Skip to main content
Top
Published in: Rare Metals 12/2022

19-12-2015

Mechanochemistry and hydrogen storage properties of 2Li3N+Mg mixture

Authors: Zhi-Nian Li, Hao-Chen Qiu, Shu-Mao Wang, Li-Jun Jiang, Jun Du, Jun-Xian Zhang, Michel Latroche, Fermin Cuevas

Published in: Rare Metals | Issue 12/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Li–Mg–N–H hydrogen storage system is a promising hydrogen storage material due to its moderate operation temperature, good reversibility, and relatively high capacity. In this work, the Li–Mg–N–H composite was directly synthesized by reactive ball milling (RBM) of Li3N and Mg powder mixture with a molar ratio of 2:1 under hydrogen pressure of 9 MPa. More than 8.8 wt% hydrogen was absorbed during the RBM process. The phases and structural evolution during the in situ hydrogenation process were analyzed by means of in situ solid–gas absorption and ex situ X-ray diffraction (XRD) measurements. It is determined that the hydrogenation can be divided into two steps, leading to mainly the formation of a lithium magnesium imide phase and a poorly crystallized amide phase, respectively. The H-cycling properties of the as-milled composite were determined by temperature-programmed dehydrogenation (TPD) method in a closed system. The onset dehydrogenation temperature was detected at 125 °C, and it can reversibly desorb 3.1 wt% hydrogen under a hydrogen back pressure of 0.2 MPa. The structural evolution during dehydrogenation was further investigated by in situ XRD measurement. It is found that Mg(NH2)2 phase disappears at about 200 °C, and Li2Mg2N3H3, LiNH2, and Li2MgN2H2 phases coexist at even 300 °C, revealing that the dehydrogenation process is step-wised and only partial hydrogen can be desorbed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Crabtree G, Dresselhaus M, Buchanan M. The hydrogen economy. Phys Today. 2004;57(12):39.CrossRef Crabtree G, Dresselhaus M, Buchanan M. The hydrogen economy. Phys Today. 2004;57(12):39.CrossRef
[2]
go back to reference Zhou L. Progress and problems in hydrogen storage methods. Renew Sustain Energy Rev. 2005;9(4):395.CrossRef Zhou L. Progress and problems in hydrogen storage methods. Renew Sustain Energy Rev. 2005;9(4):395.CrossRef
[3]
go back to reference Chen P, Xiong ZT, Luo J, Lin J, Tan KL. Interaction of hydrogen with metal nitrides and imides. Nature. 2002;420(6913):302.CrossRef Chen P, Xiong ZT, Luo J, Lin J, Tan KL. Interaction of hydrogen with metal nitrides and imides. Nature. 2002;420(6913):302.CrossRef
[4]
go back to reference Luo WF. (LiNH2–MgH2): a viable hydrogen storage system. J Alloys Compd. 2004;381(1–2):284.CrossRef Luo WF. (LiNH2–MgH2): a viable hydrogen storage system. J Alloys Compd. 2004;381(1–2):284.CrossRef
[5]
go back to reference Xiong ZT, Wu GT, Hu JJ, Chen P. Ternary imides for hydrogen storage. Adv Mater. 2004;16(17):522.CrossRef Xiong ZT, Wu GT, Hu JJ, Chen P. Ternary imides for hydrogen storage. Adv Mater. 2004;16(17):522.CrossRef
[6]
go back to reference Sudik A, Yang J, Halliday D, Wolverton C. Kinetic improvement in the Mg(NH2)2-LiH storage system by product seeding. J Phys Chem C. 2007;111(17):6568.CrossRef Sudik A, Yang J, Halliday D, Wolverton C. Kinetic improvement in the Mg(NH2)2-LiH storage system by product seeding. J Phys Chem C. 2007;111(17):6568.CrossRef
[7]
go back to reference Zhu XL, Zhao X, Li Y, Liu BZ. Improving hydrogen storage performance of Li–Mg–N–H system by adding niobium hydride. Rare Met. 2014;33(1):86.CrossRef Zhu XL, Zhao X, Li Y, Liu BZ. Improving hydrogen storage performance of Li–Mg–N–H system by adding niobium hydride. Rare Met. 2014;33(1):86.CrossRef
[8]
go back to reference Wang JC, Li HL, Wang SM, Liu XP, Li Y, Jiang LJ. The desorption kinetics of the Mg(NH2)2 + LiH mixture. Int J Hydrog Energy. 2009;34(3):1411.CrossRef Wang JC, Li HL, Wang SM, Liu XP, Li Y, Jiang LJ. The desorption kinetics of the Mg(NH2)2 + LiH mixture. Int J Hydrog Energy. 2009;34(3):1411.CrossRef
[9]
go back to reference Wang Y, Xu CC, Li J, Wang YJ, Jiang LF, Yuan H. Orthogonal test analysis of NaAlH4-TiF3 Co-catalyzed Mg(AlH4)2. Chin J Rare Met. 2014;38(1):55. Wang Y, Xu CC, Li J, Wang YJ, Jiang LF, Yuan H. Orthogonal test analysis of NaAlH4-TiF3 Co-catalyzed Mg(AlH4)2. Chin J Rare Met. 2014;38(1):55.
[10]
go back to reference Xia L, Zhu S. Progress in high capacity hydrogen storage material of LiBH4. Chin J Rare Met. 2014;38(3):509. Xia L, Zhu S. Progress in high capacity hydrogen storage material of LiBH4. Chin J Rare Met. 2014;38(3):509.
[11]
go back to reference Cao HJ, Wang H, He T, Wu GT, Xiong ZT, Qiu JS, Chen P. Improved kinetics of the Mg(NH2)2-2LiH system by addition of lithium halides. RSC Adv. 2014;4(61):32555.CrossRef Cao HJ, Wang H, He T, Wu GT, Xiong ZT, Qiu JS, Chen P. Improved kinetics of the Mg(NH2)2-2LiH system by addition of lithium halides. RSC Adv. 2014;4(61):32555.CrossRef
[12]
go back to reference Gamba NS, Larochette PA, Gennari FC. Effect of LiCl presence on the hydrogen storage performance of the Mg(NH2)2-2LiH composite. RSC Adv. 2015;5(84):68542.CrossRef Gamba NS, Larochette PA, Gennari FC. Effect of LiCl presence on the hydrogen storage performance of the Mg(NH2)2-2LiH composite. RSC Adv. 2015;5(84):68542.CrossRef
[13]
go back to reference Rachel FB, Daniel R, David B, Paul AA. Effect of the calcium halides, CaCl2 and CaBr2, on hydrogen desorption in the Li-Mg-N-H system. J Alloys Compd. 2015;645(S1):S96. Rachel FB, Daniel R, David B, Paul AA. Effect of the calcium halides, CaCl2 and CaBr2, on hydrogen desorption in the Li-Mg-N-H system. J Alloys Compd. 2015;645(S1):S96.
[14]
go back to reference Jalaal H, Andrew G. Thermodynamics, kinetics and modeling studies of KH- RbH- and CsH-doped 2LiNH2/MgH2 hydrogen storage systems. Int J Hydrog Energy. 2015;40(36):12336.CrossRef Jalaal H, Andrew G. Thermodynamics, kinetics and modeling studies of KH- RbH- and CsH-doped 2LiNH2/MgH2 hydrogen storage systems. Int J Hydrog Energy. 2015;40(36):12336.CrossRef
[15]
go back to reference Tolulope D, Jalaal H, Andrew G. Rubidium hydride: potassium, rubidium and cesium hydrides as dehydrogenation catalysts for the lithium amide/magnesium hydride system. Int J Hydrog Energy. 2015;40(5):2266.CrossRef Tolulope D, Jalaal H, Andrew G. Rubidium hydride: potassium, rubidium and cesium hydrides as dehydrogenation catalysts for the lithium amide/magnesium hydride system. Int J Hydrog Energy. 2015;40(5):2266.CrossRef
[16]
go back to reference Zhao DL, Zhang YH. Research progress in Mg-based hydrogen storage alloys. Rare Met. 2014;33(5):499.CrossRef Zhao DL, Zhang YH. Research progress in Mg-based hydrogen storage alloys. Rare Met. 2014;33(5):499.CrossRef
[17]
go back to reference Zhang XG, Li ZN, Wang SM, Mi J, Jiang LJ, Lv F, Liu XP. Hydrogen storage properties of the CeH2 doped Li-Mg-N-H/NaAlH4 system. J Rare Earths. 2011;29(6):599.CrossRef Zhang XG, Li ZN, Wang SM, Mi J, Jiang LJ, Lv F, Liu XP. Hydrogen storage properties of the CeH2 doped Li-Mg-N-H/NaAlH4 system. J Rare Earths. 2011;29(6):599.CrossRef
[18]
go back to reference Zhao W, Jiang LJ, Wu YF, Ye JH, Yuan BL, Li ZN, Liu XP, Wang SM. Improved dehydrogenation cycle performance of the 1.1MgH2-2LiNH2-0.1LiBH4 system by addition of LaNi4.5Mn0.5 alloy. J Rare Earths. 2015;33(7):783.CrossRef Zhao W, Jiang LJ, Wu YF, Ye JH, Yuan BL, Li ZN, Liu XP, Wang SM. Improved dehydrogenation cycle performance of the 1.1MgH2-2LiNH2-0.1LiBH4 system by addition of LaNi4.5Mn0.5 alloy. J Rare Earths. 2015;33(7):783.CrossRef
[19]
go back to reference Chen P, Xiong ZT, Yang L, Wu GT, Luo WF. Mechanistic investigations on the heterogeneous solid-state reaction of magnesium amides and lithium hydrides. J Phys Chem B. 2006;110(29):14221.CrossRef Chen P, Xiong ZT, Yang L, Wu GT, Luo WF. Mechanistic investigations on the heterogeneous solid-state reaction of magnesium amides and lithium hydrides. J Phys Chem B. 2006;110(29):14221.CrossRef
[20]
go back to reference Orimo S, Nakamori Y, Eliseo JR, Züttel A, Jensen CM. Complex hydrides for hydrogen storage. Chem Rev. 2007;107(10):4111.CrossRef Orimo S, Nakamori Y, Eliseo JR, Züttel A, Jensen CM. Complex hydrides for hydrogen storage. Chem Rev. 2007;107(10):4111.CrossRef
[21]
go back to reference Liang C, Liu Y, Luo K, Li B, Gao M, Pan H, Wang Q. Reaction pathways determined by mechanical milling process for dehydrogenation/hydrogenation of the LiNH2/MgH2 system. Chem Eur J. 2008;16(2):693.CrossRef Liang C, Liu Y, Luo K, Li B, Gao M, Pan H, Wang Q. Reaction pathways determined by mechanical milling process for dehydrogenation/hydrogenation of the LiNH2/MgH2 system. Chem Eur J. 2008;16(2):693.CrossRef
[22]
go back to reference Kojima Y, Kawai Y, Ohba N. Hydrogen storage of metal nitrides by a mechanochemical reaction. J Power Sources. 2006;159(1):81.CrossRef Kojima Y, Kawai Y, Ohba N. Hydrogen storage of metal nitrides by a mechanochemical reaction. J Power Sources. 2006;159(1):81.CrossRef
[23]
go back to reference Li ZN, Zhang JX, Wang SM, Jiang LJ, Latroche M, Du J, Cuevas F. Mechanochemistry of lithium nitride under hydrogen gas. Phys Chem Chem Phys. 2015;17(34):21927.CrossRef Li ZN, Zhang JX, Wang SM, Jiang LJ, Latroche M, Du J, Cuevas F. Mechanochemistry of lithium nitride under hydrogen gas. Phys Chem Chem Phys. 2015;17(34):21927.CrossRef
[24]
go back to reference Zhang B, Wu Y. Hydrogen absorption-desorption mechanisms for the ball-milled Li3N-MgH2 (1:1) mixture. Int J Hydrog Energy. 2014;39(25):13603.CrossRef Zhang B, Wu Y. Hydrogen absorption-desorption mechanisms for the ball-milled Li3N-MgH2 (1:1) mixture. Int J Hydrog Energy. 2014;39(25):13603.CrossRef
[25]
go back to reference Zhang B, Wu Y. Effects of additives on the microstructure and hydrogen storage properties of the Li3N-MgH2 mixture. J Alloys Compd. 2014;613(15):199. Zhang B, Wu Y. Effects of additives on the microstructure and hydrogen storage properties of the Li3N-MgH2 mixture. J Alloys Compd. 2014;613(15):199.
[26]
go back to reference Doppiu S, Schultz L, Gutfleisch O. In-situ pressure and temperature monitoring during the conversion of Mg into MgH2 by high-pressure reactive ball milling. J Alloy Compd. 2007;427(1–2):204.CrossRef Doppiu S, Schultz L, Gutfleisch O. In-situ pressure and temperature monitoring during the conversion of Mg into MgH2 by high-pressure reactive ball milling. J Alloy Compd. 2007;427(1–2):204.CrossRef
[27]
go back to reference Zhang JX, Cuevas F, Zaïdi W, Bonnet JP, Aymard L, Bobet JL, Latroche M. Highlighting of a single reaction path during reactive ball milling of Mg and TM by quantitative H2 gas sorption analysis to form ternary complex hydrides (TM=Fe Co, Ni). J Phys Chem C. 2011;115(11):4971.CrossRef Zhang JX, Cuevas F, Zaïdi W, Bonnet JP, Aymard L, Bobet JL, Latroche M. Highlighting of a single reaction path during reactive ball milling of Mg and TM by quantitative H2 gas sorption analysis to form ternary complex hydrides (TM=Fe Co, Ni). J Phys Chem C. 2011;115(11):4971.CrossRef
[28]
go back to reference Hemmes H, Driessen A, Griessen R. Thermodynamic properties of hydrogen at pressures up to 1 Mbar and temperatures between 100 and 1000 K. J Phys C Solid State Phys. 1986;19(19):3571.CrossRef Hemmes H, Driessen A, Griessen R. Thermodynamic properties of hydrogen at pressures up to 1 Mbar and temperatures between 100 and 1000 K. J Phys C Solid State Phys. 1986;19(19):3571.CrossRef
[29]
go back to reference Rodriguez-Carvajal J. FULLPROF: a program for Rietveld refinement and pattern matching analysis. In: Proceedings of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr. Toulouse; 1990. 237. Rodriguez-Carvajal J. FULLPROF: a program for Rietveld refinement and pattern matching analysis. In: Proceedings of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr. Toulouse; 1990. 237.
[30]
go back to reference Calder RS, Cochran W, Griffiths D, Lowde RD. An X-ray and neutron diffraction analysis of lithium hydride. J Phys Chem Solids. 1962;23(6):621.CrossRef Calder RS, Cochran W, Griffiths D, Lowde RD. An X-ray and neutron diffraction analysis of lithium hydride. J Phys Chem Solids. 1962;23(6):621.CrossRef
[31]
go back to reference Sorby MH, Nakamura Y, Brinks HW, Ichikawa T, Hino S, Fujii H, Hauback BC. The crystal structure of LiND2 and Mg(ND2)2. J Alloys Compd. 2007;428(1–2):297.CrossRef Sorby MH, Nakamura Y, Brinks HW, Ichikawa T, Hino S, Fujii H, Hauback BC. The crystal structure of LiND2 and Mg(ND2)2. J Alloys Compd. 2007;428(1–2):297.CrossRef
[32]
go back to reference David WIF, Jones MO, Gregory DH, Jewell CM, Johnson SR, Walton A, Edwards PP. A mechanism for non-stoichiometry in the lithium amide/lithium imide hydrogen storage reaction. J Am Chem Soc. 2007;129(6):1594.CrossRef David WIF, Jones MO, Gregory DH, Jewell CM, Johnson SR, Walton A, Edwards PP. A mechanism for non-stoichiometry in the lithium amide/lithium imide hydrogen storage reaction. J Am Chem Soc. 2007;129(6):1594.CrossRef
[33]
go back to reference Linde G, Juza R. Ir spectra of amides and imides of divalent and Trivalent Metals. Z Anorg Allg Chem. 1974;409(2):199.CrossRef Linde G, Juza R. Ir spectra of amides and imides of divalent and Trivalent Metals. Z Anorg Allg Chem. 1974;409(2):199.CrossRef
[34]
go back to reference Bohger JPO, Essmann RR, Jacobs H. Infrared and Raman studies on the internal modes of lithium amide. J Mol Struct. 1995;348(2):325.CrossRef Bohger JPO, Essmann RR, Jacobs H. Infrared and Raman studies on the internal modes of lithium amide. J Mol Struct. 1995;348(2):325.CrossRef
[35]
go back to reference Hu J, Liu Y, Wu G, Xiong Z, Chen P. Structural and compositional changes during hydrogenation/dehydrogenation of the Li–Mg–N–H system. J Phys Chem C. 2007;111(49):18439.CrossRef Hu J, Liu Y, Wu G, Xiong Z, Chen P. Structural and compositional changes during hydrogenation/dehydrogenation of the Li–Mg–N–H system. J Phys Chem C. 2007;111(49):18439.CrossRef
[36]
go back to reference Beister HJ, Haag S, Kniep R, Strössner K, Syassen K. Phase transformations of lithium nitride under pressure. Angew Chem Int Ed Engl. 1988;27(8):1101.CrossRef Beister HJ, Haag S, Kniep R, Strössner K, Syassen K. Phase transformations of lithium nitride under pressure. Angew Chem Int Ed Engl. 1988;27(8):1101.CrossRef
[37]
go back to reference Ohoyama K, Nakamori Y, Orimo S, Yamada K. Revised crystal structure model of Li2NH by neutron powder diffraction. J Phys Soc Jpn. 2005;74(1):483.CrossRef Ohoyama K, Nakamori Y, Orimo S, Yamada K. Revised crystal structure model of Li2NH by neutron powder diffraction. J Phys Soc Jpn. 2005;74(1):483.CrossRef
[38]
go back to reference Rijssenbeek J, Gao Y, Hanson J, Huang Q, Jones C, Toby B. Crystal structure determination and reaction pathway of amide–hydride mixtures. J Alloys Compd. 2008;454(1–2):233.CrossRef Rijssenbeek J, Gao Y, Hanson J, Huang Q, Jones C, Toby B. Crystal structure determination and reaction pathway of amide–hydride mixtures. J Alloys Compd. 2008;454(1–2):233.CrossRef
Metadata
Title
Mechanochemistry and hydrogen storage properties of 2Li3N+Mg mixture
Authors
Zhi-Nian Li
Hao-Chen Qiu
Shu-Mao Wang
Li-Jun Jiang
Jun Du
Jun-Xian Zhang
Michel Latroche
Fermin Cuevas
Publication date
19-12-2015
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 12/2022
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-015-0674-3

Other articles of this Issue 12/2022

Rare Metals 12/2022 Go to the issue

Premium Partners