Skip to main content
Top

2007 | OriginalPaper | Chapter

39. Mechanics of Biological Nanotechnology

Authors : Rob Phillips, Prof., Prashant Purohit, Dr., Jané Kondev, Prof.

Published in: Springer Handbook of Nanotechnology

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of the most compelling areas to be touched by nanotechnology is biological science. Indeed, we will argue that there is a fascinating interplay between these two subjects, with biology as a key beneficiary of advances in nanotechnology as a result of a new generation of single-molecule experiments that complement traditional assays involving statistical assemblages of molecules. This interplay runs in both directions, with nanotechnology continually receiving inspiration from biology itself. The goal of this chapter is to highlight some representative examples of the exchange between biology and nanotechnology and to illustrate the role of nanomechanics in this field and how mechanical models have arisen in response to the emergence of this new field. Primary attention will be given to the particular example of the processes that attend the life cycle of bacterial viruses. Viruses feature many of the key lessons of biological nanotechnology, including self assembly, as evidenced in the spontaneous formation of the protein shell (capsid) within which the viral genome is packaged, and a motor-mediated biological process, namely the packaging of DNA in this capsid by a molecular motor that pushes the DNA into the capsid. We argue that these processes in viruses are a compelling real-world example of nature's nanotechnology, and they reveal the nanomechanical challenges that will continue to be confronted at the nanotechnology–biology interface.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
39.1.
go back to reference B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Essential Cell Biology (Garland, New York 1997) Chap. 12 B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Essential Cell Biology (Garland, New York 1997) Chap. 12
39.2.
go back to reference B. Alberts: The cell as a collection of protein machines: Preparing the next generation of molecular biologists, Cell 92, 291 (1998)CrossRef B. Alberts: The cell as a collection of protein machines: Preparing the next generation of molecular biologists, Cell 92, 291 (1998)CrossRef
39.3.
go back to reference D. Bray: Cell Movements From Molecules to Motility (Garland, New York 2001) D. Bray: Cell Movements From Molecules to Motility (Garland, New York 2001)
39.4.
go back to reference S. J. Flint, L. W. Enquist, R. M. Krug, V. R. Racaniello, A. M. Skalka: Principles of Virology (ASM, Washington, DC 2000) S. J. Flint, L. W. Enquist, R. M. Krug, V. R. Racaniello, A. M. Skalka: Principles of Virology (ASM, Washington, DC 2000)
39.5.
go back to reference J. C. M. van Hest, D. A. Tirrell: Protein-based materials, toward a new level of structural control, Chem. Commun. 19, 1807–1904 (2001) J. C. M. van Hest, D. A. Tirrell: Protein-based materials, toward a new level of structural control, Chem. Commun. 19, 1807–1904 (2001)
39.6.
39.7.
go back to reference J. E. Walker: ATP synthesis by rotary catalysis, Angew. Chem. Int. Ed. 37, 2308 (1998)CrossRef J. E. Walker: ATP synthesis by rotary catalysis, Angew. Chem. Int. Ed. 37, 2308 (1998)CrossRef
39.8.
go back to reference P. D. Boyer: The ATP synthase – A splendid molecular machine, Annu. Rev. Biochem. 66, 717 (1997)CrossRef P. D. Boyer: The ATP synthase – A splendid molecular machine, Annu. Rev. Biochem. 66, 717 (1997)CrossRef
39.9.
go back to reference M. Yoshida, E. Muneyuki, T. Hisabori: ATP synthase – A marvelous rotary engine of the cell, Nature Rev. Mol. Cell Bio. 2, 669 (2001)CrossRef M. Yoshida, E. Muneyuki, T. Hisabori: ATP synthase – A marvelous rotary engine of the cell, Nature Rev. Mol. Cell Bio. 2, 669 (2001)CrossRef
39.10.
go back to reference R. Yasuda, H. Noji, K. Kinosita, M. Yoshida: F1-ATPase is a highly efficient molecular motor that rotates with discrete 120° steps, Cell 93, 1117 (1998)CrossRef R. Yasuda, H. Noji, K. Kinosita, M. Yoshida: F1-ATPase is a highly efficient molecular motor that rotates with discrete 120° steps, Cell 93, 1117 (1998)CrossRef
39.11.
go back to reference J. Howard: Mechanics of Motor Proteins and the Cytoskeleton (Sinauer, Sunderland 2001) J. Howard: Mechanics of Motor Proteins and the Cytoskeleton (Sinauer, Sunderland 2001)
39.12.
go back to reference B. Hille: Ion Channels of Excitable Membranes (Sinauer, Sunderland 2001) B. Hille: Ion Channels of Excitable Membranes (Sinauer, Sunderland 2001)
39.13.
go back to reference S. Sukharev, S. R. Durell, H. R. Guy: Structural models of the MscL gating mechanism, Biophys. J. 81, 917 (2001)CrossRef S. Sukharev, S. R. Durell, H. R. Guy: Structural models of the MscL gating mechanism, Biophys. J. 81, 917 (2001)CrossRef
39.14.
go back to reference S. Sukharev, M. Betanzos, C.-S. Chiang, H. R. Guy: The gating mechanism of the large mechanosensitive channel MscL, Nature 409, 720 (2001)CrossRef S. Sukharev, M. Betanzos, C.-S. Chiang, H. R. Guy: The gating mechanism of the large mechanosensitive channel MscL, Nature 409, 720 (2001)CrossRef
39.15.
go back to reference K. Kinosita, R. Yasuda, H. Noji: F1-ATPase: A highly efficient rotary ATP machine, Essays Biochem. 35, 3 (2000) K. Kinosita, R. Yasuda, H. Noji: F1-ATPase: A highly efficient rotary ATP machine, Essays Biochem. 35, 3 (2000)
39.16.
go back to reference E. Racker, W. Stoeckenius: Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation, J. Biol. Chem. 249, 662 (1974) E. Racker, W. Stoeckenius: Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation, J. Biol. Chem. 249, 662 (1974)
39.17.
go back to reference G. Groth, J. E. Walker: ATP synthase from bovine heart mitochondria: reconstitution into unilamellar phospholipid vesicles of the pure enzyme in a functional state, Biochem. J. 318, 351 (1996) G. Groth, J. E. Walker: ATP synthase from bovine heart mitochondria: reconstitution into unilamellar phospholipid vesicles of the pure enzyme in a functional state, Biochem. J. 318, 351 (1996)
39.18.
go back to reference G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, A. Majumdar: Bioassay of prostrate-specific antigen (PSA) using microcantilevers, Nature Biotech. 19, 856 (2001)CrossRef G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, A. Majumdar: Bioassay of prostrate-specific antigen (PSA) using microcantilevers, Nature Biotech. 19, 856 (2001)CrossRef
39.19.
go back to reference M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, H. Gaub: Reversible unfolding of individual titin immunoglobulin domains by AFM, Science 276, 1109 (1997)CrossRef M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, H. Gaub: Reversible unfolding of individual titin immunoglobulin domains by AFM, Science 276, 1109 (1997)CrossRef
39.21.
go back to reference E. Evans: Probing the relation between force-lifetime and chemistry in single molecular bonds, Annu. Rev. Biophys. Biomol. Struct. 30, 105 (2001)CrossRef E. Evans: Probing the relation between force-lifetime and chemistry in single molecular bonds, Annu. Rev. Biophys. Biomol. Struct. 30, 105 (2001)CrossRef
39.22.
go back to reference T. E. Fisher, P. E. Marszalek, J. M. Fernandez: Stretching single molecules into novel conformations using the atomic force microscope, Nature Struct. Bio. 7, 719 (2000)CrossRef T. E. Fisher, P. E. Marszalek, J. M. Fernandez: Stretching single molecules into novel conformations using the atomic force microscope, Nature Struct. Bio. 7, 719 (2000)CrossRef
39.23.
go back to reference K. Svoboda, S. M. Block: Biological applications of optical forces, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994)CrossRef K. Svoboda, S. M. Block: Biological applications of optical forces, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994)CrossRef
39.24.
go back to reference C. Bustamante, J. C. Macosko, G. J. L. Wuite: Grabbing the cat by the tail: Manipulating molecules one by one, Nature Rev. Mol. Cell Bio. 1, 130 (2000)CrossRef C. Bustamante, J. C. Macosko, G. J. L. Wuite: Grabbing the cat by the tail: Manipulating molecules one by one, Nature Rev. Mol. Cell Bio. 1, 130 (2000)CrossRef
39.25.
go back to reference K. Svoboda, S. M. Block: Force and velocity measured for single kinesin molecules, Cell 77, 773 (1994)CrossRef K. Svoboda, S. M. Block: Force and velocity measured for single kinesin molecules, Cell 77, 773 (1994)CrossRef
39.26.
go back to reference M. J. Schnitzer, S. M. Block: Kinesin hydrolyses one ATP per 8-nm step, Nature 388, 386 (1997)CrossRef M. J. Schnitzer, S. M. Block: Kinesin hydrolyses one ATP per 8-nm step, Nature 388, 386 (1997)CrossRef
39.27.
go back to reference B. Maier, T. R. Strick, V. Croquette, D. Bensimon: Study of DNA motors by single molecule micromanipulation, Single Mol. 1, 145 (2000)CrossRef B. Maier, T. R. Strick, V. Croquette, D. Bensimon: Study of DNA motors by single molecule micromanipulation, Single Mol. 1, 145 (2000)CrossRef
39.28.
go back to reference A. A. Simpson, Y. Tao, P. G. Leiman, M. O. Badasso, Y. He, P. J. Jardine, N. H. Olson, M. C. Morais, S. Grimes, D. L. Anderson, T. S. Baker, M. G. Rossmann: Structure of the bacteriophage ϕ-29 DNA packaging motor, Nature 408, 745 (2000)CrossRef A. A. Simpson, Y. Tao, P. G. Leiman, M. O. Badasso, Y. He, P. J. Jardine, N. H. Olson, M. C. Morais, S. Grimes, D. L. Anderson, T. S. Baker, M. G. Rossmann: Structure of the bacteriophage ϕ-29 DNA packaging motor, Nature 408, 745 (2000)CrossRef
39.29.
go back to reference D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, C. Bustamante: The bacteriophage ϕ-29 portal motor can package DNA against a large internal force, Nature 413, 748 (2001)CrossRef D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, C. Bustamante: The bacteriophage ϕ-29 portal motor can package DNA against a large internal force, Nature 413, 748 (2001)CrossRef
39.30.
39.31.
go back to reference G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Charkraborty, A. Majumdar: Origin of nanomechanical cantilever motion generated from biomolecular interactions, Proc. Natl. Acad. Sci. USA 98, 1560 (2001)CrossRef G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Charkraborty, A. Majumdar: Origin of nanomechanical cantilever motion generated from biomolecular interactions, Proc. Natl. Acad. Sci. USA 98, 1560 (2001)CrossRef
39.32.
go back to reference L. D. Landau, E. M. Lifshitz: Theory of Elasticity (Pergamon, Oxford 1986) L. D. Landau, E. M. Lifshitz: Theory of Elasticity (Pergamon, Oxford 1986)
39.33.
go back to reference D. H. Bamford, R. J. C. Gilbert, J. M. Grimes, D. I. Stuart: Macromolecular assemblies: greater than their parts, Curr. Opin. Struct. Biol. 11, 107 (2001)CrossRef D. H. Bamford, R. J. C. Gilbert, J. M. Grimes, D. I. Stuart: Macromolecular assemblies: greater than their parts, Curr. Opin. Struct. Biol. 11, 107 (2001)CrossRef
39.34.
go back to reference J. Frank: Single-particle imaging of macromolecules by cryo-electron microscopy, Annu. Rev. Biophys. Biomol. Struct. 31, 303 (2002)CrossRef J. Frank: Single-particle imaging of macromolecules by cryo-electron microscopy, Annu. Rev. Biophys. Biomol. Struct. 31, 303 (2002)CrossRef
39.35.
go back to reference S. A. Darst: Bacterial RNA polymerase, Curr. Opin. Struct. Biol. 11, 155 (2001)CrossRef S. A. Darst: Bacterial RNA polymerase, Curr. Opin. Struct. Biol. 11, 155 (2001)CrossRef
39.36.
go back to reference N. Ban, P. Nissen, J. Hansen, P. B. Moore, T. A. Steitz: The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution, Science 289, 905 (2000)CrossRef N. Ban, P. Nissen, J. Hansen, P. B. Moore, T. A. Steitz: The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution, Science 289, 905 (2000)CrossRef
39.37.
go back to reference T. S. Baker, N. H. Olson, S. D. Fuller: Adding the third dimension to virus life cycles: Three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs, Microbiol. Mol. Biol. Rev. 63, 862 (1999) T. S. Baker, N. H. Olson, S. D. Fuller: Adding the third dimension to virus life cycles: Three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs, Microbiol. Mol. Biol. Rev. 63, 862 (1999)
39.38.
go back to reference H.-S. Chan, K. A. Dill: The protein folding problem, Phys. Today 46, 24 (1993)CrossRef H.-S. Chan, K. A. Dill: The protein folding problem, Phys. Today 46, 24 (1993)CrossRef
39.39.
go back to reference M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, S. M. Block: Force and velocity measured for single molecules of RNA polymerase, Science 282, 902 (1998)CrossRef M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, S. M. Block: Force and velocity measured for single molecules of RNA polymerase, Science 282, 902 (1998)CrossRef
39.40.
go back to reference M. L. Roukes: Nanoelectromechanical Systems, Technical Digest of the 2000 Solid-State Sensor and Actuator Workshop (2000) M. L. Roukes: Nanoelectromechanical Systems, Technical Digest of the 2000 Solid-State Sensor and Actuator Workshop (2000)
39.41.
go back to reference K. Adachi, R. Yasuda, H. Noji, H. Itoh, Y. Harada, M. Yoshida, K. Kinosita: Stepping rotation of F1-ATPase visualized through angle-resolved single-fluorophore imaging, Proc. Natl. Acad. Sci. USA 97, 7243 (2000)CrossRef K. Adachi, R. Yasuda, H. Noji, H. Itoh, Y. Harada, M. Yoshida, K. Kinosita: Stepping rotation of F1-ATPase visualized through angle-resolved single-fluorophore imaging, Proc. Natl. Acad. Sci. USA 97, 7243 (2000)CrossRef
39.42.
go back to reference J. Wrigglesworth: Energy and Life (Taylor and Francis, London 1997) J. Wrigglesworth: Energy and Life (Taylor and Francis, London 1997)
39.43.
39.44.
go back to reference J. T. Finer, R. M. Simmons, J. A. Spudich: Single myosin molecule mechanics: Piconewton forces and nanometre steps, Nature 368, 113 (1994)CrossRef J. T. Finer, R. M. Simmons, J. A. Spudich: Single myosin molecule mechanics: Piconewton forces and nanometre steps, Nature 368, 113 (1994)CrossRef
39.45.
go back to reference S. B. Smith, Y. Cui, C. Bustamante: Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules, Science 271, 795 (1996)CrossRef S. B. Smith, Y. Cui, C. Bustamante: Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules, Science 271, 795 (1996)CrossRef
39.46.
go back to reference S. Munevar, Y. Wang, M. Dembo: Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts, Biophys. J. 80, 1744 (2001)CrossRef S. Munevar, Y. Wang, M. Dembo: Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts, Biophys. J. 80, 1744 (2001)CrossRef
39.47.
go back to reference L. Mahadevan, P. Matsudaira: Motility powered by supramolecular springs and ratchets, Science 288, 95 (2000)CrossRef L. Mahadevan, P. Matsudaira: Motility powered by supramolecular springs and ratchets, Science 288, 95 (2000)CrossRef
39.48.
go back to reference R. Phillips, M. Dittrich, K. Schulten: Quasicontinuum representations of atomic-scale mechanics: From proteins to dislocations, Ann. Rev. Mater. Sci. 32, 219 (2002)CrossRef R. Phillips, M. Dittrich, K. Schulten: Quasicontinuum representations of atomic-scale mechanics: From proteins to dislocations, Ann. Rev. Mater. Sci. 32, 219 (2002)CrossRef
39.49.
go back to reference T. Strick, J.-F. Allemand, V. Croquette, D. Bensimon: Twisting and stretching single DNA molecules, Prog. Biophys. Mol. Bio. 74, 115 (2000)CrossRef T. Strick, J.-F. Allemand, V. Croquette, D. Bensimon: Twisting and stretching single DNA molecules, Prog. Biophys. Mol. Bio. 74, 115 (2000)CrossRef
39.50.
go back to reference D. Frenkel, B. Smit: Understanding Molecular Simulation (Academic, San Diego 1996) D. Frenkel, B. Smit: Understanding Molecular Simulation (Academic, San Diego 1996)
39.51.
go back to reference H. Lu, B. Isralewitz, A. Krammer, V. Vogel, K. Schulten: Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation, Biophys. J. 75, 662 (1998)CrossRef H. Lu, B. Isralewitz, A. Krammer, V. Vogel, K. Schulten: Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation, Biophys. J. 75, 662 (1998)CrossRef
39.52.
go back to reference M. Carrion-Vazquez, A. F. Oberhauser, T. E. Fisher, P. E. Marszalek, H. Li, J. M. Fernandez: Mechanical design of proteins studies by single-molecule force spectroscopy and protein engineering, Prog. Biophys. Mol. Bio. 74, 63 (2000)CrossRef M. Carrion-Vazquez, A. F. Oberhauser, T. E. Fisher, P. E. Marszalek, H. Li, J. M. Fernandez: Mechanical design of proteins studies by single-molecule force spectroscopy and protein engineering, Prog. Biophys. Mol. Bio. 74, 63 (2000)CrossRef
39.53.
go back to reference A. Y. Grosberg, A. R. Khokhlov: Giant Molecules (Academic, San Diego 1997) A. Y. Grosberg, A. R. Khokhlov: Giant Molecules (Academic, San Diego 1997)
39.54.
go back to reference M. Ptashne, A. Gann: Genes and Signals (Cold Spring Harbor Laboratory Press, Cold Spring Harbor 2002) M. Ptashne, A. Gann: Genes and Signals (Cold Spring Harbor Laboratory Press, Cold Spring Harbor 2002)
39.55.
go back to reference A. Balaeff, L. Mahadevan, K. Schulten: Elastic rod model of a DNA loop in the Lac Operon, Phys. Rev. Lett. 83, 4900 (1999)CrossRef A. Balaeff, L. Mahadevan, K. Schulten: Elastic rod model of a DNA loop in the Lac Operon, Phys. Rev. Lett. 83, 4900 (1999)CrossRef
39.56.
go back to reference U. Seifert: Configurations of fluid membranes and vesicles, Adv. Phys. 46, 13 (1997)CrossRef U. Seifert: Configurations of fluid membranes and vesicles, Adv. Phys. 46, 13 (1997)CrossRef
39.57.
go back to reference D. Boal: Mechanics of the Cell (Cambridge Univ. Press, Cambridge 2002) D. Boal: Mechanics of the Cell (Cambridge Univ. Press, Cambridge 2002)
39.58.
go back to reference D. Leckband, J. Israelachvili: Intermolecular forces in biology, Q. Rev. Biophys. 34, 105 (2001)CrossRef D. Leckband, J. Israelachvili: Intermolecular forces in biology, Q. Rev. Biophys. 34, 105 (2001)CrossRef
39.59.
go back to reference S. C. Riemer, V. A. Bloomfield: Packaging of DNA in bacteriophage heads: Some considerations on energetics, Biopolymers 17, 785 (1978)CrossRef S. C. Riemer, V. A. Bloomfield: Packaging of DNA in bacteriophage heads: Some considerations on energetics, Biopolymers 17, 785 (1978)CrossRef
39.60.
go back to reference T. Odijk: Hexagonally packed DNA within bacteriophage T7 stabilized by curvature stress, Biophys. J. 75, 1223 (1998)CrossRef T. Odijk: Hexagonally packed DNA within bacteriophage T7 stabilized by curvature stress, Biophys. J. 75, 1223 (1998)CrossRef
39.61.
go back to reference J. Kindt, S. Tzlil, A. Ben-Shaul, W. Gelbart: DNA packaging and ejection forces in bacteriophage, Proc. Natl. Acad. Sci. USA 98, 13671 (2001)CrossRef J. Kindt, S. Tzlil, A. Ben-Shaul, W. Gelbart: DNA packaging and ejection forces in bacteriophage, Proc. Natl. Acad. Sci. USA 98, 13671 (2001)CrossRef
39.62.
go back to reference K. E. Richards, R. C. Williams, R. Calendar: Mode of DNA packing within bacteriophage heads, J. Mol. Bio. 78, 255 (1973)CrossRef K. E. Richards, R. C. Williams, R. Calendar: Mode of DNA packing within bacteriophage heads, J. Mol. Bio. 78, 255 (1973)CrossRef
39.63.
go back to reference M. E. Cerritelli, N. Cheng, A. H. Rosenberg, C. E. McPherson, F. P. Booy, A. C. Steven: Encapsidated conformation of bacteriophage T7 DNA, Cell 91, 271 (1997)CrossRef M. E. Cerritelli, N. Cheng, A. H. Rosenberg, C. E. McPherson, F. P. Booy, A. C. Steven: Encapsidated conformation of bacteriophage T7 DNA, Cell 91, 271 (1997)CrossRef
39.64.
go back to reference N. H. Olson, M. Gingery, F. A. Eiserling, T. S. Baker: The structure of isomeric capsids of bacteriophage T4, Virology 279, 385 (2001)CrossRef N. H. Olson, M. Gingery, F. A. Eiserling, T. S. Baker: The structure of isomeric capsids of bacteriophage T4, Virology 279, 385 (2001)CrossRef
39.65.
go back to reference D. C. Rau, B. Lee, V. A. Parsegian: Measurement of the repulsive force between polyelectrolyte molecules in ionic solution: Hydration forces between parallel DNA double helices, Proc. Natl. Acad. Sci. USA 81, 2621 (1984)CrossRef D. C. Rau, B. Lee, V. A. Parsegian: Measurement of the repulsive force between polyelectrolyte molecules in ionic solution: Hydration forces between parallel DNA double helices, Proc. Natl. Acad. Sci. USA 81, 2621 (1984)CrossRef
39.66.
go back to reference D. C. Rau, V. A. Parsegian: Direct measurement of the intermolecular forces between counterion-condensed DNA double helices, Biophys. J. 61, 246 (1992)CrossRef D. C. Rau, V. A. Parsegian: Direct measurement of the intermolecular forces between counterion-condensed DNA double helices, Biophys. J. 61, 246 (1992)CrossRef
39.67.
go back to reference V. A. Parsegian, R. P. Rand, N. L. Fuller, D. C. Rau: Osmotic stress for the direct measurement of intermolecular forces, Meth. Enzymol. 127, 400 (1986)CrossRef V. A. Parsegian, R. P. Rand, N. L. Fuller, D. C. Rau: Osmotic stress for the direct measurement of intermolecular forces, Meth. Enzymol. 127, 400 (1986)CrossRef
39.68.
go back to reference R. Phillips: Crystals, Defects and Microstructures (Cambridge Univ. Press, Cambridge 2001)CrossRef R. Phillips: Crystals, Defects and Microstructures (Cambridge Univ. Press, Cambridge 2001)CrossRef
39.69.
go back to reference V. S. Reddy, H. A. Giesing, R. T. Morton, A. Kumar, C. B. Post, C. L. Brooks, J. E. Johnson: Energetics of quasiequivalence: Computational analysis of protein-protein interactions in icosahedral viruses, Biophys. J. 74 (1998) 546The parameters can be found at http://www.scripps.edu/pub/olson-web/gmm/autodock/ad305/Using_AutoDock_305.a.html V. S. Reddy, H. A. Giesing, R. T. Morton, A. Kumar, C. B. Post, C. L. Brooks, J. E. Johnson: Energetics of quasiequivalence: Computational analysis of protein-protein interactions in icosahedral viruses, Biophys. J. 74 (1998) 546The parameters can be found at http://​www.​scripps.​edu/​pub/​olson-web/​gmm/​autodock/​ad305/​Using_​AutoDock_​305.​a.​html
39.70.
go back to reference V. S. Reddy, P. Natarajan, B. Okerberg, K. Li, K. V. Damodaran, R. T. Morton, C. L. Brooks, J. E. Johnson: Virus Particle Explorer (VIPER), a website for virus capsid structures and their computational analyses, J. Virol. 75 (2001) 11943The website can be found at The Viper website can be found at http://mmtsb.scripps.edu/viper V. S. Reddy, P. Natarajan, B. Okerberg, K. Li, K. V. Damodaran, R. T. Morton, C. L. Brooks, J. E. Johnson: Virus Particle Explorer (VIPER), a website for virus capsid structures and their computational analyses, J. Virol. 75 (2001) 11943The website can be found at The Viper website can be found at http://​mmtsb.​scripps.​edu/​viper
Metadata
Title
Mechanics of Biological Nanotechnology
Authors
Rob Phillips, Prof.
Prashant Purohit, Dr.
Jané Kondev, Prof.
Copyright Year
2007
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-540-29857-1_39

Premium Partners