Skip to main content
Top

2021 | OriginalPaper | Chapter

8. Medical Imaging Based Diagnosis Through Machine Learning and Data Analysis

Authors : Jianjia Zhang, Yan Wang, Chen Zu, Biting Yu, Lei Wang, Luping Zhou

Published in: Advances in Artificial Intelligence, Computation, and Data Science

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Machine learning techniques have played an essential role in computer-assisted medical image analysis. In this chapter, we will introduce several of our recent achievements with machine learning methods for feature extraction and representation, classification, dense prediction (segmentation and synthesis), and multi-modality analysis, across the pipeline of computer-assisted diagnosis (CAD). These methods consist of both traditional machine learning techniques and state-of-the-art deep learning based approaches. They were proposed to address pain points in the techniques, for example, similarity metric learning for better classification, 3D and sample-adaptive dense prediction models for segmentation and synthesis, and effective multi-modal imaging data fusion. These methods have been employed in different levels of medical imaging applications, such as medical image synthesis within and across imaging modalities, brain tumor segmentation, and mental disease classification. Common approaches used for related research topics are also briefly reviewed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference An L, Zhang P, Adeli-M E, Wang Y, Ma G, Shi F, Lalush D, Lin W, Shen D (2016) Multi-level canonical correlation analysis for standard-dose PET image estimation. In: IEEE Transactions on Image Processing pp 3303–3315 An L, Zhang P, Adeli-M E, Wang Y, Ma G, Shi F, Lalush D, Lin W, Shen D (2016) Multi-level canonical correlation analysis for standard-dose PET image estimation. In: IEEE Transactions on Image Processing pp 3303–3315
2.
go back to reference Armanious K, Jiang C, Fischer M, Küstner T, Nikolaou K, Gatidis S, Yang B (2018) MedGAN: Medical image translation using GANs. arXiv:180606397 Armanious K, Jiang C, Fischer M, Küstner T, Nikolaou K, Gatidis S, Yang B (2018) MedGAN: Medical image translation using GANs. arXiv:​180606397
4.
go back to reference Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, Freymann JB, Farahani K, Davatzikos C (2017) Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4:170117PubMedPubMedCentral Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, Freymann JB, Farahani K, Davatzikos C (2017) Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4:170117PubMedPubMedCentral
5.
go back to reference Ben-Cohen A, Klang E, Raskin SP, Amitai MM, Greenspan H (2017) Virtual PET images from CT data using deep convolutional networks: initial results. In: International workshop on simulation and synthesis in medical imaging. Springer, pp 49–57 Ben-Cohen A, Klang E, Raskin SP, Amitai MM, Greenspan H (2017) Virtual PET images from CT data using deep convolutional networks: initial results. In: International workshop on simulation and synthesis in medical imaging. Springer, pp 49–57
6.
go back to reference Bi L, Kim J, Kumar A, Feng D, Fulham M (2017) Synthesis of positron emission tomography (PET) images via multi-channel generative adversarial networks (GANs). In: Molecular imaging, reconstruction and analysis of moving body organs, and stroke imaging and treatment. Springer, pp 43–51 Bi L, Kim J, Kumar A, Feng D, Fulham M (2017) Synthesis of positron emission tomography (PET) images via multi-channel generative adversarial networks (GANs). In: Molecular imaging, reconstruction and analysis of moving body organs, and stroke imaging and treatment. Springer, pp 43–51
7.
go back to reference Biao J, Daoqiang Z, Bo C, Dinggang S, null n (2015) Manifold regularized multitask feature learning for multimodality disease classification. In: Human brain mapping, pp 489–507 Biao J, Daoqiang Z, Bo C, Dinggang S, null n (2015) Manifold regularized multitask feature learning for multimodality disease classification. In: Human brain mapping, pp 489–507
8.
go back to reference Bishop CM (2006) Machine learning and pattern recognition. Information science and statistics. Springer, Heidelberg Bishop CM (2006) Machine learning and pattern recognition. Information science and statistics. Springer, Heidelberg
9.
go back to reference de Brebisson A, Montana G (2015) Deep neural networks for anatomical brain segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 20–28 de Brebisson A, Montana G (2015) Deep neural networks for anatomical brain segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 20–28
10.
go back to reference Burgos N, Cardoso MJ, Thielemans K, Modat M, Pedemonte S, Dickson J, Barnes A, Ahmed R, Mahoney CJ, Schott JM et al (2014) Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies. IEEE Trans Med Imaging 33(12):2332–2341PubMed Burgos N, Cardoso MJ, Thielemans K, Modat M, Pedemonte S, Dickson J, Barnes A, Ahmed R, Mahoney CJ, Schott JM et al (2014) Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies. IEEE Trans Med Imaging 33(12):2332–2341PubMed
11.
go back to reference Bustin A, Voilliot D, Menini A, Felblinger J, de Chillou C, Burschka D, Bonnemains L, Odille F (2018) Isotropic reconstruction of mr images using 3D patch-based self-similarity learning. In: IEEE transactions on medical imaging Bustin A, Voilliot D, Menini A, Felblinger J, de Chillou C, Burschka D, Bonnemains L, Odille F (2018) Isotropic reconstruction of mr images using 3D patch-based self-similarity learning. In: IEEE transactions on medical imaging
12.
go back to reference Cao X, Gao Y, Yang J, Wu G, Shen D (2016) Learning-based multimodal image registration for prostate cancer radiation therapy. In: International conference on medical image computing and computer-assisted intervention Cao X, Gao Y, Yang J, Wu G, Shen D (2016) Learning-based multimodal image registration for prostate cancer radiation therapy. In: International conference on medical image computing and computer-assisted intervention
14.
go back to reference Chandrakumar T, Kathirvel R (2016) Classifying diabetic retinopathy using deep learning architecture. In: International journal of engineering research & technology (IJERT) Chandrakumar T, Kathirvel R (2016) Classifying diabetic retinopathy using deep learning architecture. In: International journal of engineering research & technology (IJERT)
15.
go back to reference Chao-Gan Y, Yu-Feng Z (2010) DPARSF: a matlab toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosc 4 Chao-Gan Y, Yu-Feng Z (2010) DPARSF: a matlab toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosc 4
16.
go back to reference Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosing multiple parameters for support vector machines. Mach Learn 46(1–3):131–159 Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosing multiple parameters for support vector machines. Mach Learn 46(1–3):131–159
17.
go back to reference Chartsias A, Joyce T, Dharmakumar R, Tsaftaris SA (2017) Adversarial image synthesis for unpaired multi-modal cardiac data. In: International workshop on simulation and synthesis in medical imaging. Springer, pp 3–13 Chartsias A, Joyce T, Dharmakumar R, Tsaftaris SA (2017) Adversarial image synthesis for unpaired multi-modal cardiac data. In: International workshop on simulation and synthesis in medical imaging. Springer, pp 3–13
18.
go back to reference Chartsias A, Joyce T, Giuffrida MV, Tsaftaris SA (2018a) Multimodal MR synthesis via modality-invariant latent representation. IEEE Trans Med Imaging 37(3):803–814PubMed Chartsias A, Joyce T, Giuffrida MV, Tsaftaris SA (2018a) Multimodal MR synthesis via modality-invariant latent representation. IEEE Trans Med Imaging 37(3):803–814PubMed
19.
go back to reference Chartsias A, Joyce T, Giuffrida MV, Tsaftaris SA (2018b) Multimodal mr synthesis via modality-invariant latent representation. In: IEEE transactions on medical imaging, pp 1–1 Chartsias A, Joyce T, Giuffrida MV, Tsaftaris SA (2018b) Multimodal mr synthesis via modality-invariant latent representation. In: IEEE transactions on medical imaging, pp 1–1
20.
go back to reference Chaudhari AS, Fang Z, Kogan F, Wood J, Stevens KJ, Gibbons EK, Lee JH, Gold GE, Hargreaves BA (2018) Super-resolution musculoskeletal mri using deep learning. Magn Reson Med 80(5):2139–2154PubMedPubMedCentral Chaudhari AS, Fang Z, Kogan F, Wood J, Stevens KJ, Gibbons EK, Lee JH, Gold GE, Hargreaves BA (2018) Super-resolution musculoskeletal mri using deep learning. Magn Reson Med 80(5):2139–2154PubMedPubMedCentral
21.
go back to reference Chen C, Liu X, Ding M, Zheng J, Li J (2019) 3D dilated multi-fiber network for real-time brain tumor segmentation in MRI. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 184–192 Chen C, Liu X, Ding M, Zheng J, Li J (2019) 3D dilated multi-fiber network for real-time brain tumor segmentation in MRI. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 184–192
22.
go back to reference Chen H, Zhang Y, Kalra MK, Lin F, Chen Y, Liao P, Zhou J, Wang G (2017a) Low-dose ct with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging 36(12):2524–2535PubMedPubMedCentral Chen H, Zhang Y, Kalra MK, Lin F, Chen Y, Liao P, Zhou J, Wang G (2017a) Low-dose ct with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging 36(12):2524–2535PubMedPubMedCentral
23.
go back to reference Chen H, Zhang Y, Zhang W, Liao P, Li K, Zhou J, Wang G (2017b) Low-dose CT via convolutional neural network. Biomed Opt Express 8(2):679–694PubMedPubMedCentral Chen H, Zhang Y, Zhang W, Liao P, Li K, Zhou J, Wang G (2017b) Low-dose CT via convolutional neural network. Biomed Opt Express 8(2):679–694PubMedPubMedCentral
24.
go back to reference Chen H, Dou Q, Yu L, Qin J, Heng PA (2018a) Voxresnet: deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage 170:446–455PubMed Chen H, Dou Q, Yu L, Qin J, Heng PA (2018a) Voxresnet: deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage 170:446–455PubMed
25.
go back to reference Chen M, Jog A, Carass A, Prince JL (2015) Using image synthesis for multi-channel registration of different image modalities. In: Medical Imaging 2015: Image Processing, International Society for Optics and Photonics, vol 9413, p 94131Q Chen M, Jog A, Carass A, Prince JL (2015) Using image synthesis for multi-channel registration of different image modalities. In: Medical Imaging 2015: Image Processing, International Society for Optics and Photonics, vol 9413, p 94131Q
26.
go back to reference Chen W, Liu B, Peng S, Sun J, Qiao X (2018b) S3D-UNet: separable 3D U-Net for brain tumor segmentation. In: International MICCAI brainlesion workshop. Springer, pp 358–368 Chen W, Liu B, Peng S, Sun J, Qiao X (2018b) S3D-UNet: separable 3D U-Net for brain tumor segmentation. In: International MICCAI brainlesion workshop. Springer, pp 358–368
27.
go back to reference Choi H, Lee DS (2018) Generation of structural mr images from amyloid PET: application to MR-less quantification. J Nucl Med 59(7):1111–1117PubMedPubMedCentral Choi H, Lee DS (2018) Generation of structural mr images from amyloid PET: application to MR-less quantification. J Nucl Med 59(7):1111–1117PubMedPubMedCentral
28.
go back to reference Chételat G, Desgranges B, Sayette VDL, Viader F, Baron JC (2003) Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to alzheimer’s disease? Neurology 60(8):1374–7PubMed Chételat G, Desgranges B, Sayette VDL, Viader F, Baron JC (2003) Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to alzheimer’s disease? Neurology 60(8):1374–7PubMed
29.
go back to reference Costa P, Galdran A, Meyer M, Niemeijer M, Abramoff M, Mendonça A, Campilho A (2017) End-to-end adversarial retinal image synthesis. In: IEEE transactions on medical imaging Costa P, Galdran A, Meyer M, Niemeijer M, Abramoff M, Mendonça A, Campilho A (2017) End-to-end adversarial retinal image synthesis. In: IEEE transactions on medical imaging
30.
go back to reference Cristianini N, Shawe-Taylor J, Elisseeff A, Kandola JS (2001) On kernel target alignment. In: Proceedings 14th neural information processing systems, British Columbia, Canada, pp 367–373 Cristianini N, Shawe-Taylor J, Elisseeff A, Kandola JS (2001) On kernel target alignment. In: Proceedings 14th neural information processing systems, British Columbia, Canada, pp 367–373
31.
go back to reference Dar SUH, Yurt M, Karacan L, Erdem A, Erdem E, Çukur T (2018) Image synthesis in multi-contrast MRI with conditional generative adversarial networks. arXiv:180201221 Dar SUH, Yurt M, Karacan L, Erdem A, Erdem E, Çukur T (2018) Image synthesis in multi-contrast MRI with conditional generative adversarial networks. arXiv:​180201221
32.
go back to reference Deshpande G, Wang P, Rangaprakash D, Wilamowski B (2015) Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data. IEEE Trans Cybern PP(99):1–1. https://doi.org/10.1109/TCYB.2014.2379621 Deshpande G, Wang P, Rangaprakash D, Wilamowski B (2015) Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data. IEEE Trans Cybern PP(99):1–1. https://​doi.​org/​10.​1109/​TCYB.​2014.​2379621
33.
go back to reference Dolz J, Gopinath K, Yuan J, Lombaert H, Desrosiers C, Ayed IB (2018) Hyperdense-net: a hyper-densely connected CNN for multi-modal image segmentation. IEEE Trans Med Imaging 38(5):1116–1126PubMed Dolz J, Gopinath K, Yuan J, Lombaert H, Desrosiers C, Ayed IB (2018) Hyperdense-net: a hyper-densely connected CNN for multi-modal image segmentation. IEEE Trans Med Imaging 38(5):1116–1126PubMed
34.
go back to reference Dou Q, Chen H, Jin Y, Yu L, Qin J, Heng PA (2016) 3D deeply supervised network for automatic liver segmentation from CT volumes. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 149–157 Dou Q, Chen H, Jin Y, Yu L, Qin J, Heng PA (2016) 3D deeply supervised network for automatic liver segmentation from CT volumes. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 149–157
35.
go back to reference Dryden IL, Koloydenko A, Zhou D (2009) Non-euclidean statistics for covariance matrices, with applications to diffusion tensor imaging. In: The annals of applied statistics, pp 1102–1123 Dryden IL, Koloydenko A, Zhou D (2009) Non-euclidean statistics for covariance matrices, with applications to diffusion tensor imaging. In: The annals of applied statistics, pp 1102–1123
36.
go back to reference Elgendi M, Nasir MU, Tang Q, Fletcher RR, Howard N, Menon C, Ward R, Parker W, Nicolaou S (2020) The performance of deep neural networks in differentiating chest x-rays of covid-19 patients from other bacterial and viral pneumonias. In: Frontiers in medicine Elgendi M, Nasir MU, Tang Q, Fletcher RR, Howard N, Menon C, Ward R, Parker W, Nicolaou S (2020) The performance of deep neural networks in differentiating chest x-rays of covid-19 patients from other bacterial and viral pneumonias. In: Frontiers in medicine
37.
go back to reference Emami H, Dong M, Nejad-Davarani SP, Glide-Hurst CK (2018) Generating synthetic CTs from magnetic resonance images using generative adversarial networks. Med Phys 45(8):3627–3636 Emami H, Dong M, Nejad-Davarani SP, Glide-Hurst CK (2018) Generating synthetic CTs from magnetic resonance images using generative adversarial networks. Med Phys 45(8):3627–3636
38.
go back to reference Farag A, Lu L, Roth HR, Liu J, Turkbey E, Summers RM (2016) A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling. IEEE Trans Image Process 26(1):386–399PubMed Farag A, Lu L, Roth HR, Liu J, Turkbey E, Summers RM (2016) A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling. IEEE Trans Image Process 26(1):386–399PubMed
39.
go back to reference Fefferman C, mitter ks, Narayanan H (2016) Testing the manifold hypothesis. In: Journal of the American mathematical society, pp 983–1049 Fefferman C, mitter ks, Narayanan H (2016) Testing the manifold hypothesis. In: Journal of the American mathematical society, pp 983–1049
40.
go back to reference Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR, Decarli CS, Scott Turner R, Koeppe RA, Ra Higdon (2007) FDG-PET improves accuracy in distinguishing frontotemporal dementia and alzheimer\(\ddot{\rm {s}}\) disease. Brain 130(10):2616–2635PubMed Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR, Decarli CS, Scott Turner R, Koeppe RA, Ra Higdon (2007) FDG-PET improves accuracy in distinguishing frontotemporal dementia and alzheimer\(\ddot{\rm {s}}\) disease. Brain 130(10):2616–2635PubMed
41.
go back to reference Fox CN, Schott MJ (2004) Imaging cerebral atrophy: normal ageing to alzheimer’s disease. In: Lancet (London, England), pp 392–394 Fox CN, Schott MJ (2004) Imaging cerebral atrophy: normal ageing to alzheimer’s disease. In: Lancet (London, England), pp 392–394
42.
go back to reference Gao Z, Wang L, Zhou L, Zhang J (2016) Hep-2 cell image classification with deep convolutional neural networks. IEEE J Biomed Health Inform 21(2):416–428PubMed Gao Z, Wang L, Zhou L, Zhang J (2016) Hep-2 cell image classification with deep convolutional neural networks. IEEE J Biomed Health Inform 21(2):416–428PubMed
43.
go back to reference Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. J Am Med Assoc (JAMA) 316(22):2402–2410 Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. J Am Med Assoc (JAMA) 316(22):2402–2410
44.
go back to reference Han C, Hayashi H, Rundo L, Araki R, Shimoda W, Muramatsu S, Furukawa Y, Mauri G, Nakayama H (2018) Gan-based synthetic brain mr image generation. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) Han C, Hayashi H, Rundo L, Araki R, Shimoda W, Muramatsu S, Furukawa Y, Mauri G, Nakayama H (2018) Gan-based synthetic brain mr image generation. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018)
45.
go back to reference Han X (2017) MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys 44(4):1408–1419PubMed Han X (2017) MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys 44(4):1408–1419PubMed
46.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
47.
go back to reference Hiasa Y, Otake Y, Takao M, Matsuoka T, Takashima K, Carass A, Prince JL, Sugano N, Sato Y (2018) Cross-modality image synthesis from unpaired data using cyclegan. In: International workshop on simulation and synthesis in medical imaging, Springer, pp 31–41 Hiasa Y, Otake Y, Takao M, Matsuoka T, Takashima K, Carass A, Prince JL, Sugano N, Sato Y (2018) Cross-modality image synthesis from unpaired data using cyclegan. In: International workshop on simulation and synthesis in medical imaging, Springer, pp 31–41
48.
go back to reference Higdon R, Foster NL, Koeppe RA, Decarli CS, Minoshima S (2010) A comparison of classification methods for differentiating fronto-temporal dementia from alzheimer’s disease using FDG-PET imaging. Stat Med 23(2):315–326 Higdon R, Foster NL, Koeppe RA, Decarli CS, Minoshima S (2010) A comparison of classification methods for differentiating fronto-temporal dementia from alzheimer’s disease using FDG-PET imaging. Stat Med 23(2):315–326
49.
go back to reference Hofmann M, Steinke F, Scheel V, Charpiat G, Farquhar J, Aschoff P, Brady M, Scholkopf B (1875) Pichler BJ (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49(11) Hofmann M, Steinke F, Scheel V, Charpiat G, Farquhar J, Aschoff P, Brady M, Scholkopf B (1875) Pichler BJ (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49(11)
50.
go back to reference Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, Pichler BJ, Schölkopf B (2011) MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation-and atlas-based methods. J Nucl Med 52(9):1392–1399PubMed Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, Pichler BJ, Schölkopf B (2011) MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation-and atlas-based methods. J Nucl Med 52(9):1392–1399PubMed
51.
go back to reference Huang S, Li J, Sun L, Ye J, Fleisher A, Wu T, Chen K, Reiman E (2010) Learning brain connectivity of alzheimer’s disease by sparse inverse covariance estimation. NeuroImage 50(3):935–949PubMed Huang S, Li J, Sun L, Ye J, Fleisher A, Wu T, Chen K, Reiman E (2010) Learning brain connectivity of alzheimer’s disease by sparse inverse covariance estimation. NeuroImage 50(3):935–949PubMed
52.
go back to reference Huang Y, Member S, IEEE, Shao L, Member S (2017) Cross-modality image synthesis via weakly-coupled and geometry co-regularized joint dictionary learning. IEEE Trans Med Imaging PP(99):1–1 Huang Y, Member S, IEEE, Shao L, Member S (2017) Cross-modality image synthesis via weakly-coupled and geometry co-regularized joint dictionary learning. IEEE Trans Med Imaging PP(99):1–1
53.
go back to reference Huynh T, Gao Y, Kang J, Wang L, Zhang P, Lian J, Shen D (2016) Estimating CT image from MRI data using structured random forest and auto-context model. IEEE Trans Med Imaging 35(1):174–183PubMed Huynh T, Gao Y, Kang J, Wang L, Zhang P, Lian J, Shen D (2016) Estimating CT image from MRI data using structured random forest and auto-context model. IEEE Trans Med Imaging 35(1):174–183PubMed
54.
go back to reference Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH (2017) Brain tumor segmentation and radiomics survival prediction: contribution to the brats 2017 challenge. In: International MICCAI brainlesion workshop, Springer, pp 287–297 Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH (2017) Brain tumor segmentation and radiomics survival prediction: contribution to the brats 2017 challenge. In: International MICCAI brainlesion workshop, Springer, pp 287–297
55.
go back to reference Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH (2018) No new-net. In: International MICCAI brainlesion workshop, Springer, pp 234–244 Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH (2018) No new-net. In: International MICCAI brainlesion workshop, Springer, pp 234–244
56.
57.
go back to reference Jaworek-Korjakowska J, Kleczek P, Gorgon M (2019) Melanoma thickness prediction based on convolutional neural network with vgg-19 model transfer learning. In: IEEE conference on computer vision and pattern recognition workshop (CVPRW) Jaworek-Korjakowska J, Kleczek P, Gorgon M (2019) Melanoma thickness prediction based on convolutional neural network with vgg-19 model transfer learning. In: IEEE conference on computer vision and pattern recognition workshop (CVPRW)
58.
go back to reference Jayasumana S, Hartley R, Salzmann M, Li H, Harandi M (2013) Kernel methods on the riemannian manifold of symmetric positive definite matrices. In: IEEE computer society conference on computer vision and pattern recognition Jayasumana S, Hartley R, Salzmann M, Li H, Harandi M (2013) Kernel methods on the riemannian manifold of symmetric positive definite matrices. In: IEEE computer society conference on computer vision and pattern recognition
59.
go back to reference Jia H, Xia Y, Song Y, Zhang D, Huang H, Zhang Y, Cai W (2019) 3D APA-Net: 3D adversarial pyramid anisotropic convolutional network for prostate segmentation in MR images. IN: IEEE transactions on medical imaging Jia H, Xia Y, Song Y, Zhang D, Huang H, Zhang Y, Cai W (2019) 3D APA-Net: 3D adversarial pyramid anisotropic convolutional network for prostate segmentation in MR images. IN: IEEE transactions on medical imaging
60.
go back to reference Jog A, Carass A, Roy S, Pham DL, Prince JL (2017a) Random forest regression for magnetic resonance image synthesis. Med Image Anal 35:475–488PubMed Jog A, Carass A, Roy S, Pham DL, Prince JL (2017a) Random forest regression for magnetic resonance image synthesis. Med Image Anal 35:475–488PubMed
61.
go back to reference Jog A, Carass A, Roy S, Pham DL, Prince JL (2017b) Random forest regression for magnetic resonance image synthesis. Med Image Anal 35:475–488PubMed Jog A, Carass A, Roy S, Pham DL, Prince JL (2017b) Random forest regression for magnetic resonance image synthesis. Med Image Anal 35:475–488PubMed
62.
go back to reference Joyce T, Chartsias A, Tsaftaris SA (2017) Robust multi-modal MR image synthesis. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 347–355 Joyce T, Chartsias A, Tsaftaris SA (2017) Robust multi-modal MR image synthesis. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 347–355
63.
go back to reference Kaiser M (2011) A tutorial in connectome analysis: topological and spatial features of brain networks. Neuroimage 57(3):892–907PubMed Kaiser M (2011) A tutorial in connectome analysis: topological and spatial features of brain networks. Neuroimage 57(3):892–907PubMed
64.
go back to reference Kamnitsas K, Bai W, Ferrante E, McDonagh S, Sinclair M, Pawlowski N, Rajchl M, Lee M, Kainz B, Rueckert D et al (2017a) Ensembles of multiple models and architectures for robust brain tumour segmentation. In: International MICCAI brainlesion workshop, Springer, pp 450–462 Kamnitsas K, Bai W, Ferrante E, McDonagh S, Sinclair M, Pawlowski N, Rajchl M, Lee M, Kainz B, Rueckert D et al (2017a) Ensembles of multiple models and architectures for robust brain tumour segmentation. In: International MICCAI brainlesion workshop, Springer, pp 450–462
65.
go back to reference Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017b) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78PubMed Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017b) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78PubMed
66.
go back to reference Kang E, Min J, Ye JC (2017) A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med Phys 44(10):e360–e375PubMed Kang E, Min J, Ye JC (2017) A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med Phys 44(10):e360–e375PubMed
67.
go back to reference Keerthi SS (2002) Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms. IEEE Trans Neural Netw 13:1225–1229PubMed Keerthi SS (2002) Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms. IEEE Trans Neural Netw 13:1225–1229PubMed
68.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
69.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 316(22):84–90 Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 316(22):84–90
70.
go back to reference Leynes AP, Yang J, Wiesinger F, Kaushik SS, Shanbhag DD, Seo Y, Hope TA, Larson PE (2017) Direct pseudo CT generation for pelvis PET/MRI attenuation correction using deep convolutional neural networks with multi-parametric mri: zero echo-time and dixon deep pseudoct (ZeDD-CT). In: Journal of nuclear medicine, pp jnumed–117 Leynes AP, Yang J, Wiesinger F, Kaushik SS, Shanbhag DD, Seo Y, Hope TA, Larson PE (2017) Direct pseudo CT generation for pelvis PET/MRI attenuation correction using deep convolutional neural networks with multi-parametric mri: zero echo-time and dixon deep pseudoct (ZeDD-CT). In: Journal of nuclear medicine, pp jnumed–117
71.
go back to reference Li W et al (2015) Automatic segmentation of liver tumor in ct images with deep convolutional neural networks. J Comput Commun 3(11):146 Li W et al (2015) Automatic segmentation of liver tumor in ct images with deep convolutional neural networks. J Comput Commun 3(11):146
72.
go back to reference Li X, Sroubek A, Kelly MS, Lesser I, Sussman E, He Y, Branch C, Foxe JJ (2012) Atypical pulvinar-cortical pathways during sustained attention performance in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 51(11):1197–1207PubMedPubMedCentral Li X, Sroubek A, Kelly MS, Lesser I, Sussman E, He Y, Branch C, Foxe JJ (2012) Atypical pulvinar-cortical pathways during sustained attention performance in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 51(11):1197–1207PubMedPubMedCentral
73.
go back to reference Litjens G, Toth R, van de Ven W, Hoeks C, Kerkstra S, van Ginneken B, Vincent G, Guillard G, Birbeck N, Zhang J et al (2014) Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med Image Anal 18(2):359–373PubMed Litjens G, Toth R, van de Ven W, Hoeks C, Kerkstra S, van Ginneken B, Vincent G, Guillard G, Birbeck N, Zhang J et al (2014) Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med Image Anal 18(2):359–373PubMed
74.
go back to reference Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017a) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88PubMed Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017a) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88PubMed
75.
go back to reference Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JA, van Ginneken B, Sánchez CI (2017b) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88PubMed Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JA, van Ginneken B, Sánchez CI (2017b) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88PubMed
76.
go back to reference Liu F, Wee CY, Chen H, Shen D (2014) Inter-modality relationship constrained multi-modality multi-task feature selection for alzheimer’s disease and mild cognitive impairment identification. In: NeuroImage, pp 466–475 Liu F, Wee CY, Chen H, Shen D (2014) Inter-modality relationship constrained multi-modality multi-task feature selection for alzheimer’s disease and mild cognitive impairment identification. In: NeuroImage, pp 466–475
77.
go back to reference Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB (2017) Deep learning MR imaging-based attenuation correction for PET/MR imaging. Radiology 286(2):676–684PubMed Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB (2017) Deep learning MR imaging-based attenuation correction for PET/MR imaging. Radiology 286(2):676–684PubMed
79.
go back to reference Liu M, Zhang D, Adeli-Mosabbeb E, Shen D (2015) Inherent structure based multi-view learning with multi-template feature representation for alzheimer’s disease diagnosis. In: IEEE transactions on biomedical engineering, pp 1–1 Liu M, Zhang D, Adeli-Mosabbeb E, Shen D (2015) Inherent structure based multi-view learning with multi-template feature representation for alzheimer’s disease diagnosis. In: IEEE transactions on biomedical engineering, pp 1–1
80.
go back to reference Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440 Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440
81.
go back to reference Milletari F, Navab N, Ahmadi SA (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision (3DV), IEEE, pp 565–571 Milletari F, Navab N, Ahmadi SA (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision (3DV), IEEE, pp 565–571
82.
go back to reference Misra C, Fan Y, Davatzikos C (2009) Baseline and longitudinal patterns of brain atrophy in mci patients, and their use in prediction of short-term conversion to ad: results from adni. NeuroImage, pp 1415–1422 Misra C, Fan Y, Davatzikos C (2009) Baseline and longitudinal patterns of brain atrophy in mci patients, and their use in prediction of short-term conversion to ad: results from adni. NeuroImage, pp 1415–1422
83.
go back to reference Moeskops P, Viergever MA, Mendrik AM, De Vries LS, Benders MJ, Išgum I (2016a) Automatic segmentation of mr brain images with a convolutional neural network. IEEE Trans Med Imaging 35(5):1252–1261PubMed Moeskops P, Viergever MA, Mendrik AM, De Vries LS, Benders MJ, Išgum I (2016a) Automatic segmentation of mr brain images with a convolutional neural network. IEEE Trans Med Imaging 35(5):1252–1261PubMed
84.
go back to reference Moeskops P, Wolterink JM, van der Velden BH, Gilhuijs KG, Leiner T, Viergever MA, Išgum I (2016b) Deep learning for multi-task medical image segmentation in multiple modalities. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 478–486 Moeskops P, Wolterink JM, van der Velden BH, Gilhuijs KG, Leiner T, Viergever MA, Išgum I (2016b) Deep learning for multi-task medical image segmentation in multiple modalities. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 478–486
85.
go back to reference Moeskops P, Veta M, Lafarge MW, Eppenhof KA, Pluim JP (2017) Adversarial training and dilated convolutions for brain MRI segmentation. In: Deep learning in medical image analysis and multimodal learning for clinical decision support, Springer, pp 56–64 Moeskops P, Veta M, Lafarge MW, Eppenhof KA, Pluim JP (2017) Adversarial training and dilated convolutions for brain MRI segmentation. In: Deep learning in medical image analysis and multimodal learning for clinical decision support, Springer, pp 56–64
86.
go back to reference Myronenko A (2018) 3D MRI brain tumor segmentation using autoencoder regularization. In: International MICCAI brainlesion workshop, Springer, pp 311–320 Myronenko A (2018) 3D MRI brain tumor segmentation using autoencoder regularization. In: International MICCAI brainlesion workshop, Springer, pp 311–320
87.
go back to reference Nair T, Precup D, Arnold DL, Arbel T (2020) Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation. Med Image Anal 59:101557PubMed Nair T, Precup D, Arnold DL, Arbel T (2020) Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation. Med Image Anal 59:101557PubMed
88.
go back to reference Nie D, Cao X, Gao Y, Wang L, Shen D (2016) Estimating CT image from MRI data using 3D fully convolutional networks. In: Deep learning and data labeling for medical applications, Springer, pp 170–178 Nie D, Cao X, Gao Y, Wang L, Shen D (2016) Estimating CT image from MRI data using 3D fully convolutional networks. In: Deep learning and data labeling for medical applications, Springer, pp 170–178
89.
go back to reference Nie D, Trullo R, Lian J, Wang L, Petitjean C, Ruan S, Wang Q, Shen D (2018) Medical image synthesis with deep convolutional adversarial networks. In: IEEE transactions on biomedical engineering Nie D, Trullo R, Lian J, Wang L, Petitjean C, Ruan S, Wang Q, Shen D (2018) Medical image synthesis with deep convolutional adversarial networks. In: IEEE transactions on biomedical engineering
90.
go back to reference Olut S, Sahin YH, Demir U, Unal G (2018) Generative adversarial training for MRA image synthesis using multi-contrast MRI. In: International workshop on PRedictive intelligence in MEdicine, Springer, pp 147–154 Olut S, Sahin YH, Demir U, Unal G (2018) Generative adversarial training for MRA image synthesis using multi-contrast MRI. In: International workshop on PRedictive intelligence in MEdicine, Springer, pp 147–154
91.
go back to reference Poudel RP, Lamata P, Montana G (2016) Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. In: Reconstruction, segmentation, and analysis of medical images, Springer, pp 83–94 Poudel RP, Lamata P, Montana G (2016) Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. In: Reconstruction, segmentation, and analysis of medical images, Springer, pp 83–94
92.
go back to reference Qayyum A, Anwar SM, Awais M, Majid M (2017) Medical image retrieval using deep convolutional neural network. Neurocomputing 266:8–20 Qayyum A, Anwar SM, Awais M, Majid M (2017) Medical image retrieval using deep convolutional neural network. Neurocomputing 266:8–20
93.
go back to reference Robinson MD, Chiu SJ, Toth CA, Izatt JA, Lo JY, Farsiu S (2010) New applications of super-resolution in medical imaging. In: Milanfar P (ed) Super-resolution imaging. CRC Press, pp 383–412 Robinson MD, Chiu SJ, Toth CA, Izatt JA, Lo JY, Farsiu S (2010) New applications of super-resolution in medical imaging. In: Milanfar P (ed) Super-resolution imaging. CRC Press, pp 383–412
94.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 234–241
95.
go back to reference Roth HR, Lu L, Farag A, Shin HC, Liu J, Turkbey EB, Summers RM (2015) Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 556–564 Roth HR, Lu L, Farag A, Shin HC, Liu J, Turkbey EB, Summers RM (2015) Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 556–564
96.
go back to reference Roy S, Carass A, Prince JL (2013) Magnetic resonance image example-based contrast synthesis. IEEE Trans Med Imaging 32(12):2348–2363PubMedPubMedCentral Roy S, Carass A, Prince JL (2013) Magnetic resonance image example-based contrast synthesis. IEEE Trans Med Imaging 32(12):2348–2363PubMedPubMedCentral
97.
go back to reference Roy S, Butman JA, Reich DS, Calabresi PA, Pham DL (2018) Multiple sclerosis lesion segmentation from brain MRI via fully convolutional neural networks. arXiv:180309172 Roy S, Butman JA, Reich DS, Calabresi PA, Pham DL (2018) Multiple sclerosis lesion segmentation from brain MRI via fully convolutional neural networks. arXiv:​180309172
99.
go back to reference Dar SUh, Yurt M, Karacan L, Erdem A, Erdem E (2019) Image synthesis in multi-contrast mri with conditional generative adversarial networks. In: IEEE transactions on medical imaging Dar SUh, Yurt M, Karacan L, Erdem A, Erdem E (2019) Image synthesis in multi-contrast mri with conditional generative adversarial networks. In: IEEE transactions on medical imaging
100.
go back to reference Schlemper J, Caballero J, Hajnal JV, Price AN, Rueckert D (2017) A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging 37(2):491–503PubMed Schlemper J, Caballero J, Hajnal JV, Price AN, Rueckert D (2017) A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging 37(2):491–503PubMed
101.
go back to reference Schölkopf B, Smola A, Müller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319 Schölkopf B, Smola A, Müller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319
102.
go back to reference Silverstein JW (1986) Eigenvalues and eigenvectors of large dimensional sample covariance matrices. Contemp Math 50:153–159 Silverstein JW (1986) Eigenvalues and eigenvectors of large dimensional sample covariance matrices. Contemp Math 50:153–159
103.
104.
go back to reference Singh SP, Wang L, Gupta S, Goli H, Padmanabhan P, Gulyás B (2020) 3D deep learning on medical images: a review. Sensors Singh SP, Wang L, Gupta S, Goli H, Padmanabhan P, Gulyás B (2020) 3D deep learning on medical images: a review. Sensors
105.
go back to reference Sra S (2012) A new metric on the manifold of kernel matrices with application to matrix geometric means. In: Pereira F, Burges C, Bottou L, Weinberger K (eds) Advances in neural information processing systems 25, Curran Associates, Inc., pp 144–152 Sra S (2012) A new metric on the manifold of kernel matrices with application to matrix geometric means. In: Pereira F, Burges C, Bottou L, Weinberger K (eds) Advances in neural information processing systems 25, Curran Associates, Inc., pp 144–152
106.
go back to reference Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, Okuda T, Liang L, Ge Y, Komohara Y et al (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9(1):53–60PubMed Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, Okuda T, Liang L, Ge Y, Komohara Y et al (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9(1):53–60PubMed
107.
go back to reference Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9
108.
go back to reference Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312PubMed Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312PubMed
109.
go back to reference Thong W, Kadoury S, Piché N, Pal CJ (2018) Convolutional networks for kidney segmentation in contrast-enhanced ct scans. Comput Methods Biomech Biomed Eng Imaging Vis 6(3):277–282 Thong W, Kadoury S, Piché N, Pal CJ (2018) Convolutional networks for kidney segmentation in contrast-enhanced ct scans. Comput Methods Biomech Biomed Eng Imaging Vis 6(3):277–282
110.
111.
go back to reference Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289PubMed Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289PubMed
112.
go back to reference Van Nguyen H, Zhou K, Vemulapalli R (2015) Cross-domain synthesis of medical images using efficient location-sensitive deep network. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 677–684 Van Nguyen H, Zhou K, Vemulapalli R (2015) Cross-domain synthesis of medical images using efficient location-sensitive deep network. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 677–684
113.
go back to reference Vapnik V (2013) The nature of statistical learning theory. Springer science & business media Vapnik V (2013) The nature of statistical learning theory. Springer science & business media
114.
go back to reference Varoquaux G, Baronnet F, Kleinschmidt A, Fillard P, Thirion B (2010) Detection of brain functional-connectivity difference in post-stroke patients using group-level covariance modeling. In: Medical image computing and computer-assisted intervention–MICCAI 2010, Springer, pp 200–208 Varoquaux G, Baronnet F, Kleinschmidt A, Fillard P, Thirion B (2010) Detection of brain functional-connectivity difference in post-stroke patients using group-level covariance modeling. In: Medical image computing and computer-assisted intervention–MICCAI 2010, Springer, pp 200–208
115.
go back to reference Wang L (2008) Feature selection with kernel class separability. IEEE Trans Pattern Anal Mach Intell 30:1534–1546PubMed Wang L (2008) Feature selection with kernel class separability. IEEE Trans Pattern Anal Mach Intell 30:1534–1546PubMed
116.
go back to reference Wang L, Xue P, Chan KL (2008) Two criteria for model selection in multiclass support vector machines. IEEE Trans Syst Man Cybern B, Cybern 38:1432–1448PubMed Wang L, Xue P, Chan KL (2008) Two criteria for model selection in multiclass support vector machines. IEEE Trans Syst Man Cybern B, Cybern 38:1432–1448PubMed
117.
go back to reference Wang Y, Ma G, An L, Shi F, Zhang P, Wu X, Zhou J, Shen D (2016a) Semisupervised tripled dictionary learning for standard-dose PET image prediction using low-dose PET and multimodal MRI. In: IEEE transactions on biomedical engineering pp 1–1 Wang Y, Ma G, An L, Shi F, Zhang P, Wu X, Zhou J, Shen D (2016a) Semisupervised tripled dictionary learning for standard-dose PET image prediction using low-dose PET and multimodal MRI. In: IEEE transactions on biomedical engineering pp 1–1
118.
go back to reference Wang Y, Zhang P, An L, Ma G, Kang J, Shi F, Wu X, Zhou J, Lalush DS, Lin W et al (2016b) Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation. Phys Med Biol 61(2):791PubMed Wang Y, Zhang P, An L, Ma G, Kang J, Shi F, Wu X, Zhou J, Lalush DS, Lin W et al (2016b) Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation. Phys Med Biol 61(2):791PubMed
119.
go back to reference Wang Y, Ma G, An L, Shi F, Zhang P, Lalush DS, Wu X, Pu Y, Zhou J, Shen D (2017) Semisupervised tripled dictionary learning for standard-dose PET image prediction using low-dose PET and multimodal MRI. IEEE Trans Biomed Eng 64(3):569–579PubMed Wang Y, Ma G, An L, Shi F, Zhang P, Lalush DS, Wu X, Pu Y, Zhou J, Shen D (2017) Semisupervised tripled dictionary learning for standard-dose PET image prediction using low-dose PET and multimodal MRI. IEEE Trans Biomed Eng 64(3):569–579PubMed
120.
go back to reference Wang Y, Yu B, Wang L, Zu C, Lalush DS, Lin W, Wu X, Zhou J, Shen D, Zhou L (2018a) 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. NeuroImage 174:550–562PubMed Wang Y, Yu B, Wang L, Zu C, Lalush DS, Lin W, Wu X, Zhou J, Shen D, Zhou L (2018a) 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. NeuroImage 174:550–562PubMed
121.
go back to reference Wang Y, Zhou L, Yu B, Wang L, Zu C, Lalush DS, Lin W, Wu X, Zhou J, Shen D (2018b) 3D auto-context-based locality adaptive multi-modality GANs for PET synthesis. In: IEEE transactions on medical imaging, pp 1328–1339 Wang Y, Zhou L, Yu B, Wang L, Zu C, Lalush DS, Lin W, Wu X, Zhou J, Shen D (2018b) 3D auto-context-based locality adaptive multi-modality GANs for PET synthesis. In: IEEE transactions on medical imaging, pp 1328–1339
122.
go back to reference Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612PubMed Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612PubMed
123.
go back to reference Wee CY, Yap PT, Denny K, Browndyke JN, Potter GG, Welsh-Bohmer KA, Wang L, Shen D (2012a) Resting-state multi-spectrum functional connectivity networks for identification of MCI patients. PloS One 7(5):e37828PubMedPubMedCentral Wee CY, Yap PT, Denny K, Browndyke JN, Potter GG, Welsh-Bohmer KA, Wang L, Shen D (2012a) Resting-state multi-spectrum functional connectivity networks for identification of MCI patients. PloS One 7(5):e37828PubMedPubMedCentral
124.
go back to reference Wee CY, Yap PT, Zhang D, Wang L, Shen D (2012b) Constrained sparse functional connectivity networks for MCI classification. In: Medical image computing and computer-assisted intervention–MICCAI 2012, Springer, pp 212–219 Wee CY, Yap PT, Zhang D, Wang L, Shen D (2012b) Constrained sparse functional connectivity networks for MCI classification. In: Medical image computing and computer-assisted intervention–MICCAI 2012, Springer, pp 212–219
125.
go back to reference Wei W, Poirion E, Bodini B, Durrleman S, Ayache N, Stankoff B, Colliot O (2018) Learning myelin content in multiple sclerosis from multimodal MRI through adversarial training. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 514–522 Wei W, Poirion E, Bodini B, Durrleman S, Ayache N, Stankoff B, Colliot O (2018) Learning myelin content in multiple sclerosis from multimodal MRI through adversarial training. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 514–522
126.
go back to reference Welander P, Karlsson S, Eklund A (2018) Generative adversarial networks for image-to-image translation on multi-contrast MR images-a comparison of cyclegan and unit. arXiv:180607777 Welander P, Karlsson S, Eklund A (2018) Generative adversarial networks for image-to-image translation on multi-contrast MR images-a comparison of cyclegan and unit. arXiv:​180607777
127.
go back to reference Wolterink JM, Dinkla AM, Savenije MHF, Seevinck PR, Igum I (2017) Deep MR to CT synthesis using unpaired data. In: International workshop on simulation and synthesis in medical imaging Wolterink JM, Dinkla AM, Savenije MHF, Seevinck PR, Igum I (2017) Deep MR to CT synthesis using unpaired data. In: International workshop on simulation and synthesis in medical imaging
128.
go back to reference Wulczyn E, Steiner DF, Xu Z, Sadhwani A, Wang H, Flament-Auvigne I, Mermel CH, Chen PHC, Liu Y, Stumpe MC (2020) Deep learning-based survival prediction for multiple cancer types using histopathology images. PLoS One Wulczyn E, Steiner DF, Xu Z, Sadhwani A, Wang H, Flament-Auvigne I, Mermel CH, Chen PHC, Liu Y, Stumpe MC (2020) Deep learning-based survival prediction for multiple cancer types using histopathology images. PLoS One
129.
go back to reference Xiang L, Qiao Y, Nie D, An L, Lin W, Wang Q, Shen D (2017) Deep auto-context convolutional neural networks for standard-dose PET image estimation from low-dose PET/MRI. Neurocomputing 267:406–416PubMedPubMedCentral Xiang L, Qiao Y, Nie D, An L, Lin W, Wang Q, Shen D (2017) Deep auto-context convolutional neural networks for standard-dose PET image estimation from low-dose PET/MRI. Neurocomputing 267:406–416PubMedPubMedCentral
130.
go back to reference Xiong H, Swamy M, Ahmad MO (2005) Optimizing the kernel in the empirical feature space. IEEE Trans Neural Netw 16:460–474PubMed Xiong H, Swamy M, Ahmad MO (2005) Optimizing the kernel in the empirical feature space. IEEE Trans Neural Netw 16:460–474PubMed
131.
go back to reference Yang Q, Li N, Zhao Z, Fan X, Chang EI, Xu Y, et al. (2018) Mri cross-modality neuroimage-to-neuroimage translation. arXiv:180106940 Yang Q, Li N, Zhao Z, Fan X, Chang EI, Xu Y, et al. (2018) Mri cross-modality neuroimage-to-neuroimage translation. arXiv:​180106940
132.
go back to reference Ye DH, Zikic D, Glocker B, Criminisi A, Konukoglu E (2013) Modality propagation: coherent synthesis of subject-specific scans with data-driven regularization. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 606–613 Ye DH, Zikic D, Glocker B, Criminisi A, Konukoglu E (2013) Modality propagation: coherent synthesis of subject-specific scans with data-driven regularization. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 606–613
133.
go back to reference Yi X, Babyn P (2018) Sharpness-aware low-dose ct denoising using conditional generative adversarial network. J Digit Imaging 31(5):655–669PubMedPubMedCentral Yi X, Babyn P (2018) Sharpness-aware low-dose ct denoising using conditional generative adversarial network. J Digit Imaging 31(5):655–669PubMedPubMedCentral
134.
go back to reference Yu B, Zhou L, Wang L, Shi Y, Fripp J, Bourgeat P (2019) Ea-GANs: edge-aware generative adversarial networks for cross-modality MR image synthesis. In: IEEE transactions on medical imaging Yu B, Zhou L, Wang L, Shi Y, Fripp J, Bourgeat P (2019) Ea-GANs: edge-aware generative adversarial networks for cross-modality MR image synthesis. In: IEEE transactions on medical imaging
135.
go back to reference Yu B, Zhou L, Wang L, Yang W, Yang M, Bourgeat P, Fripp J (2020) Learning sample-adaptive intensity lookup table for brain tumor segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 216–226 Yu B, Zhou L, Wang L, Yang W, Yang M, Bourgeat P, Fripp J (2020) Learning sample-adaptive intensity lookup table for brain tumor segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 216–226
136.
go back to reference Yu L, Yang X, Chen H, Qin J, Heng PA (2017) Volumetric convnets with mixed residual connections for automated prostate segmentation from 3D MR images. In: Thirty-first AAAI conference on artificial intelligence Yu L, Yang X, Chen H, Qin J, Heng PA (2017) Volumetric convnets with mixed residual connections for automated prostate segmentation from 3D MR images. In: Thirty-first AAAI conference on artificial intelligence
137.
go back to reference Zeng K, Zheng H, Cai C, Yang Y, Zhang K, Chen Z (2018) Simultaneous single-and multi-contrast super-resolution for brain MRI images based on a convolutional neural network. Comput Biol Med 99:133–141PubMed Zeng K, Zheng H, Cai C, Yang Y, Zhang K, Chen Z (2018) Simultaneous single-and multi-contrast super-resolution for brain MRI images based on a convolutional neural network. Comput Biol Med 99:133–141PubMed
138.
go back to reference Zhang D, Wang Y, Zhou L, Yuan H, Shen D (2011) Multimodal classification of alzheimer’s disease and mild cognitive impairment. NeuroImage, pp 856–867 Zhang D, Wang Y, Zhou L, Yuan H, Shen D (2011) Multimodal classification of alzheimer’s disease and mild cognitive impairment. NeuroImage, pp 856–867
139.
go back to reference Zhang J, Wang L, Zhou L, Li W (2015a) Learning discriminative stein kernel for SPD matrices and its applications. IEEE Trans Neural Netw Learn Syst 27(5):1020–1033PubMed Zhang J, Wang L, Zhou L, Li W (2015a) Learning discriminative stein kernel for SPD matrices and its applications. IEEE Trans Neural Netw Learn Syst 27(5):1020–1033PubMed
140.
go back to reference Zhang J, Zhou L, Wang L, Li W (2015b) Functional brain network classification with compact representation of SICE matrices. IEEE Trans Biomed Eng 62(6):1623–1634PubMed Zhang J, Zhou L, Wang L, Li W (2015b) Functional brain network classification with compact representation of SICE matrices. IEEE Trans Biomed Eng 62(6):1623–1634PubMed
141.
go back to reference Zhang J, Gao Y, Gao Y, Munsell BC, Shen D (2016) Detecting anatomical landmarks for fast alzheimer’s disease diagnosis. IEEE Trans Med Imaging 35(12):2524–2533PubMedPubMedCentral Zhang J, Gao Y, Gao Y, Munsell BC, Shen D (2016) Detecting anatomical landmarks for fast alzheimer’s disease diagnosis. IEEE Trans Med Imaging 35(12):2524–2533PubMedPubMedCentral
142.
go back to reference Zhang Z, Yang L, Zheng Y (2018) Translating and segmenting multimodal medical volumes with cycle-and shape-consistency generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 9242–9251 Zhang Z, Yang L, Zheng Y (2018) Translating and segmenting multimodal medical volumes with cycle-and shape-consistency generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 9242–9251
143.
go back to reference Zhou T, Fu H, Chen G, Shen J, Shao L (2020) Hi-net: hybrid-fusion network for multi-modal mr image synthesis. IEEE Trans Med Imaging PP(99):1–1 Zhou T, Fu H, Chen G, Shen J, Shao L (2020) Hi-net: hybrid-fusion network for multi-modal mr image synthesis. IEEE Trans Med Imaging PP(99):1–1
144.
go back to reference Zhou Y, Xie L, Shen W, Wang Y, Fishman EK, Yuille AL (2017) A fixed-point model for pancreas segmentation in abdominal CT scans. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 693–701 Zhou Y, Xie L, Shen W, Wang Y, Fishman EK, Yuille AL (2017) A fixed-point model for pancreas segmentation in abdominal CT scans. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 693–701
145.
go back to reference Zhu Q, Du B, Turkbey B, Choyke PL, Yan P (2017) Deeply-supervised CNN for prostate segmentation. In: 2017 international joint conference on neural networks (IJCNN), IEEE, pp 178–184 Zhu Q, Du B, Turkbey B, Choyke PL, Yan P (2017) Deeply-supervised CNN for prostate segmentation. In: 2017 international joint conference on neural networks (IJCNN), IEEE, pp 178–184
146.
go back to reference Zreik M, Leiner T, De Vos BD, van Hamersvelt RW, Viergever MA, Išgum I (2016) Automatic segmentation of the left ventricle in cardiac CT angiography using convolutional neural networks. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI), IEEE, pp 40–43 Zreik M, Leiner T, De Vos BD, van Hamersvelt RW, Viergever MA, Išgum I (2016) Automatic segmentation of the left ventricle in cardiac CT angiography using convolutional neural networks. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI), IEEE, pp 40–43
147.
go back to reference Zu C, Wang Y, Zhou L, Wang L, Zhang D (2018) Multi-modality feature selection with adaptive similarity learning for classification of alzheimer’s disease. In: IEEE international symposium on biomedical imaging (ISBI) Zu C, Wang Y, Zhou L, Wang L, Zhang D (2018) Multi-modality feature selection with adaptive similarity learning for classification of alzheimer’s disease. In: IEEE international symposium on biomedical imaging (ISBI)
Metadata
Title
Medical Imaging Based Diagnosis Through Machine Learning and Data Analysis
Authors
Jianjia Zhang
Yan Wang
Chen Zu
Biting Yu
Lei Wang
Luping Zhou
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-69951-2_8

Premium Partner