Skip to main content
Top

2021 | OriginalPaper | Chapter

5. Mechanism

Authors : Kailash Chandra Khulbe, Takeshi Matsuura

Published in: Nanotechnology in Membrane Processes

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Gas separation via membrane has been recognized as the main technology that is used for hydrogen recovery, air separation, natural gas sweetening, helium recovery, natural gas dehydration, and so on. The successful application of a membrane-based separation process depends significantly on the appropriate chemical, physical, mechanical, and permeation properties of the membranes. Mathematical modeling of the membrane-based gas separation process can be useful to predict the performance under different conditions. Gas separation through membranes can take place by solution-diffusion mechanisms, depending mainly on the chemical and physical structures of the membrane.
Gas transport through a mixed-matrix membrane (MMM) is a complicated problem. Different modeling attempts have been developed for the prediction of the performance of MMMs by various theoretical expressions depending on the MMM’s morphology and chemistry, including ideal and nonideal MMMs. Attempts have been made to predict the effective permeability of a gaseous penetrant through the MMMs as a function of continuous phase (polymer matrix) and dispersed phase (porous or nonporous particles) permeabilities, as well as volume fraction of the dispersed phase. Also various models and mechanisms for the solvent and solute transport through reverse osmosis membrane have been proposed by a number of investigators.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Vinh-Thang H, Kaliaguine S (2013) Predictive models for mixed-matrix membrane performance: a review. ACS Chem Rev 313:4980–5028CrossRef Vinh-Thang H, Kaliaguine S (2013) Predictive models for mixed-matrix membrane performance: a review. ACS Chem Rev 313:4980–5028CrossRef
3.
go back to reference Shimekit B, Shariff A, Mukhtar H, Bustam A, Elkhalifah AEI, Ullah S, Riaz N (2014) Interfacial defects on mixed matrix membranes and mitigation techniques for gas separation: a review. Appl Mechan Mater 625:653–656CrossRef Shimekit B, Shariff A, Mukhtar H, Bustam A, Elkhalifah AEI, Ullah S, Riaz N (2014) Interfacial defects on mixed matrix membranes and mitigation techniques for gas separation: a review. Appl Mechan Mater 625:653–656CrossRef
4.
go back to reference Doong SJ (2012) Separation in functional materials for sustainable energy applications. In: Functional materials for sustainable energy applications, Woodhead Publishing Series in Energy, pp 179–216 Doong SJ (2012) Separation in functional materials for sustainable energy applications. In: Functional materials for sustainable energy applications, Woodhead Publishing Series in Energy, pp 179–216
5.
go back to reference Nagy E (2019) Chapter 18. Basic equations of mass transport through a membrane layer, 2nd edn. In: Membrane gas separation, Elsevier, pp 457–481 Nagy E (2019) Chapter 18. Basic equations of mass transport through a membrane layer, 2nd edn. In: Membrane gas separation, Elsevier, pp 457–481
7.
go back to reference Hashemifard SA, Ismail A, Matsuura T (2010) Prediction of gas permeability in mixed matrix membranes using theoretical models. J Membr Sci 347(1–2):53–61CrossRef Hashemifard SA, Ismail A, Matsuura T (2010) Prediction of gas permeability in mixed matrix membranes using theoretical models. J Membr Sci 347(1–2):53–61CrossRef
9.
go back to reference Jeon YW, Lee DS (2015) Gas membranes for CO2/CH4 (biogas) separation: a review. Environ Eng Sci 32(2):71–85 Jeon YW, Lee DS (2015) Gas membranes for CO2/CH4 (biogas) separation: a review. Environ Eng Sci 32(2):71–85
10.
go back to reference Bruggeman DAG (1935) Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. i. dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen. Ann Phys 24:636–679CrossRef Bruggeman DAG (1935) Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. i. dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen. Ann Phys 24:636–679CrossRef
11.
go back to reference van Beek LKH (1967) Dielectric behaviour of heterogeneous mixtures. Prog Dielectr 7:69–114 van Beek LKH (1967) Dielectric behaviour of heterogeneous mixtures. Prog Dielectr 7:69–114
12.
go back to reference Bánhegyi G (1986) Comparison of electrical mixture rules for composites. Colloid Polymer Sci 264:1030–1050CrossRef Bánhegyi G (1986) Comparison of electrical mixture rules for composites. Colloid Polymer Sci 264:1030–1050CrossRef
13.
go back to reference Bottcher CJF (1945) The dielectric constant of crystalline powders. Recueil des Travaux Chimiques des Pays-Bas 64:47–51CrossRef Bottcher CJF (1945) The dielectric constant of crystalline powders. Recueil des Travaux Chimiques des Pays-Bas 64:47–51CrossRef
14.
go back to reference Higuchi WI, Higuchi T (1960) Theoretical analysis of diffusional movement through heterogeneous barriers. J Am Pharm Assoc Sci Ed 49:598CrossRef Higuchi WI, Higuchi T (1960) Theoretical analysis of diffusional movement through heterogeneous barriers. J Am Pharm Assoc Sci Ed 49:598CrossRef
15.
go back to reference Lewis L, Nielsen LE (1970) Dynamic mechanical properties of particulate-filled composites. J Appl Polym Sci 14:449–1471CrossRef Lewis L, Nielsen LE (1970) Dynamic mechanical properties of particulate-filled composites. J Appl Polym Sci 14:449–1471CrossRef
16.
go back to reference Nielsen LE (1973) Thermal conductivity of particulate-filled polymers. J Appl Polym Sci 17:3819–3820CrossRef Nielsen LE (1973) Thermal conductivity of particulate-filled polymers. J Appl Polym Sci 17:3819–3820CrossRef
17.
go back to reference Cussler E (1990) Membranes containing selective flakes. J Membr Sci 52:275–288CrossRef Cussler E (1990) Membranes containing selective flakes. J Membr Sci 52:275–288CrossRef
18.
go back to reference Petropoulos JHJ (1985) A comparative study of approaches applied to the permeability of binary composite polymeric materials. Polym Sci Polym Phys Ed 23:1309–1324CrossRef Petropoulos JHJ (1985) A comparative study of approaches applied to the permeability of binary composite polymeric materials. Polym Sci Polym Phys Ed 23:1309–1324CrossRef
19.
go back to reference Toy LG, Freeman BD, Spontak RJ (1997) Gas permeability and phase morphology of poly (1-(trimethylsilyl)-1-propyne)/poly (1-phenyl-1-propyne)) blends. Macromolecules 30(16):4766–4769 Toy LG, Freeman BD, Spontak RJ (1997) Gas permeability and phase morphology of poly (1-(trimethylsilyl)-1-propyne)/poly (1-phenyl-1-propyne)) blends. Macromolecules 30(16):4766–4769
20.
go back to reference Pal R (2007) New models for thermal conductivity of particulate composites. J Reinf Plast Compos 26:643–651CrossRef Pal R (2007) New models for thermal conductivity of particulate composites. J Reinf Plast Compos 26:643–651CrossRef
21.
go back to reference Gonzo EE, Parentis ML, Gottifredi JC (2006) Estimating models for predicting effective permeability of mixed matrix membranes. J Membr Sci 277(1-2):46–54CrossRef Gonzo EE, Parentis ML, Gottifredi JC (2006) Estimating models for predicting effective permeability of mixed matrix membranes. J Membr Sci 277(1-2):46–54CrossRef
22.
go back to reference Chiew YC, Glandt ED (1983) The effect of structure on the conductivity of a dispersion. J Colloid Interface Sci 94:90–104CrossRef Chiew YC, Glandt ED (1983) The effect of structure on the conductivity of a dispersion. J Colloid Interface Sci 94:90–104CrossRef
23.
go back to reference Nasir R, Mukhtar H, Man Z (2016) Prediction of gas transport across amine mixed matrix membranes with ideal morphologies based on the Maxwell model. RSC Adv 6:30130–30138CrossRef Nasir R, Mukhtar H, Man Z (2016) Prediction of gas transport across amine mixed matrix membranes with ideal morphologies based on the Maxwell model. RSC Adv 6:30130–30138CrossRef
24.
go back to reference Funk CV, Lloyd DR (2008) Zeolite-filled microporous mixed matrix (ZeoTIPS) membranes: prediction of gas separation performance. J Membr Sci 313:224–231CrossRef Funk CV, Lloyd DR (2008) Zeolite-filled microporous mixed matrix (ZeoTIPS) membranes: prediction of gas separation performance. J Membr Sci 313:224–231CrossRef
25.
go back to reference Felske JD (2004) Effective thermal conductivity of composite spheres in a continuous medium with contact resistance. Int Heat Mass Transfer 47:3453–3461CrossRef Felske JD (2004) Effective thermal conductivity of composite spheres in a continuous medium with contact resistance. Int Heat Mass Transfer 47:3453–3461CrossRef
26.
go back to reference Mahajan R, Koros HJ (2002) Mixed matrix membrane materials with glassy polymers Part 1. Polym Eng Sci 42(7):1420–1431CrossRef Mahajan R, Koros HJ (2002) Mixed matrix membrane materials with glassy polymers Part 1. Polym Eng Sci 42(7):1420–1431CrossRef
27.
go back to reference Moore TT, Mahajan R, Vu DQ, Koros WJ (2004) Hybrid membrane materials comprising organic polymers with rigid dispersed phases. AIChE J 50:311–321CrossRef Moore TT, Mahajan R, Vu DQ, Koros WJ (2004) Hybrid membrane materials comprising organic polymers with rigid dispersed phases. AIChE J 50:311–321CrossRef
28.
go back to reference Hashemifard SA, Ismail AF, Matsuura T (2010) A new theoretical gas permeability model using resistance modeling for mixed matrix membrane systems. J Membr Sci 350:259–268CrossRef Hashemifard SA, Ismail AF, Matsuura T (2010) A new theoretical gas permeability model using resistance modeling for mixed matrix membrane systems. J Membr Sci 350:259–268CrossRef
29.
go back to reference Monsalve-Bravo GM, Bhatia SK (2017) Extending effective medium theory to finite size systems: theory and simulation for permeation in mixed-matrix membranes. J Membr Sci 531:148–159CrossRef Monsalve-Bravo GM, Bhatia SK (2017) Extending effective medium theory to finite size systems: theory and simulation for permeation in mixed-matrix membranes. J Membr Sci 531:148–159CrossRef
30.
go back to reference Chehrazi E, Sharif A, Omidkhah M, Karimi M (2017) Modeling the effects of interfacial characteristics on gas permeation behavior of nanotube–mixed matrix membranes. ACS Appl Mater Interfaces 9(42):37321–37331CrossRef Chehrazi E, Sharif A, Omidkhah M, Karimi M (2017) Modeling the effects of interfacial characteristics on gas permeation behavior of nanotube–mixed matrix membranes. ACS Appl Mater Interfaces 9(42):37321–37331CrossRef
31.
go back to reference Hamilton R, Crosser O (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1:187–191CrossRef Hamilton R, Crosser O (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1:187–191CrossRef
32.
go back to reference Kang DY, Jones CW, Nair S (2011) Modeling molecular transport in composite membranes with tubular fillers. J Membr Sci 381:50–63CrossRef Kang DY, Jones CW, Nair S (2011) Modeling molecular transport in composite membranes with tubular fillers. J Membr Sci 381:50–63CrossRef
33.
go back to reference Chehrazi E, Raef M, Noroozi M, Panahi-Sarmad M (2019) A theoretical model for the gas permeation prediction of nanotube-mixed matrix membranes: unveiling the effect of interfacial layer. J Membr Sci 570–571:168–175CrossRef Chehrazi E, Raef M, Noroozi M, Panahi-Sarmad M (2019) A theoretical model for the gas permeation prediction of nanotube-mixed matrix membranes: unveiling the effect of interfacial layer. J Membr Sci 570–571:168–175CrossRef
34.
go back to reference Saqib S, Rafiq S, Muhammad N, Khan AL, Mukhtar A, Mellon NB, Man Z, Ullah S, Al-Sehemi AG, Jamil F (2020) Influence of interfacial layer parameters on gas transport properties through modeling approach in MWCNTs based mixed matrix composite membranes. Cheml Eng Sci 218:115543CrossRef Saqib S, Rafiq S, Muhammad N, Khan AL, Mukhtar A, Mellon NB, Man Z, Ullah S, Al-Sehemi AG, Jamil F (2020) Influence of interfacial layer parameters on gas transport properties through modeling approach in MWCNTs based mixed matrix composite membranes. Cheml Eng Sci 218:115543CrossRef
35.
go back to reference Hoek EMV, Guiver M, Nikonenko V, Tarabara VV, Zydney AL (2013) Membrane terminology. In: Hoek EMV, Tarabara VV (eds) Encyclopedia of membrane science and technology, vol 3. Wiley, Hoboken, pp 2219–2222CrossRef Hoek EMV, Guiver M, Nikonenko V, Tarabara VV, Zydney AL (2013) Membrane terminology. In: Hoek EMV, Tarabara VV (eds) Encyclopedia of membrane science and technology, vol 3. Wiley, Hoboken, pp 2219–2222CrossRef
36.
go back to reference Jamal K, Khan MA, Kamil M (2004) Mathematical modeling of reverse osmosis systems. Desalin 160:29–42CrossRef Jamal K, Khan MA, Kamil M (2004) Mathematical modeling of reverse osmosis systems. Desalin 160:29–42CrossRef
37.
go back to reference Mondal S, De S (2020) Chapter 8. Reverse osmosis modeling, simulation, and optimization in current trends and future developments on (bio-) membranes (reverse and forward osmosis: principles, applications). Advances, Elsevier, pp 186–206 Mondal S, De S (2020) Chapter 8. Reverse osmosis modeling, simulation, and optimization in current trends and future developments on (bio-) membranes (reverse and forward osmosis: principles, applications). Advances, Elsevier, pp 186–206
38.
go back to reference Onsager L (1931) Reciprocal relations in irreversible processes. Phys Rev 37:405–425CrossRef Onsager L (1931) Reciprocal relations in irreversible processes. Phys Rev 37:405–425CrossRef
39.
go back to reference Ghernaout D (2017) Communication reverse osmosis process membranes modeling–a historical overview. J Civil Constr Environ Eng 2(4):112–122 Ghernaout D (2017) Communication reverse osmosis process membranes modeling–a historical overview. J Civil Constr Environ Eng 2(4):112–122
40.
go back to reference Sherwood TK, Brian PLT, Fisher RE (1967) Desalination by reverse osmosis, I&EC Fund 6:2–12 and 37 Sherwood TK, Brian PLT, Fisher RE (1967) Desalination by reverse osmosis, I&EC Fund 6:2–12 and 37
41.
go back to reference Kezia K, Lee J, Hill AJ, Kentish SE (2013) Convective transport of boron through a brackish water reverse osmosis membrane. J Membr Sci 445:160–169CrossRef Kezia K, Lee J, Hill AJ, Kentish SE (2013) Convective transport of boron through a brackish water reverse osmosis membrane. J Membr Sci 445:160–169CrossRef
42.
go back to reference Niewersch C, Rieth C, Hailemariam L, Gilabert G, Justyna O (2020) Reverse osmosis membrane element integrity evaluation using imperfection model. Desalin 476:114175CrossRef Niewersch C, Rieth C, Hailemariam L, Gilabert G, Justyna O (2020) Reverse osmosis membrane element integrity evaluation using imperfection model. Desalin 476:114175CrossRef
44.
go back to reference Monsalve-Bravo GM, Bhatia SK (2018) Comparison of hollow fibers and flat mixed-matrix membranes: theory and simulation. Chem Eng Sci 187:174-178 Monsalve-Bravo GM, Bhatia SK (2018) Comparison of hollow fibers and flat mixed-matrix membranes: theory and simulation. Chem Eng Sci 187:174-178
Metadata
Title
Mechanism
Authors
Kailash Chandra Khulbe
Takeshi Matsuura
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-64183-2_5

Premium Partners