Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-12-2019 | Original Article | Issue 1/2019

Network Modeling Analysis in Health Informatics and Bioinformatics 1/2019

Melanoma risk modeling from limited positive samples

Journal:
Network Modeling Analysis in Health Informatics and Bioinformatics > Issue 1/2019
Authors:
Aaron N. Richter, Taghi M. Khoshgoftaar
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The key to effective cancer treatment is early detection. Risk models built from routinely collected clinical data have the opportunity to improve early detection by identifying high-risk patients. In this study, we explored various machine learning techniques for building a melanoma skin cancer risk model. The dataset contains records of routine dermatology office visits from 9,531,408 patients spread throughout the United States. Of these patients, 17,246 (0.18%) developed melanoma. We conducted extensive experiments to effectively learn from this dataset with limited positive samples. We derived datasets with more severe class imbalance and tested several classifiers with different data sampling techniques to build the best possible model. Additionally, we explored various properties of the datasets to determine relationships between class distributions and model performance. We found that randomly removing negative cases from the training datasets significantly improved model performance. K-means clustering of different groups of instances shows that there is greater homogeneity in negative samples, and the model results reflect that removing these samples increases overall model performance. This experiment provides a reference framework for future risk models, since most datasets will have a plethora of healthy patients, but only a few key patients that are at high risk for developing a disease.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 1/2019

Network Modeling Analysis in Health Informatics and Bioinformatics 1/2019 Go to the issue

Premium Partner

    Image Credits