Skip to main content
Top
Published in: Rock Mechanics and Rock Engineering 6/2015

03-01-2015 | Original Paper

Mechanistic Analysis of Rock Damage Anisotropy and Rotation Around Circular Cavities

Authors: Hao Xu, Chloé Arson

Published in: Rock Mechanics and Rock Engineering | Issue 6/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We used the differential stress-induced damage (DSID) model to predict anisotropic crack propagation under tensile and shear stress. The damage variable is similar to a crack density tensor. The damage function and the damage potential are expressed as functions of the energy release rate, defined as the thermodynamic force that is work-conjugate to damage. Contrary to the previous damage models, flow rules are obtained by deriving dissipation functions by the energy release rate, and thermodynamic consistency is ensured. The damage criterion is adapted from the Drucker–Prager yield function. Simulations of biaxial stress tests showed that: (1) three-dimensional states of damage can be obtained for three-dimensional states of stress; (2) no damage propagates under isotropic compression; (3) crack planes propagate in the direction parallel to major compression stress; (4) damage propagation hardens the material; (5) stiffness and deformation anisotropy result from the anisotropy of damage. There is no one-to-one relationship between stress and damage. We demonstrated the effect of the loading sequence in a two-step simulation (a shear loading phase and a compression loading phase): the current state of stress and damage can be used to track the effect of stress history on damage rotation. We finally conducted a sensitivity analysis with the finite element method, to explore the stress conditions in which damage is expected to rotate around a circular cavity subject to pressurization or depressurization. Simulation results showed that: (1) before damage initiation, the DSID model matches the analytical solution of stress distribution obtained with the theory of elasticity; (2) the DSID model can predict the extent of the tensile damage zone at the crown, and that of the compressive damage zone at the sidewalls; (3) damage generated during a vertical far-field compression followed by a depressurization of the cavity is more intense than that generated during a depressurization of the cavity followed by a vertical far-field compression.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Abu Al-Rub RK, Kim SM (2010) Computational applications of a coupled plasticity-damage constitutive model for simulating plain concrete fracture. Eng Fract Mech 77:1577–1603CrossRef Abu Al-Rub RK, Kim SM (2010) Computational applications of a coupled plasticity-damage constitutive model for simulating plain concrete fracture. Eng Fract Mech 77:1577–1603CrossRef
go back to reference Abu Al-Rub RK, Voyiadjis GZ (2003) On the coupling of anisotropic damage and plasticity models for ductile materials. Int J Solids Struct 40:2611–2643CrossRef Abu Al-Rub RK, Voyiadjis GZ (2003) On the coupling of anisotropic damage and plasticity models for ductile materials. Int J Solids Struct 40:2611–2643CrossRef
go back to reference Arson C (2009) Etude théorique et numérique de l’endommagement thermo-hydro-mécanique des milieux poreux non saturés. PhD thesis, Ecole Nationale des Ponts et Chaussées, Paris Arson C (2009) Etude théorique et numérique de l’endommagement thermo-hydro-mécanique des milieux poreux non saturés. PhD thesis, Ecole Nationale des Ponts et Chaussées, Paris
go back to reference Arson C (2012) Using a geo-mechanical damage model to assess permeability in cracked porous media: internal length parameter issues. Special Topics Rev Porous Media 3:69–77CrossRef Arson C (2012) Using a geo-mechanical damage model to assess permeability in cracked porous media: internal length parameter issues. Special Topics Rev Porous Media 3:69–77CrossRef
go back to reference Ashby MF, Sammis CG (1990) The damage mehcanics of brittle solids in compression. Pure Appl Geophys 133(3):489–521CrossRef Ashby MF, Sammis CG (1990) The damage mehcanics of brittle solids in compression. Pure Appl Geophys 133(3):489–521CrossRef
go back to reference Bakhtiary E, Xu H, Arson C (2014) Probabilistic optimization of a continuum mechanics model to predict differential stress-induced damage in claystone. Int J Rock Mech Min Sci Bakhtiary E, Xu H, Arson C (2014) Probabilistic optimization of a continuum mechanics model to predict differential stress-induced damage in claystone. Int J Rock Mech Min Sci
go back to reference Bobet A, Einstein H (1998) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35(7) Bobet A, Einstein H (1998) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35(7)
go back to reference Carter NL, Hansen FD (1983) Creep of rocksalt. Tectonophysics 92(4):275–333CrossRef Carter NL, Hansen FD (1983) Creep of rocksalt. Tectonophysics 92(4):275–333CrossRef
go back to reference Chaboche JL (1992) Damage induced anisotropy: on the difficulties associated with the active/passive unilateral condition. Int J Damage Mech 1:148–171CrossRef Chaboche JL (1992) Damage induced anisotropy: on the difficulties associated with the active/passive unilateral condition. Int J Damage Mech 1:148–171CrossRef
go back to reference Chaboche JL (1993) Development of continuum damage mechanics for elastic solids sustaining anisotropic and unilateral damage. Int J Damage Mech 2:311–329CrossRef Chaboche JL (1993) Development of continuum damage mechanics for elastic solids sustaining anisotropic and unilateral damage. Int J Damage Mech 2:311–329CrossRef
go back to reference Chan K, Munson D, Bodner S, Fossum A (1996) Cleavage and creep freacture of rock salt. Acta Mater 44(9):3553–3565CrossRef Chan K, Munson D, Bodner S, Fossum A (1996) Cleavage and creep freacture of rock salt. Acta Mater 44(9):3553–3565CrossRef
go back to reference Chan KS, Bodner SR, Munson DE (2001) Permeability of wipp salt during damage evolution and healing. Int J Damage Mech 10(4):347–375CrossRef Chan KS, Bodner SR, Munson DE (2001) Permeability of wipp salt during damage evolution and healing. Int J Damage Mech 10(4):347–375CrossRef
go back to reference Cicekli U, Voyiadjis GZ (2007) A plasticity and anisotropic damage model for plain concrete. Int J Plasticity 23:1874–1900CrossRef Cicekli U, Voyiadjis GZ (2007) A plasticity and anisotropic damage model for plain concrete. Int J Plasticity 23:1874–1900CrossRef
go back to reference Collins IF, Houlsby GT (1997) Application of thermomechanical principles to the modelling of geotechnical materials. Proc Math Phys Eng Sci 453(1964):1975–2001 Collins IF, Houlsby GT (1997) Application of thermomechanical principles to the modelling of geotechnical materials. Proc Math Phys Eng Sci 453(1964):1975–2001
go back to reference Crossno P, Rogers DH, Brannon RM, Coblentz D, Fredrich JT (2005) Visualization of geologic stress perturbations using mohr diagrams. IEEE Trans Vis Comput Graphics 11(5):508–518CrossRef Crossno P, Rogers DH, Brannon RM, Coblentz D, Fredrich JT (2005) Visualization of geologic stress perturbations using mohr diagrams. IEEE Trans Vis Comput Graphics 11(5):508–518CrossRef
go back to reference Deng H, Nemat-Nasser S (1992) Dynamic damage evolution in brittle solids. Mech Mater 14:83–103CrossRef Deng H, Nemat-Nasser S (1992) Dynamic damage evolution in brittle solids. Mech Mater 14:83–103CrossRef
go back to reference Desmorat R (2006) Positivité de la dissipation intrinsèque d’une classe de modèles d’endommagement anisotropes non standards. Comptes Rendus Mecanique Desmorat R (2006) Positivité de la dissipation intrinsèque d’une classe de modèles d’endommagement anisotropes non standards. Comptes Rendus Mecanique
go back to reference Dyskin AV, Germanovich LN, Ustinov KB (1999) A 3-d model of wing crack growth and interaction. Eng Fract Mech 63(1):81–110CrossRef Dyskin AV, Germanovich LN, Ustinov KB (1999) A 3-d model of wing crack growth and interaction. Eng Fract Mech 63(1):81–110CrossRef
go back to reference Frémond M, Nedjar B (1996) Damage, gradient of damage and principle of virtual power. Int J Solids Struct 33:2294–2306CrossRef Frémond M, Nedjar B (1996) Damage, gradient of damage and principle of virtual power. Int J Solids Struct 33:2294–2306CrossRef
go back to reference Gatmiri B, Arson C (2008) Theta-stock, a powerful tool for thermohydromechanical behaviour and damage modelling of unsaturated porous media. Comput Geotech 35(8):890–915CrossRef Gatmiri B, Arson C (2008) Theta-stock, a powerful tool for thermohydromechanical behaviour and damage modelling of unsaturated porous media. Comput Geotech 35(8):890–915CrossRef
go back to reference Halm D, Dragon A (1998) An anisotropic model of damage and frictional sliding for brittle materials. Eur J Mech A Solids 17(3):439–460CrossRef Halm D, Dragon A (1998) An anisotropic model of damage and frictional sliding for brittle materials. Eur J Mech A Solids 17(3):439–460CrossRef
go back to reference Halm D, Dragon A (2002) Modelisation de l’endommagement par mesofissuration du granite. Revue Francaise de Genie Civi 17:21–33 Halm D, Dragon A (2002) Modelisation de l’endommagement par mesofissuration du granite. Revue Francaise de Genie Civi 17:21–33
go back to reference Hansen N, Schreyer H (1994) A thermodynamically consistent framework for theories of elastoplasticity coupled with damage. Int J Solids Struct 31(3):359–389CrossRef Hansen N, Schreyer H (1994) A thermodynamically consistent framework for theories of elastoplasticity coupled with damage. Int J Solids Struct 31(3):359–389CrossRef
go back to reference Hayakawa K, Murakami S (1997) Thermodynamical modeling of elastic-plastic damage and experimental validation of damage potential. Int J Damage Mech 6:333–363CrossRef Hayakawa K, Murakami S (1997) Thermodynamical modeling of elastic-plastic damage and experimental validation of damage potential. Int J Damage Mech 6:333–363CrossRef
go back to reference Homand-Etienne F, Hoxha D, Shao JF (1998) A Continuum Damage Constitutive Law for Brittle Rocks. Comput Geotech 22(2):135–151CrossRef Homand-Etienne F, Hoxha D, Shao JF (1998) A Continuum Damage Constitutive Law for Brittle Rocks. Comput Geotech 22(2):135–151CrossRef
go back to reference Horii H, Nemat-Nasser S (1986) Brittle failure in compression: splitting, faulting and brittle-ductile transition. Philos Trans R Soc Lond Ser A Math Phys Sci 319(1549):337–374CrossRef Horii H, Nemat-Nasser S (1986) Brittle failure in compression: splitting, faulting and brittle-ductile transition. Philos Trans R Soc Lond Ser A Math Phys Sci 319(1549):337–374CrossRef
go back to reference Hou Z (2003) Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities. Int J Rock Mech Min Sci 40(5):725–738CrossRef Hou Z (2003) Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities. Int J Rock Mech Min Sci 40(5):725–738CrossRef
go back to reference Houlsby GT, Puzrin AM (2006) Principles of hyperplasticity an approach to plasticity theory based on thermodynamic principles. London Houlsby GT, Puzrin AM (2006) Principles of hyperplasticity an approach to plasticity theory based on thermodynamic principles. London
go back to reference Huang C, Subhash G, Vitton SJ (2002) A dynamic damage growth model for uniaxial compressive response of rock aggregates. Mech Mater 34:267–277CrossRef Huang C, Subhash G, Vitton SJ (2002) A dynamic damage growth model for uniaxial compressive response of rock aggregates. Mech Mater 34:267–277CrossRef
go back to reference Hunsche U, Hampel A (1999) Rock salt—the mechanical properties of the host rock material for a radioactive waste repository. Eng Geol 52(3–4):271–291CrossRef Hunsche U, Hampel A (1999) Rock salt—the mechanical properties of the host rock material for a radioactive waste repository. Eng Geol 52(3–4):271–291CrossRef
go back to reference Hütter M, Tervoort T (2008) Continuum damage mechanics: combining thermodynamics with a thoughtful characterization of the microstructure. Acta Mech 201(1–4):297–312CrossRef Hütter M, Tervoort T (2008) Continuum damage mechanics: combining thermodynamics with a thoughtful characterization of the microstructure. Acta Mech 201(1–4):297–312CrossRef
go back to reference Jaeger JC, Cook NG, Zimmerman RW (2007) Fundamentals of rock mechanics, 4th edn. Blackwell Publishing Jaeger JC, Cook NG, Zimmerman RW (2007) Fundamentals of rock mechanics, 4th edn. Blackwell Publishing
go back to reference Kachanov M (1992) Effective elastic properties of cracked solids: critical review of some basic concepts. Appl Mech Rev 45(8):304–335CrossRef Kachanov M (1992) Effective elastic properties of cracked solids: critical review of some basic concepts. Appl Mech Rev 45(8):304–335CrossRef
go back to reference Keller A, Hutter K (2011) On the thermodynamic consistency of the equivalence principle in continuum damage mechanics. J Mech Phys Solids 59(5):1115–1120CrossRef Keller A, Hutter K (2011) On the thermodynamic consistency of the equivalence principle in continuum damage mechanics. J Mech Phys Solids 59(5):1115–1120CrossRef
go back to reference Krajcinovic D (1996) Damage mechanics. North-Holland, Amsterdam Krajcinovic D (1996) Damage mechanics. North-Holland, Amsterdam
go back to reference Lauterbach B, Gross D (1998) Crack growth in brittle solids under compression. Mech Mater 29(2):81–92CrossRef Lauterbach B, Gross D (1998) Crack growth in brittle solids under compression. Mech Mater 29(2):81–92CrossRef
go back to reference Lee J, Fenves G (1998) Plastic-damage model for cyclic loading of concrete structures. J Eng Mech 124:892–900CrossRef Lee J, Fenves G (1998) Plastic-damage model for cyclic loading of concrete structures. J Eng Mech 124:892–900CrossRef
go back to reference Lemaître J, Desmorat R (2005) Engineering damage mechanics. Ductile, creep, fatigue and brittle failure. Springer, Berlin Lemaître J, Desmorat R (2005) Engineering damage mechanics. Ductile, creep, fatigue and brittle failure. Springer, Berlin
go back to reference Lubliner J, Oliver J, Oller S, Onate E (1989) A platic-damage model for concrete. Int J Solids Struct 23(3):299–326CrossRef Lubliner J, Oliver J, Oller S, Onate E (1989) A platic-damage model for concrete. Int J Solids Struct 23(3):299–326CrossRef
go back to reference Lux KH, Eberth S (2007) Fundamentals and first application of a new healing model for rock salt. In: Proceedings and monographs in engineering, water and earth sciences, pp 129–138 Lux KH, Eberth S (2007) Fundamentals and first application of a new healing model for rock salt. In: Proceedings and monographs in engineering, water and earth sciences, pp 129–138
go back to reference Mazars J (1986) A description of micro- and macro scale damage of concrete structures. Eng Fract Mech 25(5–6):729–737CrossRef Mazars J (1986) A description of micro- and macro scale damage of concrete structures. Eng Fract Mech 25(5–6):729–737CrossRef
go back to reference Mazars J, Pijaudier-Cabot G (1989) Continuum damage theory—application to concrete. J Eng Mech 115(2):345–365CrossRef Mazars J, Pijaudier-Cabot G (1989) Continuum damage theory—application to concrete. J Eng Mech 115(2):345–365CrossRef
go back to reference Murakami S, Kamiya K (1996) Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics. Int J Mech Sci 39:473–486CrossRef Murakami S, Kamiya K (1996) Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics. Int J Mech Sci 39:473–486CrossRef
go back to reference Nemat-Nasser S, Hori M (eds) (1983) Rock failure in compression. Ninth workshop geothermal reservoir engineering. Stanford University, Stanford Nemat-Nasser S, Hori M (eds) (1983) Rock failure in compression. Ninth workshop geothermal reservoir engineering. Stanford University, Stanford
go back to reference Oda M (1982) Fabric tensor for discontinuous geological materials. Soils Found 22(4):96–108CrossRef Oda M (1982) Fabric tensor for discontinuous geological materials. Soils Found 22(4):96–108CrossRef
go back to reference Oda M (1984) Similarity rules of crack geometry in statistically homogeneous rock masses. Mech Mater 3:119–129CrossRef Oda M (1984) Similarity rules of crack geometry in statistically homogeneous rock masses. Mech Mater 3:119–129CrossRef
go back to reference Ortiz M (1985) A constitutive theory for the inelastic behaviour of concrete. Mech Mater 4:67–93CrossRef Ortiz M (1985) A constitutive theory for the inelastic behaviour of concrete. Mech Mater 4:67–93CrossRef
go back to reference Pellet F, Hajdu A, Deleruyelle F, Besnus F (2005) A viscoplastic model including anisotropic damage for the time dependent behaviour of rock. Int J Numer Anal Meth Geomech 29:941–970CrossRef Pellet F, Hajdu A, Deleruyelle F, Besnus F (2005) A viscoplastic model including anisotropic damage for the time dependent behaviour of rock. Int J Numer Anal Meth Geomech 29:941–970CrossRef
go back to reference Raj R (1982) Creep in polycrystalline aggregates by matter transport through a liquid phase. J Geophys Res 87(B6):4731–4739CrossRef Raj R (1982) Creep in polycrystalline aggregates by matter transport through a liquid phase. J Geophys Res 87(B6):4731–4739CrossRef
go back to reference Senseny PE, Hansen FD, Russell JE, Carter NL, Handin JW (1992) Mechanical behaviour of rock salt: phenomenology and micromechanisms. Int J Rock Mech Min Sci Geomech Abstr 29(4):363–378CrossRef Senseny PE, Hansen FD, Russell JE, Carter NL, Handin JW (1992) Mechanical behaviour of rock salt: phenomenology and micromechanisms. Int J Rock Mech Min Sci Geomech Abstr 29(4):363–378CrossRef
go back to reference Shao J, Zhou H, Chau K (2005) Coupling between anisotropic damage and permeability variation in brittle rocks. Int J Numer Anal Meth Geomech 29(12):1231–1247CrossRef Shao J, Zhou H, Chau K (2005) Coupling between anisotropic damage and permeability variation in brittle rocks. Int J Numer Anal Meth Geomech 29(12):1231–1247CrossRef
go back to reference Shao JF, Chau KT, Feng XT (2006) Modeling of anisotropic damage and creep deformation in brittle rocks. Int J Rock Mech Min Sci 43:582–592CrossRef Shao JF, Chau KT, Feng XT (2006) Modeling of anisotropic damage and creep deformation in brittle rocks. Int J Rock Mech Min Sci 43:582–592CrossRef
go back to reference Steif PS (1984) Crack extension under compressive loading. Eng Fract Mech 20(3):463–473CrossRef Steif PS (1984) Crack extension under compressive loading. Eng Fract Mech 20(3):463–473CrossRef
go back to reference Swoboda G, Yang Q (1999) An energy-based damage model of geomaterials. I. Formulation and numerical results. Int J Solids Struct 36(12):1719–1734CrossRef Swoboda G, Yang Q (1999) An energy-based damage model of geomaterials. I. Formulation and numerical results. Int J Solids Struct 36(12):1719–1734CrossRef
go back to reference Voyiadjis GZ, Shojaei A, Li G (2011) A thermodynamic consistent damage and healing model for self healing materials. Int J Plast 27(7):1025–1044CrossRef Voyiadjis GZ, Shojaei A, Li G (2011) A thermodynamic consistent damage and healing model for self healing materials. Int J Plast 27(7):1025–1044CrossRef
go back to reference Willemse EJ, Pollard DD (1998) On the orientation and patterns of wing cracks and solution surfaces at the tips of a sliding flaw or fault. J Geophys Res Solid Earth (1978–2012) 103(B2):2427–2438 Willemse EJ, Pollard DD (1998) On the orientation and patterns of wing cracks and solution surfaces at the tips of a sliding flaw or fault. J Geophys Res Solid Earth (1978–2012) 103(B2):2427–2438
go back to reference Xu H (2014) Theoretical and numerical modeling of anisotropic damage in rock for energy geomechancis. PhD thesis, Georgia Institute of Technology Xu H (2014) Theoretical and numerical modeling of anisotropic damage in rock for energy geomechancis. PhD thesis, Georgia Institute of Technology
go back to reference Xu H, Arson C (2014) Anisotropic damage models for geomaterials: theoretical and numerical challenges. Int J Comput Methods Spec Issue Comput Geomech 11(2) Xu H, Arson C (2014) Anisotropic damage models for geomaterials: theoretical and numerical challenges. Int J Comput Methods Spec Issue Comput Geomech 11(2)
go back to reference Yu H (2006) Plasticity and geotechnics. Springer, Berlin Yu H (2006) Plasticity and geotechnics. Springer, Berlin
go back to reference Zhou H, Hu D, Zhang F, Shao J (2011) A thermo-plastic/viscoplastic dmage model for geomaterials. Acta Mech Solida Sin 24(3):195–208CrossRef Zhou H, Hu D, Zhang F, Shao J (2011) A thermo-plastic/viscoplastic dmage model for geomaterials. Acta Mech Solida Sin 24(3):195–208CrossRef
go back to reference Zhou J, Shao J, Xu W (2006) Coupled modeling of damage growth and permeability variation in brittle rocks. Mech Res Commun 33(4):450–459CrossRef Zhou J, Shao J, Xu W (2006) Coupled modeling of damage growth and permeability variation in brittle rocks. Mech Res Commun 33(4):450–459CrossRef
Metadata
Title
Mechanistic Analysis of Rock Damage Anisotropy and Rotation Around Circular Cavities
Authors
Hao Xu
Chloé Arson
Publication date
03-01-2015
Publisher
Springer Vienna
Published in
Rock Mechanics and Rock Engineering / Issue 6/2015
Print ISSN: 0723-2632
Electronic ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-014-0707-5

Other articles of this Issue 6/2015

Rock Mechanics and Rock Engineering 6/2015 Go to the issue