Zusammenfassung
Die mechanischen Eigenschaften von Werktstoffen legen fest, für welche Anwendungen sie eingesetzt werden können. Ein Konstrukteur braucht Werkstoffkennwerte, auf deren Grundlage er Bauteile auslegen kann. Ein Werkstoffhersteller muss wissen, was zu tun ist, um die mechanischen Eigenschaften von Werkstoffen zu verbessern. Vor diesem Hintergrund verschaffen wir uns zunächst einen Überblick über die verschiedenen mechanischen Eigenschaften eines Werkstoffs. Wir behandeln dann die Elastizität von Werkstoffen und lernen den Elastizitätsmodul E und den Schubmodul G kennen. Wir behandeln dann die Kristallplastizität, die wir auf der Grundlage von Versetzungen diskutieren, die sich oberhalb einer kritischen Spannung, der Fließspannung \(R_\mathrm{p}\), ausbreiten und vermehren. Wir besprechen dann das Kriechen und die Spannungsrelaxation, Phänomene, die mit plastischer Verformung bei hoher Temperatur verbunden sind. Dann beschäftigen wir uns mit Rissen und führen die Spannungsintensität K ein. Dabei diskutieren wir Rissausbreitung sowohl unter statischen als auch unter dynamischen Belastungsbedingungen. Es folgen Betrachtungen zu inneren Spannungen in Werkstoffen, zur Gummielastizität und zur Viskosität von Flüssigkeiten und Gläsern. Dann besprechen wir mechanische und mikrostrukturelle Aspekte der Dämpfung und behandeln mehrachsige Belastungszustände und Werkstoffanisotropie. Abschließend betrachten wir mit der Härtemessung, dem Kerbschlagversuch und dem Näpfchenziehversuch technische Prüfverfahren, die für die vergleichende Beurteilung von Werkstoffen, für die Werkstoffauswahl und für die Beurteilung von Fertigungsverfahren wichtig sind.