Skip to main content
Top
Published in: Mechanics of Composite Materials 6/2018

11-01-2018

Mechanics of Unidirectional Fiber-Reinforced Composites: Buckling Modes and Failure Under Compression Along Fibers

Authors: V. N. Paimushin, S. A. Kholmogorov, R. K. Gazizullin

Published in: Mechanics of Composite Materials | Issue 6/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One-dimensional linearized problems on the possible buckling modes of an internal or peripheral layer of unidirectional multilayer composites with rectilinear fibers under compression in the fiber direction are considered. The investigations are carried out using the known Kirchhoff–Love and Timoshenko models for the layers. The binder, modeled as an elastic foundation, is described by the equations of elasticity theory, which are simplified in accordance to the model of a transversely soft layer and are integrated along the transverse coordinate considering the kinematic coupling relations for a layer and foundation layers. Exact analytical solutions of the problems formulated are found, which are used to calculate a composite made of an HSE 180 REM prepreg based on a unidirectional carbon fiber tape. The possible buckling modes of its internal and peripheral layers are identified. Calculation results are compared with experimental data obtained earlier. It is concluded that, for the composite studied, the flexural buckling of layers in the uniform axial compression of specimens along fibers is impossible — the failure mechanism is delamination with buckling of a fiber bundle according to the pure shear mode. It is realized (due to the low average transverse shear modulus) at the value of the ultimate compression stress equal to the average shear modulus. It is shown that such a shear buckling mode can be identified only on the basis of equations constructed using the Timoshenko shear model to describe the deformation process of layers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Jumahat, C. Soutis, F. R. Jones, and A. Hodzic, “Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading,” Compos. Struct., 92, 295-305 (2010).CrossRef A. Jumahat, C. Soutis, F. R. Jones, and A. Hodzic, “Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading,” Compos. Struct., 92, 295-305 (2010).CrossRef
2.
go back to reference D. F. Adams and E. M. Odom, “Effect of specimen tabs on the compressive strength of a unidirectional composite material,” J. Compos. Mater., 25, 774-786 (1991).CrossRef D. F. Adams and E. M. Odom, “Effect of specimen tabs on the compressive strength of a unidirectional composite material,” J. Compos. Mater., 25, 774-786 (1991).CrossRef
3.
go back to reference D. F. Adams and E. Q. Lewis, “Effect of specimen gage length and loading method on the axial compressive strength of a unidirectional material,” Exp. Mech., 31, Iss. 1, 14-20 (1991). D. F. Adams and E. Q. Lewis, “Effect of specimen gage length and loading method on the axial compressive strength of a unidirectional material,” Exp. Mech., 31, Iss. 1, 14-20 (1991).
4.
go back to reference M. Xie and D. F. Adams, “Effect of loading method on compression testing of composite materials,” J. Compos. Mater., 29, No. 12, 1581-1600 (1995).CrossRef M. Xie and D. F. Adams, “Effect of loading method on compression testing of composite materials,” J. Compos. Mater., 29, No. 12, 1581-1600 (1995).CrossRef
5.
go back to reference D. F. Adams and M. Xie, “A plasticity model for unidirectional composite materials and its applications in modeling composite testing,” Compos. Sci. Technol., 54, Iss. 1, 11-21 (1995). D. F. Adams and M. Xie, “A plasticity model for unidirectional composite materials and its applications in modeling composite testing,” Compos. Sci. Technol., 54, Iss. 1, 11-21 (1995).
6.
go back to reference D. F. Adams and G. A. Finley, “Experimental study of thickness-tapered unidirectional composite compression specimens,” Exp. Mech., 36, No. 4, 345-352 (1996).CrossRef D. F. Adams and G. A. Finley, “Experimental study of thickness-tapered unidirectional composite compression specimens,” Exp. Mech., 36, No. 4, 345-352 (1996).CrossRef
7.
go back to reference C. R. Schultheisz and A. M. Waas Compressive failure of composites, Part I: Testing and micromechanical theories //Progr. in Aerospace Sci., 32, Iss. 1, 1-42 (1996). C. R. Schultheisz and A. M. Waas Compressive failure of composites, Part I: Testing and micromechanical theories //Progr. in Aerospace Sci., 32, Iss. 1, 1-42 (1996).
8.
go back to reference T. A. Bogetti, G. W. Gillespie, and Jr and R. Byron Pipes, “Evaluation of the IITRI compression test method for stiffness and strength determination,” Compos. Sci. Technol., 32, 57-76 (1988). T. A. Bogetti, G. W. Gillespie, and Jr and R. Byron Pipes, “Evaluation of the IITRI compression test method for stiffness and strength determination,” Compos. Sci. Technol., 32, 57-76 (1988).
9.
go back to reference B. Budiansky and N. A. Fleck, “Compressive failure of fibre composites,” J. Mech. and Phys. Solids, 41, Iss. 1, 183-211 (1993). B. Budiansky and N. A. Fleck, “Compressive failure of fibre composites,” J. Mech. and Phys. Solids, 41, Iss. 1, 183-211 (1993).
10.
go back to reference F. J. McGarry and J. E. Moalli, “Mechanical behavior of rigid-rod polymer fibers: 2. Improvement of compressive strength,” Polymer, 32, No. 10, 1816-1820 (1991).CrossRef F. J. McGarry and J. E. Moalli, “Mechanical behavior of rigid-rod polymer fibers: 2. Improvement of compressive strength,” Polymer, 32, No. 10, 1816-1820 (1991).CrossRef
11.
go back to reference H. M. Jensen, “Analysis of compressive failure of layered materials by kink band broadening,” Int. J. of Solids and Struct., 36, 3427-3441 (1999).CrossRef H. M. Jensen, “Analysis of compressive failure of layered materials by kink band broadening,” Int. J. of Solids and Struct., 36, 3427-3441 (1999).CrossRef
12.
go back to reference I. Chung and Y. Weitsman, “On the buckling/kinking compressive failure of fibrous composites,” Int. J. of Solids and Struct., 32, No. 16, 2329-2344 (1995).CrossRef I. Chung and Y. Weitsman, “On the buckling/kinking compressive failure of fibrous composites,” Int. J. of Solids and Struct., 32, No. 16, 2329-2344 (1995).CrossRef
13.
go back to reference J. Lankford, “Compressive failure of fibre-reinforced composites: buckling, kinking, and the role of the interphase,:” J. Mater. Sci., 30, 4343-4348 (1995).CrossRef J. Lankford, “Compressive failure of fibre-reinforced composites: buckling, kinking, and the role of the interphase,:” J. Mater. Sci., 30, 4343-4348 (1995).CrossRef
14.
go back to reference J. Hapke, F. Gehrig, N. Huber, K. Schulte, and E. T. Lilleodden, “Compressive failure of UD-CFRP containing void defects: In situ SEM microanalysis,” Compos. Sci. Technol., 71, 1242-1249 (2011).CrossRef J. Hapke, F. Gehrig, N. Huber, K. Schulte, and E. T. Lilleodden, “Compressive failure of UD-CFRP containing void defects: In situ SEM microanalysis,” Compos. Sci. Technol., 71, 1242-1249 (2011).CrossRef
15.
go back to reference K. Niu, and R. Talreja, “Modeling of compressive failure in fiber reinforced composites,” Int. J. Solids and Struct., 37, No. 17, 2405-2428 (2000).CrossRef K. Niu, and R. Talreja, “Modeling of compressive failure in fiber reinforced composites,” Int. J. Solids and Struct., 37, No. 17, 2405-2428 (2000).CrossRef
16.
go back to reference L. C. Wu, C. Y. Lo, T. Nakamura, and A. Kushner, “Identifying failure mechanisms of composite structures under compressive load,” Int. J. Solids and Struct., 35, No. 12, 1137-1161 (1998).CrossRef L. C. Wu, C. Y. Lo, T. Nakamura, and A. Kushner, “Identifying failure mechanisms of composite structures under compressive load,” Int. J. Solids and Struct., 35, No. 12, 1137-1161 (1998).CrossRef
17.
go back to reference M. Miwa, E. Tsushima, and J. Takayasu, “Axial compressive strength of carbon fiber with tensile strength distribution,” J. Appl. Polymer Sci., 43, 1467-1474 (1991).CrossRef M. Miwa, E. Tsushima, and J. Takayasu, “Axial compressive strength of carbon fiber with tensile strength distribution,” J. Appl. Polymer Sci., 43, 1467-1474 (1991).CrossRef
18.
go back to reference N. K. Naik and R. S. Kumar, “Compressive strength of unidirectional composites: Evaluation and comparison of prediction models,” Compos. Struct., 46, 299-308 (1999).CrossRef N. K. Naik and R. S. Kumar, “Compressive strength of unidirectional composites: Evaluation and comparison of prediction models,” Compos. Struct., 46, 299-308 (1999).CrossRef
19.
go back to reference D. F. Adams and E. M. Odom, “Failure modes of unidirectional carbon/epoxy composite compression specimens,” Composite, 21, No. 4, 289-296 (1990). D. F. Adams and E. M. Odom, “Failure modes of unidirectional carbon/epoxy composite compression specimens,” Composite, 21, No. 4, 289-296 (1990).
20.
go back to reference R. A. Schapery, “Prediction of compressive strength and kink bands in composites using a work potential,” Int. J. Solids and Struct., 32, No. 6/7, 739-765 (1995).CrossRef R. A. Schapery, “Prediction of compressive strength and kink bands in composites using a work potential,” Int. J. Solids and Struct., 32, No. 6/7, 739-765 (1995).CrossRef
21.
go back to reference R. M. Christensen, “On compressive failure of fibrous composites,” Compos. Eng., 3, No. 12,.1111-1118 (1993). R. M. Christensen, “On compressive failure of fibrous composites,” Compos. Eng., 3, No. 12,.1111-1118 (1993).
22.
go back to reference S. Kyriakides, R. Arseculeratne, E. J. Perry, and K. M. Liechti, “On the compressive failure of fiber reinforced composites,” Int. J. of Solids and Struct., 32, No. 6/7, 689-738 (1995).CrossRef S. Kyriakides, R. Arseculeratne, E. J. Perry, and K. M. Liechti, “On the compressive failure of fiber reinforced composites,” Int. J. of Solids and Struct., 32, No. 6/7, 689-738 (1995).CrossRef
23.
go back to reference T. V. Parry and A. S. Wronski, “Kinking and compressive failure in uniaxially aligned carbon fibre composite tested under superposed hydrostatic pressure,” J. Mater. Sci., 17, 893-900 (1982).CrossRef T. V. Parry and A. S. Wronski, “Kinking and compressive failure in uniaxially aligned carbon fibre composite tested under superposed hydrostatic pressure,” J. Mater. Sci., 17, 893-900 (1982).CrossRef
24.
go back to reference T. V. Parry and A. S. Wronski, “Kinking and tensile, compressive and interlaminar shear failure in carbon-fibre-reinforced plastic beams tested in flexure,” J. Mater. Sci., 16, 439-450 (1981).CrossRef T. V. Parry and A. S. Wronski, “Kinking and tensile, compressive and interlaminar shear failure in carbon-fibre-reinforced plastic beams tested in flexure,” J. Mater. Sci., 16, 439-450 (1981).CrossRef
25.
go back to reference T. Ohsawa, M. Miwa, and M. Kawade, “Axial compressive strength of carbon fiber,” J. Appl. Polymer Sci., 39, 1733-1743 (1990).CrossRef T. Ohsawa, M. Miwa, and M. Kawade, “Axial compressive strength of carbon fiber,” J. Appl. Polymer Sci., 39, 1733-1743 (1990).CrossRef
26.
go back to reference V. V. Kozey, “Splitting-related kinking failure mode in unidirectional composites under compressive loading,” J. Mater. Sci. Lett., 12, 43-47 (1993). V. V. Kozey, “Splitting-related kinking failure mode in unidirectional composites under compressive loading,” J. Mater. Sci. Lett., 12, 43-47 (1993).
27.
go back to reference J. S. Welsh and D. F. Adams, “Testing of angle-ply laminates to obtain unidirectional composite compression strengths,” Composites: Part A, 28A, 387-396 (1997).CrossRef J. S. Welsh and D. F. Adams, “Testing of angle-ply laminates to obtain unidirectional composite compression strengths,” Composites: Part A, 28A, 387-396 (1997).CrossRef
28.
go back to reference W. S. Slaughter, J. Fan, and N. A. Fleck, “Dynamic compressive failure of fiber composites,” J. Mech. Phys. Solids, 44, No. 11, 1867-1890 (1996).CrossRef W. S. Slaughter, J. Fan, and N. A. Fleck, “Dynamic compressive failure of fiber composites,” J. Mech. Phys. Solids, 44, No. 11, 1867-1890 (1996).CrossRef
29.
go back to reference P. Davidson and A. M. Waas, “Mechanics of kinking in fiber-reinforced composites under compressive loading,” Mathem. Mech. Solids, 21, No. 6, 667-684 (2016).CrossRef P. Davidson and A. M. Waas, “Mechanics of kinking in fiber-reinforced composites under compressive loading,” Mathem. Mech. Solids, 21, No. 6, 667-684 (2016).CrossRef
30.
go back to reference P. Prabhakar and A. M. Waas, “Interaction between kinking and splitting it the compressive failure of unidirectional fiber reinforced laminated composites,” Compos. Struct., 98, 85-92 (2013).CrossRef P. Prabhakar and A. M. Waas, “Interaction between kinking and splitting it the compressive failure of unidirectional fiber reinforced laminated composites,” Compos. Struct., 98, 85-92 (2013).CrossRef
31.
go back to reference S. Pimenta, R. Gutkin, S. T. Pinho, and P. Robinson, “A micromechanical model for kink-band formation: Part I. Experimental study and numerical modeling,” Compos. Sci. Technol., 69, No. 7-8, 948-955 (2009).CrossRef S. Pimenta, R. Gutkin, S. T. Pinho, and P. Robinson, “A micromechanical model for kink-band formation: Part I. Experimental study and numerical modeling,” Compos. Sci. Technol., 69, No. 7-8, 948-955 (2009).CrossRef
32.
go back to reference S. H. Lee, C. S. Yerramalli, and A. M. Waas, “Compressive splitting response of glass reinforced unidirectional composites,” Compos. Sci. Technol., 60, No. 16, 2957-2966 (2000).CrossRef S. H. Lee, C. S. Yerramalli, and A. M. Waas, “Compressive splitting response of glass reinforced unidirectional composites,” Compos. Sci. Technol., 60, No. 16, 2957-2966 (2000).CrossRef
33.
go back to reference O. Allix, N. Feld, E. Baranger, J.-M. Guimard., and C. Ha-Minh, “The compressive behavior of composites including fiber kinking: Modelling across the scales,” Meccanica, 49, Iss. 11, 2571-2586 (2014). O. Allix, N. Feld, E. Baranger, J.-M. Guimard., and C. Ha-Minh, “The compressive behavior of composites including fiber kinking: Modelling across the scales,” Meccanica, 49, Iss. 11, 2571-2586 (2014).
34.
go back to reference A. N. Polilov, Etudes on Mechanics of Composites [in Russian], M., Fizmatgiz, 2015. A. N. Polilov, Etudes on Mechanics of Composites [in Russian], M., Fizmatgiz, 2015.
35.
go back to reference D3410/D3410M-03, Standart Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading, vol. 15.03, Space Simulation; Aerospace and Aircraft; Composite Materials. ASTM Int., West Conshohocken, PA., 2005. D3410/D3410M-03, Standart Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading, vol. 15.03, Space Simulation; Aerospace and Aircraft; Composite Materials. ASTM Int., West Conshohocken, PA., 2005.
36.
go back to reference D6641/D6641M-16, Standart Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture, ASTM Int., West Conshohocken, PA, 2016. D6641/D6641M-16, Standart Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture, ASTM Int., West Conshohocken, PA, 2016.
37.
go back to reference V. N. Paimushin, “Refined models for an analysis research of internal and external buckling modes of a monolayer in a layered composite,” Mech. Compos. Mater., 53, No. 11, 881-906 (2017). V. N. Paimushin, “Refined models for an analysis research of internal and external buckling modes of a monolayer in a layered composite,” Mech. Compos. Mater., 53, No. 11, 881-906 (2017).
38.
go back to reference V. N. Paimushin and V. I. Shalashilin, “The relations of deformation theory in the quadratic approximation and the problems of constructing improved versions of the geometrically non-linear theory of laminated structures,” J. Appl. Mathem. Mech., 69, No. 5, 773-791 (2005).CrossRef V. N. Paimushin and V. I. Shalashilin, “The relations of deformation theory in the quadratic approximation and the problems of constructing improved versions of the geometrically non-linear theory of laminated structures,” J. Appl. Mathem. Mech., 69, No. 5, 773-791 (2005).CrossRef
39.
go back to reference V. N. Paimushin, “Problems of geometric non-linearity and stability in the mechanics of thin shells and rectilinear columns,” J. Appl. Mathem. Mech., 71, No. 5, 772-805 (2007).CrossRef V. N. Paimushin, “Problems of geometric non-linearity and stability in the mechanics of thin shells and rectilinear columns,” J. Appl. Mathem. Mech., 71, No. 5, 772-805 (2007).CrossRef
40.
go back to reference V. N. Paimushin and N. V. Polyakova, “The consistent equations of the theory of plane curvilinear rods for finite displacements and linearized problems of stability,” J. Appl. Mathem. Mech., 73, No. 2, 220-236 (2009).CrossRef V. N. Paimushin and N. V. Polyakova, “The consistent equations of the theory of plane curvilinear rods for finite displacements and linearized problems of stability,” J. Appl. Mathem. Mech., 73, No. 2, 220-236 (2009).CrossRef
41.
go back to reference R. A. Kayumov, S. A. Lukankin, V. N. Paimushin, and S. A. Kholmogorov, “Identification of the mechanical characteristics of fiber-reinforced composites,” Uch. Zap. Kazan Universita, Ser. Fiz.mat. Nauki, 157, No. 4, 112-132 (2015). R. A. Kayumov, S. A. Lukankin, V. N. Paimushin, and S. A. Kholmogorov, “Identification of the mechanical characteristics of fiber-reinforced composites,” Uch. Zap. Kazan Universita, Ser. Fiz.mat. Nauki, 157, No. 4, 112-132 (2015).
42.
go back to reference N. A. Alfutov, P. A. Zinovyev, and B. G. Popov, “Calculation of Multilayered Plates and Shells of Composite Materials [in Russian], M., Mashinostroenie, 1984. N. A. Alfutov, P. A. Zinovyev, and B. G. Popov, “Calculation of Multilayered Plates and Shells of Composite Materials [in Russian], M., Mashinostroenie, 1984.
Metadata
Title
Mechanics of Unidirectional Fiber-Reinforced Composites: Buckling Modes and Failure Under Compression Along Fibers
Authors
V. N. Paimushin
S. A. Kholmogorov
R. K. Gazizullin
Publication date
11-01-2018
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 6/2018
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-018-9699-7

Other articles of this Issue 6/2018

Mechanics of Composite Materials 6/2018 Go to the issue

Premium Partners