Skip to main content
Top
Published in: Journal of Materials Science 11/2019

06-03-2019 | Materials for life sciences

Melt spinning of nano-hydroxyapatite and polycaprolactone composite fibers for bone scaffold application

Authors: Wen Xue, Peifeng Chen, Fujun Wang, Lu Wang

Published in: Journal of Materials Science | Issue 11/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Textile technology shows great advantages in tissue engineering applications and it is a promising candidate for bone scaffolds fabrication. Composite fibers made from nano-hydroxyapatite (nHA) particles and polycaprolactone (PCL) were prepared by the melt spinning technology. nHA particles with different concentrations (1, 3, 5 and 7 wt%) were loaded into PCL fibers, and their influence on fiber morphological, thermal, mechanical and biological performance was evaluated. Results indicated that nHA particles were homogeneously distributed in PCL fibers. And nHA loading improved the break stress and initial modulus of pure PCL fibers, as well as thermal stability, which was confirmed by thermogravimetric analysis. Mineral deposition was also observed on fibers with nHA loading, which was favorable to bone scaffolds. Tubular meshes made by weft knitting proved the manufacturability of nHA/PCL composite fibers for further scaffold applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24(24):4353–4364CrossRef Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24(24):4353–4364CrossRef
2.
4.
go back to reference Catledge SA et al (2004) Mesenchymal stem cell adhesion and spreading on nanostructured biomaterials. J Nanosci Nanotechnol 4(8):986–989CrossRef Catledge SA et al (2004) Mesenchymal stem cell adhesion and spreading on nanostructured biomaterials. J Nanosci Nanotechnol 4(8):986–989CrossRef
5.
go back to reference Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–486CrossRef Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–486CrossRef
6.
go back to reference Persson M et al (2013) Melt spinning of poly(lactic acid) and hydroxyapatite composite fibers: influence of the filler content on the fiber properties. Appl Mater Interfaces 5(15):6864–6872CrossRef Persson M et al (2013) Melt spinning of poly(lactic acid) and hydroxyapatite composite fibers: influence of the filler content on the fiber properties. Appl Mater Interfaces 5(15):6864–6872CrossRef
7.
go back to reference Kim HW, Lee HH, Knowles JC (2006) Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration. J Biomed Mater Res Part A 79A(3):643–649CrossRef Kim HW, Lee HH, Knowles JC (2006) Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration. J Biomed Mater Res Part A 79A(3):643–649CrossRef
8.
go back to reference Kim HW, Knowles JC, Kim HE (2004) Effect of biphasic calcium phosphates on drug release and biological and mechanical properties of poly(ϵ-caprolactone) composite membranes. J Biomed Mater Res Part A 70(3):467–479CrossRef Kim HW, Knowles JC, Kim HE (2004) Effect of biphasic calcium phosphates on drug release and biological and mechanical properties of poly(ϵ-caprolactone) composite membranes. J Biomed Mater Res Part A 70(3):467–479CrossRef
9.
go back to reference Ma PX, Langer R (1999) Fabrication of biodegradable polymer foams for cell transplantation and tissue engineering. Methods Mol Med 18:47–56 Ma PX, Langer R (1999) Fabrication of biodegradable polymer foams for cell transplantation and tissue engineering. Methods Mol Med 18:47–56
10.
go back to reference Mikos AG (1994) Preparation and characterization of poly (L-lactic acid) foam. Polymer 35:1068–1077CrossRef Mikos AG (1994) Preparation and characterization of poly (L-lactic acid) foam. Polymer 35:1068–1077CrossRef
11.
go back to reference Cooper AI (2000) Polymer synthesis and processing using supercritical carbon dioxide. J Mater Chem 10(2):207–234CrossRef Cooper AI (2000) Polymer synthesis and processing using supercritical carbon dioxide. J Mater Chem 10(2):207–234CrossRef
12.
go back to reference Harris LD, Kim BS, Mooney DJ (1998) Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res Part A 42(3):396–402CrossRef Harris LD, Kim BS, Mooney DJ (1998) Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res Part A 42(3):396–402CrossRef
13.
go back to reference Roether JA et al (2002) Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering. J Mater Sci Mater Med 13(12):1207–1214CrossRef Roether JA et al (2002) Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering. J Mater Sci Mater Med 13(12):1207–1214CrossRef
14.
go back to reference Deville S, Saiz E, Tomsia AP (2006) Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 27(32):5480–5489CrossRef Deville S, Saiz E, Tomsia AP (2006) Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 27(32):5480–5489CrossRef
15.
go back to reference Zhou C et al (2013) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. Appl Mater Interfaces 5(9):3847–3854CrossRef Zhou C et al (2013) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. Appl Mater Interfaces 5(9):3847–3854CrossRef
16.
go back to reference Maquet V et al (2004) Porous poly(-hydroxyacid)/bioglass composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation. Biomaterials 25(18):4185–4194CrossRef Maquet V et al (2004) Porous poly(-hydroxyacid)/bioglass composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation. Biomaterials 25(18):4185–4194CrossRef
17.
go back to reference Li L et al (2012) Electrospun fibrous scaffold of hydroxyapatite/poly (ε-caprolactone) for bone regeneration. J Mater Sci Mater Med 23(2):547–554CrossRef Li L et al (2012) Electrospun fibrous scaffold of hydroxyapatite/poly (ε-caprolactone) for bone regeneration. J Mater Sci Mater Med 23(2):547–554CrossRef
18.
go back to reference Moutos FT, Freed LE, Guilak F (2007) A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat Mater 6(2):162–167CrossRef Moutos FT, Freed LE, Guilak F (2007) A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat Mater 6(2):162–167CrossRef
19.
go back to reference Correlo VM et al (2005) Hydroxyapatite reinforced chitosan and polyester blends for biomedical applications. Macromol Mater Eng 290(12):1157–1165CrossRef Correlo VM et al (2005) Hydroxyapatite reinforced chitosan and polyester blends for biomedical applications. Macromol Mater Eng 290(12):1157–1165CrossRef
20.
go back to reference Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84CrossRef Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84CrossRef
21.
go back to reference Fan Z et al (2017) A new approach to improve the local compressive properties of PPDO self-expandable stent. J Mech Behav Biomed Mater 68:318–326CrossRef Fan Z et al (2017) A new approach to improve the local compressive properties of PPDO self-expandable stent. J Mech Behav Biomed Mater 68:318–326CrossRef
22.
go back to reference Madurantakam PA et al (2009) Multiple factor interactions in biomimetic mineralization of electrospun scaffolds. Biomaterials 30(29):5456–5464CrossRef Madurantakam PA et al (2009) Multiple factor interactions in biomimetic mineralization of electrospun scaffolds. Biomaterials 30(29):5456–5464CrossRef
23.
go back to reference Raucci MG et al (2010) Biomineralized porous composite scaffolds prepared by chemical synthesis for bone tissue regeneration. Acta Biomater 6(10):4090–4099CrossRef Raucci MG et al (2010) Biomineralized porous composite scaffolds prepared by chemical synthesis for bone tissue regeneration. Acta Biomater 6(10):4090–4099CrossRef
24.
go back to reference Fabbri P et al (2010) Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering. J Mater Sci Mater Med 21(1):343–351CrossRef Fabbri P et al (2010) Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering. J Mater Sci Mater Med 21(1):343–351CrossRef
25.
go back to reference Wang Y, Liu L, Guo S (2010) Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro. Polym Degrad Stab 95(2):207–213CrossRef Wang Y, Liu L, Guo S (2010) Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro. Polym Degrad Stab 95(2):207–213CrossRef
26.
go back to reference Hassan MI, Sultana N (2017) Characterization, drug loading and antibacterial activity of nanohydroxyapatite/polycaprolactone (nHA/PCL) electrospun membrane. Biotech 7(4):249–258 Hassan MI, Sultana N (2017) Characterization, drug loading and antibacterial activity of nanohydroxyapatite/polycaprolactone (nHA/PCL) electrospun membrane. Biotech 7(4):249–258
27.
go back to reference Rezaei A, Mohammadi MR (2013) In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol–gel process. Mater Sci Eng C 33(1):390–396CrossRef Rezaei A, Mohammadi MR (2013) In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol–gel process. Mater Sci Eng C 33(1):390–396CrossRef
28.
go back to reference Ghorbani FM et al (2016) Effect of hydroxyapatite nano-particles on morphology, rheology and thermal behavior of poly(caprolactone)/chitosan blends. Mater Sci Eng C Mater Biol Appl 59:980–989CrossRef Ghorbani FM et al (2016) Effect of hydroxyapatite nano-particles on morphology, rheology and thermal behavior of poly(caprolactone)/chitosan blends. Mater Sci Eng C Mater Biol Appl 59:980–989CrossRef
29.
go back to reference Metzler R, Nonnenmacher TF (2003) Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials. Int J Plast 19(7):941–959CrossRef Metzler R, Nonnenmacher TF (2003) Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials. Int J Plast 19(7):941–959CrossRef
30.
go back to reference Chen J, Chu B, Hsiao BS (2006) Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds. J Biomed Mater Res Part A 79A(2):307–317CrossRef Chen J, Chu B, Hsiao BS (2006) Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds. J Biomed Mater Res Part A 79A(2):307–317CrossRef
31.
go back to reference Cho SB et al (1995) Dependence of apatite formation on silica gel on its structure: effect of heat treatment. J Am Ceram Soc 78(7):1769–1774CrossRef Cho SB et al (1995) Dependence of apatite formation on silica gel on its structure: effect of heat treatment. J Am Ceram Soc 78(7):1769–1774CrossRef
Metadata
Title
Melt spinning of nano-hydroxyapatite and polycaprolactone composite fibers for bone scaffold application
Authors
Wen Xue
Peifeng Chen
Fujun Wang
Lu Wang
Publication date
06-03-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 11/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03475-y

Other articles of this Issue 11/2019

Journal of Materials Science 11/2019 Go to the issue

Premium Partners