back to reference N. D. Duc, K. Seung-Eock, and D. Q. Chan, “Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT,” Therm. Stress., 41, No. 3, 331-365 (2018).CrossRef N. D. Duc, K. Seung-Eock, and D. Q. Chan, “Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT,” Therm. Stress., 41, No. 3, 331-365 (2018).CrossRef
13.
go back to reference D. Q. Chan, P. D. Nguyen, V. D. Quang, V. T. T. Anh, and N. D. Duc, “Nonlinear buckling and post-buckling of functionally graded carbon nanotubes reinforced composite truncated conical shells subjected to axial load,” Steel. Comp. Struct., 31, No. 3, 243-259 (2019). D. Q. Chan, P. D. Nguyen, V. D. Quang, V. T. T. Anh, and N. D. Duc, “Nonlinear buckling and post-buckling of functionally graded carbon nanotubes reinforced composite truncated conical shells subjected to axial load,” Steel. Comp. Struct., 31, No. 3, 243-259 (2019).
14.
go back to reference D. Q. Chan, V. D. Long, and N. D. Duc, “Nonlinear buckling and post-buckling of FGM shear deformable truncated conical shells reinforced by FGM stiffeners,” Mech. Compos. Mater., 54, No. 6, 754-764 (2019).CrossRef D. Q. Chan, V. D. Long, and N. D. Duc, “Nonlinear buckling and post-buckling of FGM shear deformable truncated conical shells reinforced by FGM stiffeners,” Mech. Compos. Mater., 54, No. 6, 754-764 (2019).CrossRef
15.
go back to reference S. O. Dzhankhotov, V. A. Kireev, and N. T. Kulagin, “Experimental and theoretical study of the supporting power of longitudinally compressed slightly conical shells made of composite materials ,” Mech. Compos. Mater., 16, No. 6, 698-705 (1981).CrossRef S. O. Dzhankhotov, V. A. Kireev, and N. T. Kulagin, “Experimental and theoretical study of the supporting power of longitudinally compressed slightly conical shells made of composite materials ,” Mech. Compos. Mater., 16, No. 6, 698-705 (1981).CrossRef
16.
go back to reference I. Yu. Babich, A. V. Boriseiko, and N. P. Semenyuk, “Stability of conical shells of metal composites beyond the elastic limit,” Mech. Compos. Mater., 37, No. 1, 1-66 (2001).CrossRef I. Yu. Babich, A. V. Boriseiko, and N. P. Semenyuk, “Stability of conical shells of metal composites beyond the elastic limit,” Mech. Compos. Mater., 37, No. 1, 1-66 (2001).CrossRef
17.
go back to reference S. M. F. Moghaddam and H. Ahmadi, “Active vibration control of truncated conical shell under harmonic excitation using piezoelectric actuator,” Thin-Walled Struct., 151, 106642 (2020).CrossRef S. M. F. Moghaddam and H. Ahmadi, “Active vibration control of truncated conical shell under harmonic excitation using piezoelectric actuator,” Thin-Walled Struct., 151, 106642 (2020).CrossRef
18.
go back to reference H. Aris and H. Ahmadi, “Nonlinear vibration analysis of FGM truncated conical shells subjected to harmonic excitation in thermal environment,” Mech. Res. Commun., 104, 103499 (2020).CrossRef H. Aris and H. Ahmadi, “Nonlinear vibration analysis of FGM truncated conical shells subjected to harmonic excitation in thermal environment,” Mech. Res. Commun., 104, 103499 (2020).CrossRef
19.
go back to reference Y. Kiani, “Torsional vibration of functionally graded carbon nanotube reinforced conical shells,” Sci. Eng. Compos. Mater., 25, No. 1, 41-52 (2018).CrossRef Y. Kiani, “Torsional vibration of functionally graded carbon nanotube reinforced conical shells,” Sci. Eng. Compos. Mater., 25, No. 1, 41-52 (2018).CrossRef
20.
go back to reference J. E. Jam and Y. Kiani, “Buckling of pressurized functionally graded carbon nanotube reinforced conical shells,” Compos. Struct., 125, 586-595 (2018).CrossRef J. E. Jam and Y. Kiani, “Buckling of pressurized functionally graded carbon nanotube reinforced conical shells,” Compos. Struct., 125, 586-595 (2018).CrossRef
21.
go back to reference M. Mirzaei and Y. Kian, “Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells,” Aerosp. Sci. Technol., 47, 42-53 (2015).CrossRef M. Mirzaei and Y. Kian, “Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells,” Aerosp. Sci. Technol., 47, 42-53 (2015).CrossRef
22.
go back to reference N. D. Duc and P. H. Cong, “Nonlinear dynamic response and vibration of sandwich composite plates with negative Poisson’s ratio in auxetic honeycombs,” J. Sandw. Struct. Mater., 20, 692-717 (2018).CrossRef N. D. Duc and P. H. Cong, “Nonlinear dynamic response and vibration of sandwich composite plates with negative Poisson’s ratio in auxetic honeycombs,” J. Sandw. Struct. Mater., 20, 692-717 (2018).CrossRef
23.
go back to reference P. H. Cong, N. D. Khanh, N. D. Khoa, and N. D. Duc, “New approach to investigate nonlinear dynamic response of sandwich auxetic double curves shallow shells using TSDT,” Compos. Struct., 185, 455-465 (2018).CrossRef P. H. Cong, N. D. Khanh, N. D. Khoa, and N. D. Duc, “New approach to investigate nonlinear dynamic response of sandwich auxetic double curves shallow shells using TSDT,” Compos. Struct., 185, 455-465 (2018).CrossRef
24.
go back to reference P. H. Cong, P. T. Long, N. V. Nhat, and N. D. Duc, “Geometrically nonlinear dynamic response of eccentrically stiffened circular cylindrical shells with negative poisson’s ratio in auxetic honeycombs core layer,” Int. J. Mech. Sci., 152, 443-453 (2019).CrossRef P. H. Cong, P. T. Long, N. V. Nhat, and N. D. Duc, “Geometrically nonlinear dynamic response of eccentrically stiffened circular cylindrical shells with negative poisson’s ratio in auxetic honeycombs core layer,” Int. J. Mech. Sci., 152, 443-453 (2019).CrossRef
25.
go back to reference N. D. Duc, S. E. Kim, P. H. Cong, N. T. Anh, and N. D. Khoa, “Dynamic response and vibration of composite double curved shallow shells with negative Poisson’s ratio in auxetic honeycombs core layer on elastic foundations subjected to blast and damping loads,” Int. J. Mech. Sci., 133, 504-512 (2017).CrossRef N. D. Duc, S. E. Kim, P. H. Cong, N. T. Anh, and N. D. Khoa, “Dynamic response and vibration of composite double curved shallow shells with negative Poisson’s ratio in auxetic honeycombs core layer on elastic foundations subjected to blast and damping loads,” Int. J. Mech. Sci., 133, 504-512 (2017).CrossRef
26.
go back to reference N. D. Duc, S. E. Kim, N. D. Tuan, P. Tran, and N. D. Khoa, “New approach to study nonlinear dynamic response and vibration of sandwich composite cylindrical panels with auxetic honeycomb core layer,” Aerosp. Sci. Technol., 70, 396-404 (2017).CrossRef N. D. Duc, S. E. Kim, N. D. Tuan, P. Tran, and N. D. Khoa, “New approach to study nonlinear dynamic response and vibration of sandwich composite cylindrical panels with auxetic honeycomb core layer,” Aerosp. Sci. Technol., 70, 396-404 (2017).CrossRef
28.
go back to reference M. H. Hajmohammad, R. Kolahchi, M. S. Zarei, and A. H. Nouri, “Dynamic response of auxetic honeycomb plates integrated with agglomerated CNT-reinforced face sheets subjected to blast load based on visco-sinusoidal theory,” Int. J. Mech. Sci., 153-154, 391-401 (2019). M. H. Hajmohammad, R. Kolahchi, M. S. Zarei, and A. H. Nouri, “Dynamic response of auxetic honeycomb plates integrated with agglomerated CNT-reinforced face sheets subjected to blast load based on visco-sinusoidal theory,” Int. J. Mech. Sci., 153-154, 391-401 (2019).
29.
go back to reference M. H. Hajmohammad, A. H. Nouri, M. S. Zarei, and R. Kolahchi, “A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal environment,” Eng. Comput., 35, 1141-1157 (2019).CrossRef M. H. Hajmohammad, A. H. Nouri, M. S. Zarei, and R. Kolahchi, “A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal environment,” Eng. Comput., 35, 1141-1157 (2019).CrossRef
30.
go back to reference J. Liu, Y. S. Cheng, and R. F. Li, “A semi-analytical method for bending, buckling, and free vibration analyses of sandwich panels with square-honeycomb cores,” Int. J. Struct. Stab. Dyn., 10, 127-151 (2010).CrossRef J. Liu, Y. S. Cheng, and R. F. Li, “A semi-analytical method for bending, buckling, and free vibration analyses of sandwich panels with square-honeycomb cores,” Int. J. Struct. Stab. Dyn., 10, 127-151 (2010).CrossRef
31.
go back to reference K. Di and X. B. Mao, “Free flexural vibration of honeycomb sandwich plate with negative Poisson’s ratio simple supported on opposite edges,” Acta Mater. Compos. Sin., 33, 910-920 (2016). K. Di and X. B. Mao, “Free flexural vibration of honeycomb sandwich plate with negative Poisson’s ratio simple supported on opposite edges,” Acta Mater. Compos. Sin., 33, 910-920 (2016).
32.
go back to reference J. Zhang, X. Zhu, X. Yang, and W. Zhang, “Transient nonlinear responses of an auxetic honeycomb sandwich plate under impact loads,” Int. J. Impact. Eng., 134, 103383 (2019).CrossRef J. Zhang, X. Zhu, X. Yang, and W. Zhang, “Transient nonlinear responses of an auxetic honeycomb sandwich plate under impact loads,” Int. J. Impact. Eng., 134, 103383 (2019).CrossRef
33.
go back to reference X. Jin, Z. Wang, J. Ning, G. Xiao, E. Liu, and X. Shu, “Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading,” Compos. Part B Eng., 106, 206-217 (2016).CrossRef X. Jin, Z. Wang, J. Ning, G. Xiao, E. Liu, and X. Shu, “Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading,” Compos. Part B Eng., 106, 206-217 (2016).CrossRef
34.
go back to reference C. Qi, A. Remennikov, L. Z. Pei, S. Yang, Z. H. Yu, and T. D. Ngo, “Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations,” Compos. Struct., 180, 161-178 (2017).CrossRef C. Qi, A. Remennikov, L. Z. Pei, S. Yang, Z. H. Yu, and T. D. Ngo, “Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations,” Compos. Struct., 180, 161-178 (2017).CrossRef
35.
go back to reference G. Imbalzano, S. Linforth, N. D. Tuan, P. V. S. Lee, and T. Phuong, “Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs,” Compos. Struct., 183, 242-261 (2018).CrossRef G. Imbalzano, S. Linforth, N. D. Tuan, P. V. S. Lee, and T. Phuong, “Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs,” Compos. Struct., 183, 242-261 (2018).CrossRef
36.
go back to reference D. Banić, M. Bacciocchi, F. Tornabene, and A. J. M. Ferreira, “Influence of Winkler-Pasternak foundation on the vibrational behavior of plates and shells reinforced by agglomerated carbon nanotubes,” Appl. Sci., 7, No. 12, 1228 (2017).CrossRef D. Banić, M. Bacciocchi, F. Tornabene, and A. J. M. Ferreira, “Influence of Winkler-Pasternak foundation on the vibrational behavior of plates and shells reinforced by agglomerated carbon nanotubes,” Appl. Sci., 7, No. 12, 1228 (2017).CrossRef
37.
go back to reference F. H. Roudbeneh, G. Liaghat, H. Sabouri, and H. Hadavinia, “Experimental investigation of impact loading on honeycomb sandwich panels filled with foam,” Int. J. Crashworthines., 24, No. 2, 199-210 (2018).CrossRef F. H. Roudbeneh, G. Liaghat, H. Sabouri, and H. Hadavinia, “Experimental investigation of impact loading on honeycomb sandwich panels filled with foam,” Int. J. Crashworthines., 24, No. 2, 199-210 (2018).CrossRef
38.
go back to reference F. H. Roudbeneh, G. Liaghat, H. Sabouri, and H. Hadavinia, “Experimental investigation of quasistatic penetration tests on honeycomb sandwich panels filled with polymer foam,” Mech. Adv. Mater. Struct., 27, No. 21, 1803-1815 (2018).CrossRef F. H. Roudbeneh, G. Liaghat, H. Sabouri, and H. Hadavinia, “Experimental investigation of quasistatic penetration tests on honeycomb sandwich panels filled with polymer foam,” Mech. Adv. Mater. Struct., 27, No. 21, 1803-1815 (2018).CrossRef
39.
go back to reference T. C. Lim, “Vibration of thick auxetic plates,” Mech. Res., Commun., 61, 60-66 (2014).CrossRef T. C. Lim, “Vibration of thick auxetic plates,” Mech. Res., Commun., 61, 60-66 (2014).CrossRef
40.
go back to reference F. Tornabene, “General higher order layer-wise theory for free vibrations of doubly-curved laminated composite shells and panels,” Mech. Adv. Mater. Struct., 23, No. 9, 1046-1067 (2016).CrossRef F. Tornabene, “General higher order layer-wise theory for free vibrations of doubly-curved laminated composite shells and panels,” Mech. Adv. Mater. Struct., 23, No. 9, 1046-1067 (2016).CrossRef
41.
go back to reference S. V. Shil’ko, E. M. Petrokovets, and Yu. M. Pleskachevskii, “An analysis of contact deformation of auxetic composites,” Mech. Compos. Mater., 42, No. 5, 477-484 (2006).CrossRef S. V. Shil’ko, E. M. Petrokovets, and Yu. M. Pleskachevskii, “An analysis of contact deformation of auxetic composites,” Mech. Compos. Mater., 42, No. 5, 477-484 (2006).CrossRef
42.
go back to reference C. Li, H. S. Shen, and H. Wang, “Nonlinear dynamic response of sandwich plates with functionally graded auxetic 3D lattice core,” Nonlinear. Dyn., 100, 3235-3252 (2020).CrossRef C. Li, H. S. Shen, and H. Wang, “Nonlinear dynamic response of sandwich plates with functionally graded auxetic 3D lattice core,” Nonlinear. Dyn., 100, 3235-3252 (2020).CrossRef
43.
go back to reference C. Li, H. S. Shen, H. Wang, and Z. Yu, “Large amplitude vibration of sandwich plates with functionally graded auxetic 3D lattice core,” Int. J. Mech. Sci., 174, 105472 (2020).CrossRef C. Li, H. S. Shen, H. Wang, and Z. Yu, “Large amplitude vibration of sandwich plates with functionally graded auxetic 3D lattice core,” Int. J. Mech. Sci., 174, 105472 (2020).CrossRef
45.
go back to reference C. Li, H. S. Shen, and H. Wang, “Postbuckling behavior of sandwich plates with functionally graded auxetic 3D lattice core,” Compos. Struct., 237, 111894 (2020).CrossRef C. Li, H. S. Shen, and H. Wang, “Postbuckling behavior of sandwich plates with functionally graded auxetic 3D lattice core,” Compos. Struct., 237, 111894 (2020).CrossRef
48.
go back to reference H. Eipakchi and F. M. Nasrekani, “Vibrational behavior of composite cylindrical shells with auxetic honeycombs core layer subjected to a moving pressure,” Compos. Struct., 254, 112847 (2020).CrossRef H. Eipakchi and F. M. Nasrekani, “Vibrational behavior of composite cylindrical shells with auxetic honeycombs core layer subjected to a moving pressure,” Compos. Struct., 254, 112847 (2020).CrossRef
49.
go back to reference D. Q. Tian and Y. Z. Chun, “Wave propagation in sandwich panel with auxetic core,” J. Solid. Mech., 2, 393-402 (2010). D. Q. Tian and Y. Z. Chun, “Wave propagation in sandwich panel with auxetic core,” J. Solid. Mech., 2, 393-402 (2010).
50.
go back to reference A. B. Brush, Buckling of Bars, Plates, and Shells, McGraw-Hill, New York (1975).CrossRef A. B. Brush, Buckling of Bars, Plates, and Shells, McGraw-Hill, New York (1975).CrossRef
51.
go back to reference R. Naj, M. S. Boroujerdy, and M. R. Eslami, “Thermal and mechanical instability of functionally graded truncated conical shells,” Thin-Walled Struct., 46, 65-78 (2008).CrossRef R. Naj, M. S. Boroujerdy, and M. R. Eslami, “Thermal and mechanical instability of functionally graded truncated conical shells,” Thin-Walled Struct., 46, 65-78 (2008).CrossRef
52.
go back to reference P. Seide, “Buckling of circular cones under axial compression,” J. Appl. Mech., 28, No. 2, 315-326 (1961).CrossRef P. Seide, “Buckling of circular cones under axial compression,” J. Appl. Mech., 28, No. 2, 315-326 (1961).CrossRef
Metadata
Title
Mechanical Stability of Eccentrically Stiffened Auxetic Truncated Conical Sandwich Shells Surrounded by Elastic Foundations
Authors
Nguyen Dinh Duc
Duong Tuan Manh
Nguyen Dinh Khoa
Pham Dinh Nguyen
Publication date
18-07-2022
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 3/2022
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-022-10035-0

Other articles of this Issue 3/2022

Mechanics of Composite Materials 3/2022 Go to the issue

Premium Partners