Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 9/2018

24-08-2018

Mechanism of Decrease in Impact Toughness in a Low-Carbon MnCrMoNiCu Plate Steel with Increasing Austenitizing Temperature

Authors: Mi Luo, Dongsheng Liu, Binggui Cheng, Rui Cao, Jianhong Chen

Published in: Journal of Materials Engineering and Performance | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to reveal how microscopic factors affect the toughness and the occurrence of cleavage fracture of a low-carbon MnCrMoNiCu alloyed steel, a series of thermal treatments was performed on the steel employing a thermomechanical simulator. These involved reheating samples at different temperatures (950-1250 °C), producing different prior austenite sizes, followed by a continuous cooling transformation process. The Charpy V-notch toughness was determined, and the effect of austenite grain size on the ductile-to-brittle transition temperatures of the steel was investigated. The microstructural evolution on the austenite sizes was studied, fracture features were characterized, the critical event for cleavage fracture was identified, and the local cleavage fracture stress σf was calculated. The impact toughness decreased as the austenitizing temperature increased. A quantitative relationship between σf and the size of the initial cleavage fracture facet (microcrack nucleus) af in the lathy martensite + bainite microstructure has been developed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.W. Morris, Jr., Stronger, Tougher Steels, Science, 2008, 320, p 1022–1023CrossRef J.W. Morris, Jr., Stronger, Tougher Steels, Science, 2008, 320, p 1022–1023CrossRef
2.
go back to reference T. Hanamura, F. Yin, and K. Nagai, Ductile–Brittle Transition Temperature of Ultrafine Ferrite Cementite Microstructure in a Low Carbon Steel Controlled by Effective Grain Size, ISIJ Int., 2004, 44, p 610–617CrossRef T. Hanamura, F. Yin, and K. Nagai, Ductile–Brittle Transition Temperature of Ultrafine Ferrite Cementite Microstructure in a Low Carbon Steel Controlled by Effective Grain Size, ISIJ Int., 2004, 44, p 610–617CrossRef
3.
go back to reference J.W. Morris, Jr., On the Ductile–Brittle Transition in Martensitic Steels, ISIJ Int., 2011, 51, p 1569–1575CrossRef J.W. Morris, Jr., On the Ductile–Brittle Transition in Martensitic Steels, ISIJ Int., 2011, 51, p 1569–1575CrossRef
4.
go back to reference S.Y. Shin, K.J. Woo, B. Hwang, S. Kim, and S. Lee, Fracture Toughness Analysis in Transition Temperature Region of Three American Petroleum Institute X70 and X80 Pipe Line Steels, Metall. Mater. Trans. A, 2009, 40A, p 867–876CrossRef S.Y. Shin, K.J. Woo, B. Hwang, S. Kim, and S. Lee, Fracture Toughness Analysis in Transition Temperature Region of Three American Petroleum Institute X70 and X80 Pipe Line Steels, Metall. Mater. Trans. A, 2009, 40A, p 867–876CrossRef
5.
go back to reference J.H. Chen and R. Cao, Micromechanism of Cleavage Fracture of Metals. A Comprehensive Microphysical Model for Cleavage Cracking in Metals, Elsevier, Oxford, 2014, ISBN 9780128007655 J.H. Chen and R. Cao, Micromechanism of Cleavage Fracture of Metals. A Comprehensive Microphysical Model for Cleavage Cracking in Metals, Elsevier, Oxford, 2014, ISBN 9780128007655
6.
go back to reference R. Cao, X.B. Zhang, Z. Wang, Y. Peng, W.S. Du, Z.L. Tian, and J.H. Chen, Investigation of Microstructural Features Determining the Toughness of 980 MPa Bainitic Weld Metal, Metall. Mater. Trans. A, 2014, 45A, p 815–834CrossRef R. Cao, X.B. Zhang, Z. Wang, Y. Peng, W.S. Du, Z.L. Tian, and J.H. Chen, Investigation of Microstructural Features Determining the Toughness of 980 MPa Bainitic Weld Metal, Metall. Mater. Trans. A, 2014, 45A, p 815–834CrossRef
7.
go back to reference A. Di Schino and C. Guarnaschelli, Effect of Microstructure on Cleavage Resistance of High-strength Quenched and Tempered Steels, Mater. Lett., 2009, 63, p 1968–1972CrossRef A. Di Schino and C. Guarnaschelli, Effect of Microstructure on Cleavage Resistance of High-strength Quenched and Tempered Steels, Mater. Lett., 2009, 63, p 1968–1972CrossRef
8.
go back to reference N. Isasti, D. Jorge-Badiola, M.L. Taheri, and P. Uranga, Microstructural Features Controlling Mechanical Properties in Nb-Mo Microalloyed Steels. Part II: Impact Toughness, Metall. Mater. Trans. A, 2014, 45A, p 4972–4982CrossRef N. Isasti, D. Jorge-Badiola, M.L. Taheri, and P. Uranga, Microstructural Features Controlling Mechanical Properties in Nb-Mo Microalloyed Steels. Part II: Impact Toughness, Metall. Mater. Trans. A, 2014, 45A, p 4972–4982CrossRef
9.
go back to reference S. Pallaspuro, A. Kaijalainen, S. Mehtonen, J. Kömi, Z. Zhang, and D. Porter, Effect of Microstructure on the Impact Toughness Transition Temperature of Direct-Quenched Steels, Mater. Sci. Eng. A, 2018, A712, p 671–680CrossRef S. Pallaspuro, A. Kaijalainen, S. Mehtonen, J. Kömi, Z. Zhang, and D. Porter, Effect of Microstructure on the Impact Toughness Transition Temperature of Direct-Quenched Steels, Mater. Sci. Eng. A, 2018, A712, p 671–680CrossRef
10.
go back to reference J.P. Naylor, The Influence of the Lath Morphology on the Yield Stress and Transition Temperature of Martensitic–Bainitic Steels, Metall. Trans. A, 1979, 10A, p 861–873CrossRef J.P. Naylor, The Influence of the Lath Morphology on the Yield Stress and Transition Temperature of Martensitic–Bainitic Steels, Metall. Trans. A, 1979, 10A, p 861–873CrossRef
11.
go back to reference A.F. Gourgues, H.M. Flower, and T.C. Lindley, Electron Backscattering Diffraction Study of Acicular Ferrite, Bainite, and Martensite Steel Microstructures, Mater. Sci. Technol., 2000, 16, p 26–40CrossRef A.F. Gourgues, H.M. Flower, and T.C. Lindley, Electron Backscattering Diffraction Study of Acicular Ferrite, Bainite, and Martensite Steel Microstructures, Mater. Sci. Technol., 2000, 16, p 26–40CrossRef
12.
go back to reference A. Lambert-Perlade, A.F. Gourgues, J. Besson, T. Sturel, and A. Pineau, Mechanisms and Modeling of Cleavage Fracture in Simulated Heat-Affected Zone Microstructures of a High-Strength Low Alloy Steel, Metall. Mater. Trans. A, 2004, 35A, p 1039–1053CrossRef A. Lambert-Perlade, A.F. Gourgues, J. Besson, T. Sturel, and A. Pineau, Mechanisms and Modeling of Cleavage Fracture in Simulated Heat-Affected Zone Microstructures of a High-Strength Low Alloy Steel, Metall. Mater. Trans. A, 2004, 35A, p 1039–1053CrossRef
13.
go back to reference J.W. Morris, Jr., C.S. Lee, and Z. Guo, The Nature and Consequences of Coherent Transformations in Steel, ISIJ Int., 2003, 43, p 410–419CrossRef J.W. Morris, Jr., C.S. Lee, and Z. Guo, The Nature and Consequences of Coherent Transformations in Steel, ISIJ Int., 2003, 43, p 410–419CrossRef
14.
go back to reference J.W. Morris, Jr., C. Kinney, K. Pytlewski, and Y. Adachi, Microstructure and Cleavage in Lath Martensitic Steels, Sci. Technol. Adv. Mater., 2013, 14, p 1–9CrossRef J.W. Morris, Jr., C. Kinney, K. Pytlewski, and Y. Adachi, Microstructure and Cleavage in Lath Martensitic Steels, Sci. Technol. Adv. Mater., 2013, 14, p 1–9CrossRef
15.
go back to reference M. Tsuboi, A. Shibata, D. Terada, and N. Tsuji, Role of Different Kinds of Boundaries Against Cleavage Crack Propagation in Low-Temperature Embrittlement of Low-Carbon Martensitic Steel, Metall. Mater. Trans. A, 2017, 48A, p 3261–3268CrossRef M. Tsuboi, A. Shibata, D. Terada, and N. Tsuji, Role of Different Kinds of Boundaries Against Cleavage Crack Propagation in Low-Temperature Embrittlement of Low-Carbon Martensitic Steel, Metall. Mater. Trans. A, 2017, 48A, p 3261–3268CrossRef
16.
go back to reference A. Ghosh, S. Das, and S. Chatterjee, Aging Behavior of a Cu-Bearing Ultrahigh Strength Steel, Mater. Sci. Eng. A, 2008, 486, p 152–157CrossRef A. Ghosh, S. Das, and S. Chatterjee, Aging Behavior of a Cu-Bearing Ultrahigh Strength Steel, Mater. Sci. Eng. A, 2008, 486, p 152–157CrossRef
17.
go back to reference S.K. Dhua, D. Mukerjee, and D.S. Sarma, Effect of Cooling Rate on the As Quenched Microstructure and Mechanical Properties of HSLA-100 Steel Plates, Metall. Mater. Trans. A, 2003, 34A, p 2493–2504CrossRef S.K. Dhua, D. Mukerjee, and D.S. Sarma, Effect of Cooling Rate on the As Quenched Microstructure and Mechanical Properties of HSLA-100 Steel Plates, Metall. Mater. Trans. A, 2003, 34A, p 2493–2504CrossRef
18.
go back to reference S.K. Dhua, D. Mukerjee, and D.S. Sarma, Influence of Tempering on the Microstructure and Mechanical Properties of HSLA-100 Steel Plates, Metall. Mater. Trans. A, 2001, 32A, p 2259–2270CrossRef S.K. Dhua, D. Mukerjee, and D.S. Sarma, Influence of Tempering on the Microstructure and Mechanical Properties of HSLA-100 Steel Plates, Metall. Mater. Trans. A, 2001, 32A, p 2259–2270CrossRef
19.
go back to reference S.K. Dhua, A. Ray, and D.S. Sarma, Effect of Tempering Temperatures on the Mechanical Properties and Microstructures of HSLA-100 Type Copper-Bearing Steels, Mater. Sci. Eng. A, 2001, A318, p 197–210CrossRef S.K. Dhua, A. Ray, and D.S. Sarma, Effect of Tempering Temperatures on the Mechanical Properties and Microstructures of HSLA-100 Type Copper-Bearing Steels, Mater. Sci. Eng. A, 2001, A318, p 197–210CrossRef
20.
go back to reference P.K. Ray, R.I. Ganguly, and A.K. Panda, Optimization of Mechanical Properties of an HSLA-100 Steel Through Control of Heat Treatment Variables, Mater. Sci. Eng. A, 2003, A346, p 122–131CrossRef P.K. Ray, R.I. Ganguly, and A.K. Panda, Optimization of Mechanical Properties of an HSLA-100 Steel Through Control of Heat Treatment Variables, Mater. Sci. Eng. A, 2003, A346, p 122–131CrossRef
21.
go back to reference Y. You, X.M. Wang, and C.J. Shang, Influence of Austenitizing Temperature on the Microstructure and Impact Toughness of a High Strength Low Alloy HSLA100 Steel, Acta Metall. Sin., 2012, 48, p 1290–1298CrossRef Y. You, X.M. Wang, and C.J. Shang, Influence of Austenitizing Temperature on the Microstructure and Impact Toughness of a High Strength Low Alloy HSLA100 Steel, Acta Metall. Sin., 2012, 48, p 1290–1298CrossRef
22.
go back to reference D.S. Liu, B.G. Cheng, and Y.Y. Cheng, Strengthening and Toughening of a Heavy Plate Steel for Shipbuilding with Yield Strength of Approximately 690 MPa, Metall. Mater. Trans. A, 2013, 44A, p 440–455CrossRef D.S. Liu, B.G. Cheng, and Y.Y. Cheng, Strengthening and Toughening of a Heavy Plate Steel for Shipbuilding with Yield Strength of Approximately 690 MPa, Metall. Mater. Trans. A, 2013, 44A, p 440–455CrossRef
23.
go back to reference B.G. Cheng, M. Luo, and D.S. Liu, High Strength, Low Carbon, Cu-Containing Steel Plates with Tailored Microstructure and Low Yield Ratio’, Ironmak. Steelmak., 2015, 42, p 608–617CrossRef B.G. Cheng, M. Luo, and D.S. Liu, High Strength, Low Carbon, Cu-Containing Steel Plates with Tailored Microstructure and Low Yield Ratio’, Ironmak. Steelmak., 2015, 42, p 608–617CrossRef
24.
go back to reference D.S. Liu, B.G. Cheng, and Y.Y. Cheng, Fine Microstructure and Toughness of Low Carbon Copper Containing Ultrahigh Strength NV F690 Heavy Steel Plate, Acta Metall. Sin., 2012, 48, p 334–342CrossRef D.S. Liu, B.G. Cheng, and Y.Y. Cheng, Fine Microstructure and Toughness of Low Carbon Copper Containing Ultrahigh Strength NV F690 Heavy Steel Plate, Acta Metall. Sin., 2012, 48, p 334–342CrossRef
25.
go back to reference G. Spanos, R.W. Fonda, R.A. Vandermeer, and A. Matuszeski, Microstructural Changes in HSLA-100 Steel Thermally Cycled to Simulate the Heat-Affected-Zone during Welding, Metall. Mater. Trans. A, 1995, 26A, p 3277–3293CrossRef G. Spanos, R.W. Fonda, R.A. Vandermeer, and A. Matuszeski, Microstructural Changes in HSLA-100 Steel Thermally Cycled to Simulate the Heat-Affected-Zone during Welding, Metall. Mater. Trans. A, 1995, 26A, p 3277–3293CrossRef
26.
go back to reference M. Shome and O.N. Mohanty, Continuous Cooling Transformation Diagrams Applicable to the Heat-Affected Zone of HSLA-80 and HSLA-100 Steels, Metall. Mater. Trans. A, 2006, 37A, p 2159–2169CrossRef M. Shome and O.N. Mohanty, Continuous Cooling Transformation Diagrams Applicable to the Heat-Affected Zone of HSLA-80 and HSLA-100 Steels, Metall. Mater. Trans. A, 2006, 37A, p 2159–2169CrossRef
27.
go back to reference D. Chae, C.J. Young, D.M. Goto, and D.A. Kos, Failure Behavior of Heat-Affected Zones Within HSLA-100 and HY-100 Steel Weldments, Metall. Mater. Trans. A, 2001, 32A, p 2229–2237CrossRef D. Chae, C.J. Young, D.M. Goto, and D.A. Kos, Failure Behavior of Heat-Affected Zones Within HSLA-100 and HY-100 Steel Weldments, Metall. Mater. Trans. A, 2001, 32A, p 2229–2237CrossRef
28.
go back to reference S.K. Dhua, D. Mukerjee, and D.S. Sarma, Weldability and Microstructural Aspects of Shielded Metal Arc Welded HSLA-100 Steel Plates, ISIJ Int., 2002, 42(3), p 290–298CrossRef S.K. Dhua, D. Mukerjee, and D.S. Sarma, Weldability and Microstructural Aspects of Shielded Metal Arc Welded HSLA-100 Steel Plates, ISIJ Int., 2002, 42(3), p 290–298CrossRef
29.
go back to reference K. Banerjee and U.K. Chatterjee, Effect of Microstructure on Hydrogen Embrittlement of Weld-Simulated HSLA-80 and HSLA-100 Steels, Metall. Mater. Trans. A, 2003, 34A, p 1297–1309CrossRef K. Banerjee and U.K. Chatterjee, Effect of Microstructure on Hydrogen Embrittlement of Weld-Simulated HSLA-80 and HSLA-100 Steels, Metall. Mater. Trans. A, 2003, 34A, p 1297–1309CrossRef
30.
go back to reference K. Banerjee, M. Militzer, M. Perez, and X. Wang, Nonisothermal Austenite Grain Growth Kinetics in a Microalloyed X80 Linepipe Steel, Metall. Mater. Trans. A, 2010, 41A, p 3161–3172CrossRef K. Banerjee, M. Militzer, M. Perez, and X. Wang, Nonisothermal Austenite Grain Growth Kinetics in a Microalloyed X80 Linepipe Steel, Metall. Mater. Trans. A, 2010, 41A, p 3161–3172CrossRef
31.
go back to reference R. Cao, J. Li, D.S. Liu, J.Y. Ma, and J.H. Chen, Micromechanism of Decrease of Impact Toughness in Coarse-Grain Heat-Affected Zone of HSLA Steel with the Increasing Weld Heat Input, Metall. Mater. Trans. A, 2015, 46A, p 2999–3014CrossRef R. Cao, J. Li, D.S. Liu, J.Y. Ma, and J.H. Chen, Micromechanism of Decrease of Impact Toughness in Coarse-Grain Heat-Affected Zone of HSLA Steel with the Increasing Weld Heat Input, Metall. Mater. Trans. A, 2015, 46A, p 2999–3014CrossRef
33.
go back to reference D.S. Liu, Q.L. Li, and T. Emi, Microstructure and Mechanical Properties in Hot Rolled Extra-High-Yield-Strength Steel Plates for Offshore Structure and Shipbuilding, Metall. Mater. Trans. A, 2011, 42A(5), p 1349–1361CrossRef D.S. Liu, Q.L. Li, and T. Emi, Microstructure and Mechanical Properties in Hot Rolled Extra-High-Yield-Strength Steel Plates for Offshore Structure and Shipbuilding, Metall. Mater. Trans. A, 2011, 42A(5), p 1349–1361CrossRef
34.
go back to reference W.L. Server, General Yielding of Charpy V-Notch and Precracked Charpy Specimens, J. Eng. Mater. Technol., 1978, 100, p 183–188CrossRef W.L. Server, General Yielding of Charpy V-Notch and Precracked Charpy Specimens, J. Eng. Mater. Technol., 1978, 100, p 183–188CrossRef
35.
go back to reference E.I. Galindo-Nava and P.E.J. Rivera-Diaz-del-Castillo, Model for the Microstructure Behaviour and Strength Evolution in Lath Martensite, Acta Mater., 2015, 98, p 81–93CrossRef E.I. Galindo-Nava and P.E.J. Rivera-Diaz-del-Castillo, Model for the Microstructure Behaviour and Strength Evolution in Lath Martensite, Acta Mater., 2015, 98, p 81–93CrossRef
36.
go back to reference S.Y. Sung, S.S. Sohn, S.Y. Shin, K.S. Oh, and S. Lee, Effects of Oxides on Tensile and Charpy Impact Properties and Fracture Toughness in Heat Affected Zones of Oxide-Containing API, X80 Linepipe Steels, Metall. Mater. Trans. A, 2014, 45A, p 3036–3050CrossRef S.Y. Sung, S.S. Sohn, S.Y. Shin, K.S. Oh, and S. Lee, Effects of Oxides on Tensile and Charpy Impact Properties and Fracture Toughness in Heat Affected Zones of Oxide-Containing API, X80 Linepipe Steels, Metall. Mater. Trans. A, 2014, 45A, p 3036–3050CrossRef
37.
go back to reference M. Shome, D.S. Sarma, O.P. Gupta, and O.N. Mohanty, Precipitate Dissolution and Grain Growth in the Heat Affected Zone of HSLA-100 Steel, ISIJ Int., 2003, 43, p 1431–1437CrossRef M. Shome, D.S. Sarma, O.P. Gupta, and O.N. Mohanty, Precipitate Dissolution and Grain Growth in the Heat Affected Zone of HSLA-100 Steel, ISIJ Int., 2003, 43, p 1431–1437CrossRef
Metadata
Title
Mechanism of Decrease in Impact Toughness in a Low-Carbon MnCrMoNiCu Plate Steel with Increasing Austenitizing Temperature
Authors
Mi Luo
Dongsheng Liu
Binggui Cheng
Rui Cao
Jianhong Chen
Publication date
24-08-2018
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 9/2018
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3591-4

Other articles of this Issue 9/2018

Journal of Materials Engineering and Performance 9/2018 Go to the issue

Premium Partners