Skip to main content
Top
Published in: Physics of Metals and Metallography 7/2021

01-07-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Mechanochemical Synthesis of Cu–Al Alloyed Powders and Their Consolidation by Spark Plasma Sintering

Authors: T. F. Grigoreva, S. A. Petrova, S. A. Kovaleva, D. V. Dudina, I. S. Batraev, T. Yu. Kiseleva, S. I. Zholudev, S. V. Vosmerikov, E. T. Devyatkina, T. A. Udalova, S. N. Polyakov, N. Z. Lyakhov

Published in: Physics of Metals and Metallography | Issue 7/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The mechanochemically synthesized Cu–20 wt % Al alloys are studied by the X-ray diffraction analysis and scanning electron microscopy. It is shown that, after 20 min of mechanical activation, the single-phase intermetallic compound Cu9Al4 with crystallites ~3 nm in size, low microstrains (~0.03%), and particle size in the range from 0.2–0.4 to 2–4 μm is formed. The morphological characteristics of the solid solution of aluminum in copper, which has been mechanochemically synthesized from the Cu–10 wt % Al alloy, are studied. It is demonstrated that the solid solution is composed of platelike particles 10–50 μm in planar size and 2–10 μm in thickness. The scanning electron and optical microscopy data show that the Cu(Al) solid solution produced by the spark plasma sintering at 700°С are characterized by the low residual porosity (<0.5%). The Vickers hardness is 290 ± 30 HV.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. F. Grigoreva, S. A. Kovaleva, V. I. Zhornik, S. V. Vosmerikov, P. A. Vityaz, and N. Z. Lyakhov, “Copper–tin materials for tribotechnical purposes,” Inorg. Mater.: Appl. Res. 11, No. 3, 744–749 (2020).CrossRef T. F. Grigoreva, S. A. Kovaleva, V. I. Zhornik, S. V. Vosmerikov, P. A. Vityaz, and N. Z. Lyakhov, “Copper–tin materials for tribotechnical purposes,” Inorg. Mater.: Appl. Res. 11, No. 3, 744–749 (2020).CrossRef
2.
go back to reference I. A. Bataev, A. A. Bataev, V. I. Mali, D. V. Pavlyukova, P. S. Yartsev, and E. D. Golovin, “Nucleation and growth of titanium aluminide in an explosion-welded laminate composite,” Phys. Met. Metallogr. 113, No. 10, 947–956 (2012).CrossRef I. A. Bataev, A. A. Bataev, V. I. Mali, D. V. Pavlyukova, P. S. Yartsev, and E. D. Golovin, “Nucleation and growth of titanium aluminide in an explosion-welded laminate composite,” Phys. Met. Metallogr. 113, No. 10, 947–956 (2012).CrossRef
3.
go back to reference E. Feldshtein, P. Kielek, T. Kielek, L. Dyachkova, and A. Letsko, “One some mechanical properties and wear behavior of sintered bronze composities reinforced with some aluminides microadditives,” J. Appl. Mech. Eng. 22, No. 2,293–302 (2017).CrossRef E. Feldshtein, P. Kielek, T. Kielek, L. Dyachkova, and A. Letsko, “One some mechanical properties and wear behavior of sintered bronze composities reinforced with some aluminides microadditives,” J. Appl. Mech. Eng. 22, No. 2,293–302 (2017).CrossRef
4.
go back to reference İ. Çelikyürek, N. Ö. Körpe, T. Ölçer, and R. Gürler, “Microstructure, properties and wear behaviors of (Ni3Al) reinforced Cu matrix composites,” J. Mater. Sci. Technol. 27, No. 10, 937–943 (2011).CrossRef İ. Çelikyürek, N. Ö. Körpe, T. Ölçer, and R. Gürler, “Microstructure, properties and wear behaviors of (Ni3Al) reinforced Cu matrix composites,” J. Mater. Sci. Technol. 27, No. 10, 937–943 (2011).CrossRef
5.
go back to reference S. C. Deevi and V. K. Sikka, “Nickel and iron aluminides: an overview on properties, processing, and applications,” Intermetallics 4, 357–375 (1996).CrossRef S. C. Deevi and V. K. Sikka, “Nickel and iron aluminides: an overview on properties, processing, and applications,” Intermetallics 4, 357–375 (1996).CrossRef
6.
go back to reference N. S. Stoloff, C. T. Liu, and S. C. Deevi, “Emerging applications of intermetallics,” Intermetallics 8, 1313–1320 (2000).CrossRef N. S. Stoloff, C. T. Liu, and S. C. Deevi, “Emerging applications of intermetallics,” Intermetallics 8, 1313–1320 (2000).CrossRef
7.
go back to reference K. Morsi, “Review: reaction synthesis processing of Ni–Al intermetallic materials,” Mater. Sci. Eng., A 299, 1–15 (2001).CrossRef K. Morsi, “Review: reaction synthesis processing of Ni–Al intermetallic materials,” Mater. Sci. Eng., A 299, 1–15 (2001).CrossRef
8.
go back to reference R. B. Schwarz, S. Srinivasan, and P. B. Desch, “Synthesis of metastable aluminum-based intermetallics by mechanical alloying,” Mater. Sci. Forum 88–90, 595–602 (1992).CrossRef R. B. Schwarz, S. Srinivasan, and P. B. Desch, “Synthesis of metastable aluminum-based intermetallics by mechanical alloying,” Mater. Sci. Forum 88–90, 595–602 (1992).CrossRef
9.
go back to reference L. D' Angelo, J. Ochoa, and G. Gonzalez, “Comparative study for the formation of the NiAl, TiAl, FeAl intermetallic compounds by mechanical alloying,” J. Metastable Nanocryst. Mater. 20–21, 231–236 (2004).CrossRef L. D' Angelo, J. Ochoa, and G. Gonzalez, “Comparative study for the formation of the NiAl, TiAl, FeAl intermetallic compounds by mechanical alloying,” J. Metastable Nanocryst. Mater. 20–21, 231–236 (2004).CrossRef
10.
go back to reference F. Cardellini, V. Contini, and G. Mazzone, “Solid-state reactions in the Al–Fe system induced by ball milling of elemental powders,” J. Mater. Sci. 31, No. 16, 4175–4180 (1996).CrossRef F. Cardellini, V. Contini, and G. Mazzone, “Solid-state reactions in the Al–Fe system induced by ball milling of elemental powders,” J. Mater. Sci. 31, No. 16, 4175–4180 (1996).CrossRef
11.
go back to reference S. -M. Zhu and K. Iwasaki, “Characterization of mechanically alloyed ternary Fe–Ti–Al powders,” Mater. Sci. Eng., A 270, No. 2, 170–177 (1999).CrossRef S. -M. Zhu and K. Iwasaki, “Characterization of mechanically alloyed ternary Fe–Ti–Al powders,” Mater. Sci. Eng., A 270, No. 2, 170–177 (1999).CrossRef
12.
go back to reference V. V. Tcherdyntsev, T. A. Sviridova, A. P. Shevchukov, and S. D. Kaloshkin, “Formation of decagonal quasicrystals in mechanically alloyed Al–Cu–Cr powders,” Z. Kristallogr. 223, 751–755 (2008).CrossRef V. V. Tcherdyntsev, T. A. Sviridova, A. P. Shevchukov, and S. D. Kaloshkin, “Formation of decagonal quasicrystals in mechanically alloyed Al–Cu–Cr powders,” Z. Kristallogr. 223, 751–755 (2008).CrossRef
13.
go back to reference H. Bakker, G. F. Zhou, and H. Yang, “Prediction of phase transformations in intermetallic compounds induced by milling,” Mater. Sci. Forum 179–181, 47–52 (1995).CrossRef H. Bakker, G. F. Zhou, and H. Yang, “Prediction of phase transformations in intermetallic compounds induced by milling,” Mater. Sci. Forum 179181, 47–52 (1995).CrossRef
14.
go back to reference N. P. Diakonova, T. A. Sviridova, V. K. Semina, and Yu. A. Skakov, “Intermetallic phase stability on high energy treatments (rapid quenching, ion irradiation and mechanical milling),” J. Alloys Compd. 367, Nos. 1–2, 199–204 (2004).CrossRef N. P. Diakonova, T. A. Sviridova, V. K. Semina, and Yu. A. Skakov, “Intermetallic phase stability on high energy treatments (rapid quenching, ion irradiation and mechanical milling),” J. Alloys Compd. 367, Nos. 1–2, 199–204 (2004).CrossRef
15.
go back to reference F L. Feng, K. N. Ishihara, and P. H. Shingu, “The formation of metastable phases by mechanical alloying in the aluminum and copper system,” Metall. Trans. A 22, 2849–2854 (1991).CrossRef F L. Feng, K. N. Ishihara, and P. H. Shingu, “The formation of metastable phases by mechanical alloying in the aluminum and copper system,” Metall. Trans. A 22, 2849–2854 (1991).CrossRef
16.
go back to reference A. R. Miedema, “On the heat of formation of solid alloys (II),” J. Less-Common Met. 46, 67–83 (1976).CrossRef A. R. Miedema, “On the heat of formation of solid alloys (II),” J. Less-Common Met. 46, 67–83 (1976).CrossRef
17.
go back to reference H. Bakker, “Miedema’s semi–empirical model for estimating enthalpies in alloys,” Mater. Sci. Brief. 1, 1–80 (1988). H. Bakker, “Miedema’s semi–empirical model for estimating enthalpies in alloys,” Mater. Sci. Brief. 1, 1–80 (1988).
18.
go back to reference A. V. Rogulya and V. V. Skorokhod, Compacted Nanostructured Materials (Naukova dumka, Kiev, 2007) [in Russian]. A. V. Rogulya and V. V. Skorokhod, Compacted Nanostructured Materials (Naukova dumka, Kiev, 2007) [in Russian].
19.
go back to reference L. N. D’yachkova, L. F. Kerzhentseva, and L. V. Markova, Powder Materials Based on Iron (ODO “TONPIK”, Minsk, 2004) [in Russian]. L. N. D’yachkova, L. F. Kerzhentseva, and L. V. Markova, Powder Materials Based on Iron (ODO “TONPIK”, Minsk, 2004) [in Russian].
20.
go back to reference A. G. Anisimov and V. I. Mali, “Possibility of electric-pulse sintering of powder nanostructural composites,” Combust., Explos. Shock Waves, 46, No. 2, 237–241 (2010).CrossRef A. G. Anisimov and V. I. Mali, “Possibility of electric-pulse sintering of powder nanostructural composites,” Combust., Explos. Shock Waves, 46, No. 2, 237–241 (2010).CrossRef
21.
go back to reference E. A. Olevsky and D. V. Dudina, Field-Assisted Sintering: Science and Applications (Springer, Cham, 2018).CrossRef E. A. Olevsky and D. V. Dudina, Field-Assisted Sintering: Science and Applications (Springer, Cham, 2018).CrossRef
22.
go back to reference T. M. Vidyuk, D. V. Dudina, M. A. Korchagin, A. I. Gavrilov, T. S. Skripkina, A. V. Ukhina, A. G. Anisimov, and B. B. Bokhonov, “Melting at the inter-particle contacts during Spark Plasma Sintering: Direct microstructural evidence and relation to particle morphology,” Vacuum 181, 109566 (2020).CrossRef T. M. Vidyuk, D. V. Dudina, M. A. Korchagin, A. I. Gavrilov, T. S. Skripkina, A. V. Ukhina, A. G. Anisimov, and B. B. Bokhonov, “Melting at the inter-particle contacts during Spark Plasma Sintering: Direct microstructural evidence and relation to particle morphology,” Vacuum 181, 109566 (2020).CrossRef
23.
go back to reference T. T. Sasaki, T. Mukai, and K. Hono, “A high-strength bulk nanocrystalline Al–Fe alloy processed by mechanical alloying and spark plasma sintering,“ Scr. Mater. 57, 189–192 (2007).CrossRef T. T. Sasaki, T. Mukai, and K. Hono, “A high-strength bulk nanocrystalline Al–Fe alloy processed by mechanical alloying and spark plasma sintering,“ Scr. Mater. 57, 189–192 (2007).CrossRef
24.
go back to reference L. Shevtsova, V. Mali, A. Bataev, A. Anisimov, and D. Dudina, “Microstructure and mechanical properties of materials obtained by spark plasma sintering of Ni3Al–Ni powder mixtures,“ Mater. Sci. Eng., A 773, 138882 (2020).CrossRef L. Shevtsova, V. Mali, A. Bataev, A. Anisimov, and D. Dudina, “Microstructure and mechanical properties of materials obtained by spark plasma sintering of Ni3Al–Ni powder mixtures,“ Mater. Sci. Eng., A 773, 138882 (2020).CrossRef
25.
go back to reference E. G. Avvakumov, Mechanical Methods of Activation of Chemical Processes (Nauka, Sib. otd, Novosibirsk, 1986) [in Russian]. E. G. Avvakumov, Mechanical Methods of Activation of Chemical Processes (Nauka, Sib. otd, Novosibirsk, 1986) [in Russian].
26.
go back to reference DIFFRAC plus : EVA. Bruker AXS GmbH, Ostliche. Rheinbruckenstraße 50, D-76187 (Karlsruhe, 2008). DIFFRAC plus : EVA. Bruker AXS GmbH, Ostliche. Rheinbruckenstraße 50, D-76187 (Karlsruhe, 2008).
27.
go back to reference S. Gates-Rector and T. Blanton, “The powder diffraction file: A quality materials characterization database,” Powder Diffr. 34, No.4, 352–360 (2019).CrossRef S. Gates-Rector and T. Blanton, “The powder diffraction file: A quality materials characterization database,” Powder Diffr. 34, No.4, 352–360 (2019).CrossRef
28.
go back to reference S. Gates-Rector and T. Blanton, LMGP-Suite of Programs for the interpretation of X-ray Experiments, (Lab. Materiaux genie Phys., Grenoble, 2003). S. Gates-Rector and T. Blanton, LMGP-Suite of Programs for the interpretation of X-ray Experiments, (Lab. Materiaux genie Phys., Grenoble, 2003).
29.
go back to reference H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 65–71 (1969).CrossRef H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 65–71 (1969).CrossRef
30.
go back to reference DIFFRACplus: TOPAS. Bruker AXS GmbH, Ostliche. Rheinbruckenstraße 50, D-76187 (Karlsruhe, 2006). DIFFRACplus: TOPAS. Bruker AXS GmbH, Ostliche. Rheinbruckenstraße 50, D-76187 (Karlsruhe, 2006).
31.
go back to reference T. F. Grigor’eva, S. A. Petrova, S. A. Kovaleva, T. Yu. Kiseleva, S. I. Zholudev, S. V. Vosmerikov, T. A. Udalova, E. T. Devyatkina, S. N. Polyakov, and N. Z. Lyakhov, " Mechanochemical formation of a solid solution of aluminum in copper,“ Fiz. Met. Metalloved., 122, No. 4, 396–401 (2021). T. F. Grigor’eva, S. A. Petrova, S. A. Kovaleva, T. Yu. Kiseleva, S. I. Zholudev, S. V. Vosmerikov, T. A. Udalova, E. T. Devyatkina, S. N. Polyakov, and N. Z. Lyakhov, " Mechanochemical formation of a solid solution of aluminum in copper,“ Fiz. Met. Metalloved., 122, No. 4, 396–401 (2021).
32.
go back to reference X. J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, “Phase equilibria in the Cu-rich portion of the Cu–Al binary system,“ J. Alloys Compd. 264, 201–208 (1998).CrossRef X. J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, “Phase equilibria in the Cu-rich portion of the Cu–Al binary system,“ J. Alloys Compd. 264, 201–208 (1998).CrossRef
33.
go back to reference O. Zobac, A. Kroupa, A. Zemanova, and W. Richter Klaus, “Experimental description of the Al–Cu binary phase diagram,“ Metall. Mater. Trans. A 50, 3805–3815 (2019).CrossRef O. Zobac, A. Kroupa, A. Zemanova, and W. Richter Klaus, “Experimental description of the Al–Cu binary phase diagram,“ Metall. Mater. Trans. A 50, 3805–3815 (2019).CrossRef
34.
go back to reference Phase Diagrams of Binary Metallic Systems. Handbook, Ed. by N.P. Lyakishev (Mashinostroenie, Moscow, 1996), Vol. 1 [in Russian]. Phase Diagrams of Binary Metallic Systems. Handbook, Ed. by N.P. Lyakishev (Mashinostroenie, Moscow, 1996), Vol. 1 [in Russian].
36.
go back to reference D. Tabor, The Hardness of Metals (Oxford University, Oxford, 1951). D. Tabor, The Hardness of Metals (Oxford University, Oxford, 1951).
37.
go back to reference M. Li and S. J. Zinkle, “Physical and mechanical properties of copper and copper alloys,” In Comprehensive Nuclear Materials, Ed. by R. J. M. Konings (Elsevier, Amsterdam, 2012), vol. 4, pp. 667–690. M. Li and S. J. Zinkle, “Physical and mechanical properties of copper and copper alloys,” In Comprehensive Nuclear Materials, Ed. by R. J. M. Konings (Elsevier, Amsterdam, 2012), vol. 4, pp. 667–690.
38.
go back to reference D. V. Dudina, T. M. Vidyuk, V. I. Kvashnin, A. A. Shtertser, A. G. Anisimov, V. I. Mali, V. I. Esikov, A. V. Ukhina, M. A. Korchagin, B. B. Bokhonov, and M. A. Legan, “ Features of the formation of composite structures and local effects during electrospark sintering,” Kompoz. Nanostrukt. 12, 75–87 (2020). D. V. Dudina, T. M. Vidyuk, V. I. Kvashnin, A. A. Shtertser, A. G. Anisimov, V. I. Mali, V. I. Esikov, A. V. Ukhina, M. A. Korchagin, B. B. Bokhonov, and M. A. Legan, “ Features of the formation of composite structures and local effects during electrospark sintering,” Kompoz. Nanostrukt. 12, 75–87 (2020).
Metadata
Title
Mechanochemical Synthesis of Cu–Al Alloyed Powders and Their Consolidation by Spark Plasma Sintering
Authors
T. F. Grigoreva
S. A. Petrova
S. A. Kovaleva
D. V. Dudina
I. S. Batraev
T. Yu. Kiseleva
S. I. Zholudev
S. V. Vosmerikov
E. T. Devyatkina
T. A. Udalova
S. N. Polyakov
N. Z. Lyakhov
Publication date
01-07-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 7/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21070024

Other articles of this Issue 7/2021

Physics of Metals and Metallography 7/2021 Go to the issue

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Model of Primary Recrystallization in Pure Copper