Skip to main content
Top

2019 | OriginalPaper | Chapter

3. Mechanism and Key Parameters for Catalyst Evaluation

Authors : Aneeya Kumar Samantara, Satyajit Ratha

Published in: Metal Oxides/Chalcogenides and Composites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Both the hydrogen evolution and oxygen evolution reaction follows a multi electron catalytic path and the mechanism strongly depends on the types of electrolyte used for the electrolysis. Also there are various key parameters available to evaluate the performances of a particular electrocatalyst. In this chapter, detailed discussion on the mechanism of both the HER and OER in acidic and alkaline electrolyte is presented. Moreover, emphasis has been given on the calculation of different key parameters like overpotential, Tafel slope, electrochemical active surface area, Faradic efficiency, Turnover frequency, long cycle life etc. used for efficiency evaluation of a catalyst.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Anantharaj, S., Ede, S. R., Karthick, K., Sam Sankar, S., Sangeetha, K., Karthik, P. E., & Kundu, S. (2018). Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment. Energy & Environmental Science, 11, 744–771.CrossRef Anantharaj, S., Ede, S. R., Karthick, K., Sam Sankar, S., Sangeetha, K., Karthik, P. E., & Kundu, S. (2018). Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment. Energy & Environmental Science, 11, 744–771.CrossRef
go back to reference Anantharaj, S., Ede, S. R., Sakthikumar, K., Karthick, K., Mishra, S., & Kundu, S. (2016). Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catalysis, 6, 8069–8097.CrossRef Anantharaj, S., Ede, S. R., Sakthikumar, K., Karthick, K., Mishra, S., & Kundu, S. (2016). Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catalysis, 6, 8069–8097.CrossRef
go back to reference Benck, J. D., Hellstern, T. R., Kibsgaard, J., Chakthranont, P., & Jaramillo, T. F. (2014). Catalyzing the Hydrogen Evolution Reaction (HER) with molybdenum sulfide nanomaterials. ACS Catalysis, 4, 3957–3971.CrossRef Benck, J. D., Hellstern, T. R., Kibsgaard, J., Chakthranont, P., & Jaramillo, T. F. (2014). Catalyzing the Hydrogen Evolution Reaction (HER) with molybdenum sulfide nanomaterials. ACS Catalysis, 4, 3957–3971.CrossRef
go back to reference Betley, T. A., Wu, Q., Van Voorhis, T., & Nocera, D. G. (2008). Electronic design criteria for O−O bond formation via metal−Oxo complexes. Inorganic Chemistry, 47, 1849–1861.CrossRef Betley, T. A., Wu, Q., Van Voorhis, T., & Nocera, D. G. (2008). Electronic design criteria for O−O bond formation via metal−Oxo complexes. Inorganic Chemistry, 47, 1849–1861.CrossRef
go back to reference Bockris, J. O., & Otagawa, T. (1984). The Electrocatalysis of oxygen evolution on Perovskites. Journal of the Electrochemical Society, 131, 290–302.CrossRef Bockris, J. O., & Otagawa, T. (1984). The Electrocatalysis of oxygen evolution on Perovskites. Journal of the Electrochemical Society, 131, 290–302.CrossRef
go back to reference Brug, G. J., van den Eeden, A. L. G., Sluyters-Rehbach, M., & Sluyters, J. H. (1984). The analysis of electrode impedances complicated by the presence of a constant phase element. Journal of Electroanalytical Chemistry, 176, 275–295.CrossRef Brug, G. J., van den Eeden, A. L. G., Sluyters-Rehbach, M., & Sluyters, J. H. (1984). The analysis of electrode impedances complicated by the presence of a constant phase element. Journal of Electroanalytical Chemistry, 176, 275–295.CrossRef
go back to reference Chen, S., Duan, J., Jaroniec, M., & Qiao, S. Z. (2013). Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angewandte Chemie International Edition, 52, 13567–13570.CrossRef Chen, S., Duan, J., Jaroniec, M., & Qiao, S. Z. (2013). Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angewandte Chemie International Edition, 52, 13567–13570.CrossRef
go back to reference Cooper, K. R., & Smith, M. (2006). Electrical test methods for on-line fuel cell ohmic resistance measurement. Journal of Power Sources, 160, 1088–1095.CrossRef Cooper, K. R., & Smith, M. (2006). Electrical test methods for on-line fuel cell ohmic resistance measurement. Journal of Power Sources, 160, 1088–1095.CrossRef
go back to reference Costentin, C., Drouet, S., Robert, M., & Savéant, J.-M. (2012). Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. Cyclic voltammetry and preparative-scale electrolysis. Journal of the American Chemical Society, 134, 11235–11242.CrossRef Costentin, C., Drouet, S., Robert, M., & Savéant, J.-M. (2012). Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. Cyclic voltammetry and preparative-scale electrolysis. Journal of the American Chemical Society, 134, 11235–11242.CrossRef
go back to reference Das, J. K., Samantara, A. K., Nayak, A. K., Pradhan, D., & Behera, J. N. (2018). VS2: An efficient catalyst for an electrochemical hydrogen evolution reaction in an acidic medium. Dalton Transactions, 47, 13792–13799.CrossRef Das, J. K., Samantara, A. K., Nayak, A. K., Pradhan, D., & Behera, J. N. (2018). VS2: An efficient catalyst for an electrochemical hydrogen evolution reaction in an acidic medium. Dalton Transactions, 47, 13792–13799.CrossRef
go back to reference De Faria, L. A., Boodts, J. F. C., & Trasatti, S. (1996). Electrocatalytic properties of ternary oxide mixtures of composition Ru0.3Ti(0.7−x)CexO2: Oxygen evolution from acidic solution. Journal of Applied Electrochemistry, 26, 1195–1199.CrossRef De Faria, L. A., Boodts, J. F. C., & Trasatti, S. (1996). Electrocatalytic properties of ternary oxide mixtures of composition Ru0.3Ti(0.7−x)CexO2: Oxygen evolution from acidic solution. Journal of Applied Electrochemistry, 26, 1195–1199.CrossRef
go back to reference Dutta, A., Mutyala, S., Samantara, A. K., Bera, S., Jena, B. K., & Pradhan, N. (2018). Synergistic effect of inactive iron oxide core on active nickel phosphide shell for significant enhancement in oxygen evolution reaction activity. ACS Energy Letters, 3, 141–148.CrossRef Dutta, A., Mutyala, S., Samantara, A. K., Bera, S., Jena, B. K., & Pradhan, N. (2018). Synergistic effect of inactive iron oxide core on active nickel phosphide shell for significant enhancement in oxygen evolution reaction activity. ACS Energy Letters, 3, 141–148.CrossRef
go back to reference Edmonds, T., & McCarroll, J. J. (1978). Impact of surface physics on catalysis. In Gates, B, Knoezinger H (eds.), Topics in surface chemistry (1st ed.). Springer US, Boston, MA, pp 261–290. Edmonds, T., & McCarroll, J. J. (1978). Impact of surface physics on catalysis. In Gates, B, Knoezinger H (eds.), Topics in surface chemistry (1st ed.). Springer US, Boston, MA, pp 261–290.
go back to reference Fletcher, S. (2012). Physical electrochemistry. Fundamentals, techniques, and applications by Eliezer Gileadi. Journal of Solid State Electrochemistry, 16, 1301–1301.CrossRef Fletcher, S. (2012). Physical electrochemistry. Fundamentals, techniques, and applications by Eliezer Gileadi. Journal of Solid State Electrochemistry, 16, 1301–1301.CrossRef
go back to reference Gao, Q., Zhang, W., Shi, Z., Yang, L., & Tang, Y. (2019). Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution. Advanced Materials, 31, 1802880.CrossRef Gao, Q., Zhang, W., Shi, Z., Yang, L., & Tang, Y. (2019). Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution. Advanced Materials, 31, 1802880.CrossRef
go back to reference Gerken, J. B., McAlpin, J. G., Chen, J. Y. C., Rigsby, M. L., Casey, W. H., Britt, R. D., & Stahl, S. S. (2011). Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: The thermodynamic basis for catalyst structure, stability, and activity. Journal of the American Chemical Society, 133, 14431–14442.CrossRef Gerken, J. B., McAlpin, J. G., Chen, J. Y. C., Rigsby, M. L., Casey, W. H., Britt, R. D., & Stahl, S. S. (2011). Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: The thermodynamic basis for catalyst structure, stability, and activity. Journal of the American Chemical Society, 133, 14431–14442.CrossRef
go back to reference Gong, M., Li, Y., Wang, H., Liang, Y., Wu, J. Z., Zhou, J., Wang, J., Regier, T., Wei, F., & Dai, H. (2013). An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. Journal of the American Chemical Society, 135, 8452–8455.CrossRef Gong, M., Li, Y., Wang, H., Liang, Y., Wu, J. Z., Zhou, J., Wang, J., Regier, T., Wei, F., & Dai, H. (2013). An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. Journal of the American Chemical Society, 135, 8452–8455.CrossRef
go back to reference Goodenough, J. B., Manoharan, R., & Paranthaman, M. (1990). Surface protonation and electrochemical activity of oxides in aqueous solution. Journal of the American Chemical Society, 112, 2076–2082.CrossRef Goodenough, J. B., Manoharan, R., & Paranthaman, M. (1990). Surface protonation and electrochemical activity of oxides in aqueous solution. Journal of the American Chemical Society, 112, 2076–2082.CrossRef
go back to reference Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I., & Nørskov, J. K. (2006). Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Materials, 5, 909–913.CrossRef Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I., & Nørskov, J. K. (2006). Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Materials, 5, 909–913.CrossRef
go back to reference Halck, N. B., Petrykin, V., Krtil, P., & Rossmeisl, J. (2014). Beyond the volcano limitations in electrocatalysis – Oxygen evolution reaction. Physical Chemistry Chemical Physics, 16, 13682–13688.CrossRef Halck, N. B., Petrykin, V., Krtil, P., & Rossmeisl, J. (2014). Beyond the volcano limitations in electrocatalysis – Oxygen evolution reaction. Physical Chemistry Chemical Physics, 16, 13682–13688.CrossRef
go back to reference Hammer, B. (2006). Special sites at Noble and late transition metal catalysts. Topics in Catalysis, 37, 3–16.CrossRef Hammer, B. (2006). Special sites at Noble and late transition metal catalysts. Topics in Catalysis, 37, 3–16.CrossRef
go back to reference Haumann, M., Liebisch, P., Müller, C., Barra, M., Grabolle, M., & Dau, H. (2005a). Photosynthetic O2 formation tracked by time-resolved X-ray experiments. Science (80-. ), 310, 1019 LP–1021.CrossRef Haumann, M., Liebisch, P., Müller, C., Barra, M., Grabolle, M., & Dau, H. (2005a). Photosynthetic O2 formation tracked by time-resolved X-ray experiments. Science (80-. ), 310, 1019 LP–1021.CrossRef
go back to reference Haumann, M., Müller, C., Liebisch, P., Iuzzolino, L., Dittmer, J., Grabolle, M., Neisius, T., Meyer-Klaucke, W., & Dau, H. (2005b). Structural and oxidation state changes of the photosystem II Manganese complex in four transitions of the water oxidation cycle (S0 → S1, S1 → S2, S2 → S3, and S3,4 → S0) characterized by X-ray absorption spectroscopy at 20 K and room temperature. Biochemistry, 44, 1894–1908.CrossRef Haumann, M., Müller, C., Liebisch, P., Iuzzolino, L., Dittmer, J., Grabolle, M., Neisius, T., Meyer-Klaucke, W., & Dau, H. (2005b). Structural and oxidation state changes of the photosystem II Manganese complex in four transitions of the water oxidation cycle (S0 → S1, S1 → S2, S2 → S3, and S3,4 → S0) characterized by X-ray absorption spectroscopy at 20 K and room temperature. Biochemistry, 44, 1894–1908.CrossRef
go back to reference Hong, W. T., Risch, M., Stoerzinger, K. A., Grimaud, A., Suntivich, J., & Shao-Horn, Y. (2015). Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy & Environmental Science, 8, 1404–1427.CrossRef Hong, W. T., Risch, M., Stoerzinger, K. A., Grimaud, A., Suntivich, J., & Shao-Horn, Y. (2015). Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy & Environmental Science, 8, 1404–1427.CrossRef
go back to reference Kong, D., Cha, J. J., Wang, H., Lee, H. R., & Cui, Y. (2013). First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy & Environmental Science, 6, 3553–3558.CrossRef Kong, D., Cha, J. J., Wang, H., Lee, H. R., & Cui, Y. (2013). First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy & Environmental Science, 6, 3553–3558.CrossRef
go back to reference Koper, M. T. M., & van Santen, R. A. (1999). Interaction of H, O and OH with metal surfaces. Journal of Electroanalytical Chemistry, 472, 126–136.CrossRef Koper, M. T. M., & van Santen, R. A. (1999). Interaction of H, O and OH with metal surfaces. Journal of Electroanalytical Chemistry, 472, 126–136.CrossRef
go back to reference Kosmulski, M. (2009). pH-dependent surface charging and points of zero charge. IV. Update and new approach. Journal of Colloid and Interface Science, 337, 439–448.CrossRef Kosmulski, M. (2009). pH-dependent surface charging and points of zero charge. IV. Update and new approach. Journal of Colloid and Interface Science, 337, 439–448.CrossRef
go back to reference Li, Y., Wang, H., Xie, L., Liang, Y., Hong, G., & Dai, H. (2011). MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 133, 7296–7299.CrossRef Li, Y., Wang, H., Xie, L., Liang, Y., Hong, G., & Dai, H. (2011). MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 133, 7296–7299.CrossRef
go back to reference Lu, Z., Xu, W., Zhu, W., Yang, Q., Lei, X., Liu, J., Li, Y., Sun, X., & Duan, X. (2014). Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chemical Communications, 50, 6479–6482.CrossRef Lu, Z., Xu, W., Zhu, W., Yang, Q., Lei, X., Liu, J., Li, Y., Sun, X., & Duan, X. (2014). Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chemical Communications, 50, 6479–6482.CrossRef
go back to reference Ma, T. Y., Dai, S., Jaroniec, M., & Qiao, S. Z. (2014). Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. Journal of the American Chemical Society, 136, 13925–13931.CrossRef Ma, T. Y., Dai, S., Jaroniec, M., & Qiao, S. Z. (2014). Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. Journal of the American Chemical Society, 136, 13925–13931.CrossRef
go back to reference Man, I. C., Su, H.-Y., Calle-Vallejo, F., Hansen, H. A., Martínez, J. I., Inoglu, N. G., Kitchin, J., Jaramillo, T. F., Nørskov, J. K., & Rossmeisl, J. (2011). Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem, 3, 1159–1165.CrossRef Man, I. C., Su, H.-Y., Calle-Vallejo, F., Hansen, H. A., Martínez, J. I., Inoglu, N. G., Kitchin, J., Jaramillo, T. F., Nørskov, J. K., & Rossmeisl, J. (2011). Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem, 3, 1159–1165.CrossRef
go back to reference Mavros, M. G., Tsuchimochi, T., Kowalczyk, T., McIsaac, A., Wang, L.-P., & Van Voorhis, T. (2014). What can density functional theory tell us about artificial catalytic water splitting? Inorganic Chemistry, 53, 6386–6397.CrossRef Mavros, M. G., Tsuchimochi, T., Kowalczyk, T., McIsaac, A., Wang, L.-P., & Van Voorhis, T. (2014). What can density functional theory tell us about artificial catalytic water splitting? Inorganic Chemistry, 53, 6386–6397.CrossRef
go back to reference McCrory, C. C. L., Jung, S., Peters, J. C., & Jaramillo, T. F. (2013). Benchmarking heterogeneous Electrocatalysts for the oxygen evolution reaction. Journal of the American Chemical Society, 135, 16977–16987.CrossRef McCrory, C. C. L., Jung, S., Peters, J. C., & Jaramillo, T. F. (2013). Benchmarking heterogeneous Electrocatalysts for the oxygen evolution reaction. Journal of the American Chemical Society, 135, 16977–16987.CrossRef
go back to reference Merki, D., Fierro, S., Vrubel, H., & Hu, X. (2011). Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chemical Science, 2, 1262–1267.CrossRef Merki, D., Fierro, S., Vrubel, H., & Hu, X. (2011). Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chemical Science, 2, 1262–1267.CrossRef
go back to reference Mun, B. S., Watanabe, M., Rossi, M., Stamenkovic, V., Markovic, N. M., & Ross, P. N. (2005). A study of electronic structures of Pt3M (M=Ti,V,Cr,Fe,Co,Ni) polycrystalline alloys with valence-band photoemission spectroscopy. The Journal of Chemical Physics, 123, 204717.CrossRef Mun, B. S., Watanabe, M., Rossi, M., Stamenkovic, V., Markovic, N. M., & Ross, P. N. (2005). A study of electronic structures of Pt3M (M=Ti,V,Cr,Fe,Co,Ni) polycrystalline alloys with valence-band photoemission spectroscopy. The Journal of Chemical Physics, 123, 204717.CrossRef
go back to reference Noh, J. S., & Schwarz, J. A. (1989). Estimation of the point of zero charge of simple oxides by mass titration. Journal of Colloid and Interface Science, 130, 157–164.CrossRef Noh, J. S., & Schwarz, J. A. (1989). Estimation of the point of zero charge of simple oxides by mass titration. Journal of Colloid and Interface Science, 130, 157–164.CrossRef
go back to reference Nørskov, J. K., Bligaard, T., Logadottir, A., Bahn, S., Hansen, L. B., Bollinger, M., Bengaard, H., Hammer, B., Sljivancanin, Z., Mavrikakis, M., Xu, Y., Dahl, S., & Jacobsen, C. J. H. (2002). Universality in heterogeneous catalysis. Journal of Catalysis, 209, 275–278.CrossRef Nørskov, J. K., Bligaard, T., Logadottir, A., Bahn, S., Hansen, L. B., Bollinger, M., Bengaard, H., Hammer, B., Sljivancanin, Z., Mavrikakis, M., Xu, Y., Dahl, S., & Jacobsen, C. J. H. (2002). Universality in heterogeneous catalysis. Journal of Catalysis, 209, 275–278.CrossRef
go back to reference Nørskov, J. K., Bligaard, T., Logadottir, A., Kitchin, J. R., Chen, J. G., Pandelov, S., & Stimming, U. (2005). Trends in the exchange current for Hydrogen evolution. Journal of the Electrochemical Society, 152, J23–J26.CrossRef Nørskov, J. K., Bligaard, T., Logadottir, A., Kitchin, J. R., Chen, J. G., Pandelov, S., & Stimming, U. (2005). Trends in the exchange current for Hydrogen evolution. Journal of the Electrochemical Society, 152, J23–J26.CrossRef
go back to reference Pechenyuk, S. (1999). The use of the pH at the point od zero charge for characterizing the properties of oxide hydroxides. Russian Chemical Bulletin, 48, 1017–1023.CrossRef Pechenyuk, S. (1999). The use of the pH at the point od zero charge for characterizing the properties of oxide hydroxides. Russian Chemical Bulletin, 48, 1017–1023.CrossRef
go back to reference Rossmeisl, J., Logadottir, A., & Nørskov, J. K. (2005). Electrolysis of water on (oxidized) metal surfaces. Chemical Physics, 319, 178–184.CrossRef Rossmeisl, J., Logadottir, A., & Nørskov, J. K. (2005). Electrolysis of water on (oxidized) metal surfaces. Chemical Physics, 319, 178–184.CrossRef
go back to reference Shi, Y., & Zhang, B. (2016). Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 45, 1529–1541.CrossRef Shi, Y., & Zhang, B. (2016). Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 45, 1529–1541.CrossRef
go back to reference Smith, R. D. L., Prévot, M. S., Fagan, R. D., Trudel, S., & Berlinguette, C. P. (2013). Water oxidation catalysis: Electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing Iron, cobalt, and nickel. Journal of the American Chemical Society, 135, 11580–11586.CrossRef Smith, R. D. L., Prévot, M. S., Fagan, R. D., Trudel, S., & Berlinguette, C. P. (2013). Water oxidation catalysis: Electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing Iron, cobalt, and nickel. Journal of the American Chemical Society, 135, 11580–11586.CrossRef
go back to reference Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B., & Shao-Horn, Y. (2011). A Perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science (80-. ), 334, 1383 LP–1385.CrossRef Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B., & Shao-Horn, Y. (2011). A Perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science (80-. ), 334, 1383 LP–1385.CrossRef
go back to reference Tang, C., Wang, W., Sun, A., Qi, C., Zhang, D., Wu, Z., & Wang, D. (2015). Sulfur-decorated molybdenum carbide catalysts for enhanced Hydrogen evolution. ACS Catalysis, 5, 6956–6963.CrossRef Tang, C., Wang, W., Sun, A., Qi, C., Zhang, D., Wu, Z., & Wang, D. (2015). Sulfur-decorated molybdenum carbide catalysts for enhanced Hydrogen evolution. ACS Catalysis, 5, 6956–6963.CrossRef
go back to reference Ting, L. R. L., Deng, Y., Ma, L., Zhang, Y.-J., Peterson, A. A., & Yeo, B. S. (2016). Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction. ACS Catalysis, 6, 861–867.CrossRef Ting, L. R. L., Deng, Y., Ma, L., Zhang, Y.-J., Peterson, A. A., & Yeo, B. S. (2016). Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction. ACS Catalysis, 6, 861–867.CrossRef
go back to reference Trasatti, S. (1991). Physical electrochemistry of ceramic oxides. Electrochimica Acta, 36, 225–241.CrossRef Trasatti, S. (1991). Physical electrochemistry of ceramic oxides. Electrochimica Acta, 36, 225–241.CrossRef
go back to reference Wohlfahrt-Mehrens, M., & Heitbaum, J. (1987). Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 237, 251–260.CrossRef Wohlfahrt-Mehrens, M., & Heitbaum, J. (1987). Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 237, 251–260.CrossRef
go back to reference Zhang, C., Huang, Y., Yu, Y., Zhang, J., Zhuo, S., & Zhang, B. (2017). Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive {200} facets: A high mass activity and efficient electrocatalyst for the hydrogen evolution reaction. Chemical Science, 8, 2769–2775.CrossRef Zhang, C., Huang, Y., Yu, Y., Zhang, J., Zhuo, S., & Zhang, B. (2017). Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive {200} facets: A high mass activity and efficient electrocatalyst for the hydrogen evolution reaction. Chemical Science, 8, 2769–2775.CrossRef
go back to reference Zhao, G., Rui, K., Dou, S. X., & Sun, W. (2018). Heterostructures for electrochemical Hydrogen evolution reaction: A review. Advanced Functional Materials, 28, 1803291.CrossRef Zhao, G., Rui, K., Dou, S. X., & Sun, W. (2018). Heterostructures for electrochemical Hydrogen evolution reaction: A review. Advanced Functional Materials, 28, 1803291.CrossRef
go back to reference Zou, X., & Zhang, Y. (2015). Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 44, 5148–5180.CrossRef Zou, X., & Zhang, Y. (2015). Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 44, 5148–5180.CrossRef
Metadata
Title
Mechanism and Key Parameters for Catalyst Evaluation
Authors
Aneeya Kumar Samantara
Satyajit Ratha
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-24861-1_3