Skip to main content
Top

2016 | OriginalPaper | Chapter

4. Memristor-Based Logic Circuits

Authors : Ioannis Vourkas, Georgios Ch. Sirakoulis

Published in: Memristor-Based Nanoelectronic Computing Circuits and Architectures

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Amongst several emergent applications of the memristance switching phenomenon, the implementation of logic circuits is gaining considerable attention. Memristor-based logic circuits open new pathways for the exploration of advanced computing architectures as promising alternatives to conventional integrated circuit technologies. However, up to now no standard logic design methodology exists, since it is not immediately clear what kind of computing architectures would in practice benefit the most from the computing capabilities of memristors. This chapter addresses memristive logic circuit design and computational methodologies, aiming to approach this novel area of research while motivating for further research on innovative design strategies, which comply with emerging technologies. First, a summary of the most recognized memristive logic circuit design concepts is provided. Then two novel logic design paradigms are presented, which aim to address several drawbacks of other existing design concepts in the literature, and to facilitate the incorporation of memristors in currently established logic circuit architectures. Thus they could be promising candidates to be used in future electronic systems design. The proposed design paradigms are validated through SPICE-based simulations for a variety of complex combinational logic circuits.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y.V. Pershin, M. Di Ventra, Neuromorphic, digital and quantum computation with memory circuit elements. Proc. IEEE 100(6), 2071–2080 (2012)CrossRef Y.V. Pershin, M. Di Ventra, Neuromorphic, digital and quantum computation with memory circuit elements. Proc. IEEE 100(6), 2071–2080 (2012)CrossRef
2.
go back to reference E. Lehtonen, M. Laiho, CNN using memristors for neighborhood connections, in 12th International Workshop Cellular Nanoscale Network Application (CNNA), Berkeley, CA (2010) E. Lehtonen, M. Laiho, CNN using memristors for neighborhood connections, in 12th International Workshop Cellular Nanoscale Network Application (CNNA), Berkeley, CA (2010)
3.
go back to reference K.H. Kim, S. Gaba, D. Wheeler, J.M. Cruz-Albrecht, T. Hussain, N. Srinivasa, W. Lu, A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12(1), 389–395 (2012)CrossRef K.H. Kim, S. Gaba, D. Wheeler, J.M. Cruz-Albrecht, T. Hussain, N. Srinivasa, W. Lu, A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12(1), 389–395 (2012)CrossRef
4.
go back to reference G. Howard, E. Gale, L. Bull, B. de Lacy Costello, A. Adamatzky, Evolution of plastic learning in spiking networks via memristive connections. IEEE Trans. Evol. Comput. 16(5), 711–729 (2012)CrossRef G. Howard, E. Gale, L. Bull, B. de Lacy Costello, A. Adamatzky, Evolution of plastic learning in spiking networks via memristive connections. IEEE Trans. Evol. Comput. 16(5), 711–729 (2012)CrossRef
5.
go back to reference I. Vourkas, G.C. Sirakoulis, Nano-crossbar memories comprising parallel/serial complementary memristive switches. BioNanoScience 4(2), 166–179 (2014)CrossRef I. Vourkas, G.C. Sirakoulis, Nano-crossbar memories comprising parallel/serial complementary memristive switches. BioNanoScience 4(2), 166–179 (2014)CrossRef
6.
go back to reference H. Kim, M.P. Sah, C. Yang, T. Roska, L.O. Chua, Neural synaptic weighting with a pulse-based memristor circuit. IEEE Trans. Circ. Syst. I, Reg. Papers 59(1), 148–158 (2012) H. Kim, M.P. Sah, C. Yang, T. Roska, L.O. Chua, Neural synaptic weighting with a pulse-based memristor circuit. IEEE Trans. Circ. Syst. I, Reg. Papers 59(1), 148–158 (2012)
7.
go back to reference S. Kim, H.Y. Jeong, S.K. Kim, S.Y. Choi, K.J. Lee, Flexible memristive memory array on plastic substrates. Nano Lett. 11(12), 5438–5442 (2011)CrossRef S. Kim, H.Y. Jeong, S.K. Kim, S.Y. Choi, K.J. Lee, Flexible memristive memory array on plastic substrates. Nano Lett. 11(12), 5438–5442 (2011)CrossRef
8.
go back to reference E. Linn, R. Rosezin, S. Tappertzhofen, U. Bottger, R. Waser, Beyond von Neumann-logic operations in passive crossbar arrays alongside memory operations. Nanotechnology 23(305205) (2012) E. Linn, R. Rosezin, S. Tappertzhofen, U. Bottger, R. Waser, Beyond von Neumann-logic operations in passive crossbar arrays alongside memory operations. Nanotechnology 23(305205) (2012)
9.
go back to reference E. Lehtonen and M. Laiho, Stateful implication logic with memristors, in IEEE/ACM Int. Symp. Nanoscale Architectures (NANOARCH), San Francisco, CA (2009) E. Lehtonen and M. Laiho, Stateful implication logic with memristors, in IEEE/ACM Int. Symp. Nanoscale Architectures (NANOARCH), San Francisco, CA (2009)
10.
go back to reference J. Borghetti, Z. Li, J. Straznicky, X. Li, D.A.A. Ohlberg, W. Wu, D.R. Stewart, R.S. Williams, A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proc. Nat. Acad. Sci. (PNAS) USA 106(6), 1699–1703 (2009) J. Borghetti, Z. Li, J. Straznicky, X. Li, D.A.A. Ohlberg, W. Wu, D.R. Stewart, R.S. Williams, A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proc. Nat. Acad. Sci. (PNAS) USA 106(6), 1699–1703 (2009)
11.
go back to reference J. Borghetti, G.S. Snider, P.J. Kuekes, J.J. Yang, D.R. Stewart, R.S. Williams, Memristive switches enable ‘stateful’ logic operations via material implication. Nature 464(7290), 873–876 (2010)CrossRef J. Borghetti, G.S. Snider, P.J. Kuekes, J.J. Yang, D.R. Stewart, R.S. Williams, Memristive switches enable ‘stateful’ logic operations via material implication. Nature 464(7290), 873–876 (2010)CrossRef
12.
go back to reference M. Di Ventra, Y.V. Pershin, The parallel approach. Nat. Phys. 9, 200–202 (2013)CrossRef M. Di Ventra, Y.V. Pershin, The parallel approach. Nat. Phys. 9, 200–202 (2013)CrossRef
13.
go back to reference S. Kvatinsky, G. Satat, N. Wald, E.G. Friedman, A. Kolodny, U.C. Weiser, Memristor-Based Material Implication (IMPLY) logic: design principles and methodologies. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22(10), 2054–2066 (2014) S. Kvatinsky, G. Satat, N. Wald, E.G. Friedman, A. Kolodny, U.C. Weiser, Memristor-Based Material Implication (IMPLY) logic: design principles and methodologies. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22(10), 2054–2066 (2014)
14.
go back to reference E. Lehtonen, J.H. Poikonen, M. Laiho, Implication logic synthesis methods for memristors, in IEEE Int. Symp. Circuits Syst. (ISCAS), Seoul, South Korea, (2012) E. Lehtonen, J.H. Poikonen, M. Laiho, Implication logic synthesis methods for memristors, in IEEE Int. Symp. Circuits Syst. (ISCAS), Seoul, South Korea, (2012)
15.
go back to reference G. Ligang, F. Alibart, D.B. Strukov, Programmable CMOS/memristor threshold logic. IEEE Trans. Nanotechnol. 12(2), 115–119 (2013)CrossRef G. Ligang, F. Alibart, D.B. Strukov, Programmable CMOS/memristor threshold logic. IEEE Trans. Nanotechnol. 12(2), 115–119 (2013)CrossRef
16.
go back to reference I. Vourkas, G.C. Sirakoulis, Memristor-based combinational circuits: a design methodology for encoders/decoders. Microelectron. J. 45(1), 59–70 (2014)CrossRef I. Vourkas, G.C. Sirakoulis, Memristor-based combinational circuits: a design methodology for encoders/decoders. Microelectron. J. 45(1), 59–70 (2014)CrossRef
17.
go back to reference J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nano. 8, 13–24 (2013)CrossRef J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nano. 8, 13–24 (2013)CrossRef
18.
go back to reference Vourkas, G.C. Sirakoulis, Recent progress and patents on computational structures and methods with memristive devices. Recent Pat. Electr. Electron. Eng. 6(2), 101–116 (2013) Vourkas, G.C. Sirakoulis, Recent progress and patents on computational structures and methods with memristive devices. Recent Pat. Electr. Electron. Eng. 6(2), 101–116 (2013)
19.
go back to reference E. Lehtonen, J.H. Poikonen, M. Laiho, Two memristors suffice to compute all Boolean functions. Electron. Lett. 46(3), 239–240 (2010)CrossRef E. Lehtonen, J.H. Poikonen, M. Laiho, Two memristors suffice to compute all Boolean functions. Electron. Lett. 46(3), 239–240 (2010)CrossRef
20.
go back to reference W. Zhao, D. Querlioz, J.O. Klein, D. Chabi, C. Chappert, Nanodevice-based novel computing paradigms and the neuromorphic approach, in IEEE Int. Symp. Circuits Syst. (ISCAS), Seoul, South Korea (2012) W. Zhao, D. Querlioz, J.O. Klein, D. Chabi, C. Chappert, Nanodevice-based novel computing paradigms and the neuromorphic approach, in IEEE Int. Symp. Circuits Syst. (ISCAS), Seoul, South Korea (2012)
22.
go back to reference Y.V. Pershin, M. Di Ventra, Memory effects in complex materials and nanoscale systems. Adv. Phys. 60(2), 145–227 (2011)CrossRef Y.V. Pershin, M. Di Ventra, Memory effects in complex materials and nanoscale systems. Adv. Phys. 60(2), 145–227 (2011)CrossRef
23.
go back to reference C. Torrezan, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22(48), 485203 (2011)CrossRef C. Torrezan, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22(48), 485203 (2011)CrossRef
24.
go back to reference S. Kvatinsky, N. Wald, G. Satat, A. Kolodny, U.C. Weiser, E.G. Friedman, MRL—Memristor Ratioed Logic, in 13th International Workshop on Cellular Nanoscale Network and Application (CNNA), Turin, Italy (2012) S. Kvatinsky, N. Wald, G. Satat, A. Kolodny, U.C. Weiser, E.G. Friedman, MRL—Memristor Ratioed Logic, in 13th International Workshop on Cellular Nanoscale Network and Application (CNNA), Turin, Italy (2012)
25.
go back to reference J. Rajendran, H. Manem, R. Karri, G.S. Rose, Memristor based programmable threshold logic array, in IEEE/ACM International Symposium on Nanoscale Architecture (NANOARCH), Anaheim, CA (2010) J. Rajendran, H. Manem, R. Karri, G.S. Rose, Memristor based programmable threshold logic array, in IEEE/ACM International Symposium on Nanoscale Architecture (NANOARCH), Anaheim, CA (2010)
26.
go back to reference S. Paul, S. Bhunia, A scalable memory-based reconfigurable computing framework for nanoscale crossbar. IEEE Trans. Nanotechnol. 11(3), 451–462 (2012)CrossRef S. Paul, S. Bhunia, A scalable memory-based reconfigurable computing framework for nanoscale crossbar. IEEE Trans. Nanotechnol. 11(3), 451–462 (2012)CrossRef
27.
go back to reference G.S. Snider, P.J. Kuekes, R.S. Williams, CMOS-like logic in defective, nanoscale crossbars. Nanotechnology 15, 881–891 (2004)CrossRef G.S. Snider, P.J. Kuekes, R.S. Williams, CMOS-like logic in defective, nanoscale crossbars. Nanotechnology 15, 881–891 (2004)CrossRef
28.
go back to reference M.M. Ziegler, M.R. Stan, CMOS/nano co-design for crossbar-based molecular electronic systems. IEEE Trans. Nanotechnol. 2(4), 217–230 (2003)CrossRef M.M. Ziegler, M.R. Stan, CMOS/nano co-design for crossbar-based molecular electronic systems. IEEE Trans. Nanotechnol. 2(4), 217–230 (2003)CrossRef
29.
go back to reference D.B. Strukov, K.K. Likharev, CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16(6), 888–900 (2005)CrossRef D.B. Strukov, K.K. Likharev, CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16(6), 888–900 (2005)CrossRef
30.
go back to reference Y.V. Pershin, M. Di Ventra, Solving mazes with memristors: a massively parallel approach. Phys. Rev. E 84, 046703 (2011)CrossRef Y.V. Pershin, M. Di Ventra, Solving mazes with memristors: a massively parallel approach. Phys. Rev. E 84, 046703 (2011)CrossRef
31.
go back to reference Y.V. Pershin, M. Di Ventra, Self-organization and solution of shortest-path optimization problems with memristive networks. Phys. Rev. E 88, 013305 (2013)CrossRef Y.V. Pershin, M. Di Ventra, Self-organization and solution of shortest-path optimization problems with memristive networks. Phys. Rev. E 88, 013305 (2013)CrossRef
32.
go back to reference I. Vourkas, G.C. Sirakoulis, Study of memristive elements networks. J. Nano Res. 27, 5–14 (2014)CrossRef I. Vourkas, G.C. Sirakoulis, Study of memristive elements networks. J. Nano Res. 27, 5–14 (2014)CrossRef
33.
go back to reference F. Jiang, B.E. Shi, The memristive grid outperforms the resistive grid for edge preserving smoothing, in European Conference on Circuits Theory and Design (ECCTD), Antalya, Turkey (2009) F. Jiang, B.E. Shi, The memristive grid outperforms the resistive grid for edge preserving smoothing, in European Conference on Circuits Theory and Design (ECCTD), Antalya, Turkey (2009)
34.
go back to reference Z. Ye, S.H.M. Wu, T. Prodromakis, Computing shortest paths in 2D and 3D memristive networks. 15 Mar 2013. Available: http://arXiv:1303.3927 Z. Ye, S.H.M. Wu, T. Prodromakis, Computing shortest paths in 2D and 3D memristive networks. 15 Mar 2013. Available: http://​arXiv:​1303.​3927
35.
go back to reference E. Linn, R. Rosezin, C. Kugeler, R. Waser, Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9(5), 403–406 (2010)CrossRef E. Linn, R. Rosezin, C. Kugeler, R. Waser, Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9(5), 403–406 (2010)CrossRef
36.
go back to reference I Vourkas, G.C. Sirakoulis, On the analog computational characteristics of memristive networks, in 20th IEEE International Conference on Electronics, Circuits, Systems (ICECS), Abu Dhabi (2013) I Vourkas, G.C. Sirakoulis, On the analog computational characteristics of memristive networks, in 20th IEEE International Conference on Electronics, Circuits, Systems (ICECS), Abu Dhabi (2013)
37.
go back to reference A.N. Whitehead, B. Russell, Principia Mathematica, vol. I(7) (Cambridge University Press, Cambridge, 1910) A.N. Whitehead, B. Russell, Principia Mathematica, vol. I(7) (Cambridge University Press, Cambridge, 1910)
38.
go back to reference R.H. Wilkinson, A method of generating functions of several variables using analog diode logic. IEEE Trans. Electron. Comput. EC-12(2), 112–129 (1963) R.H. Wilkinson, A method of generating functions of several variables using analog diode logic. IEEE Trans. Electron. Comput. EC-12(2), 112–129 (1963)
39.
go back to reference S. Muroga, Threshold Logic and its Applications, Hoboken, NJ (Wiley, USA, 1972) S. Muroga, Threshold Logic and its Applications, Hoboken, NJ (Wiley, USA, 1972)
40.
go back to reference R. Zhang, P. Gupta, L. Zhong, N.K. Jha, Synthesis and optimization of threshold logic networks with application to nanotechnologies, in Design Automation and Test in Europe Conference (DATE), Paris, France, 2004 R. Zhang, P. Gupta, L. Zhong, N.K. Jha, Synthesis and optimization of threshold logic networks with application to nanotechnologies, in Design Automation and Test in Europe Conference (DATE), Paris, France, 2004
41.
go back to reference V. Beiu, J.M. Quintana, M.J. Avedillo, VLSI implementations of threshold logic: a comprehensive survey. IEEE Trans. Neural Netw. 14(5), 1217–1243 (2003)CrossRef V. Beiu, J.M. Quintana, M.J. Avedillo, VLSI implementations of threshold logic: a comprehensive survey. IEEE Trans. Neural Netw. 14(5), 1217–1243 (2003)CrossRef
42.
go back to reference Y. Leblebici, H. Ozdemir, A. Kepkep, U. Cilingiroglu, A compact high-speed (31, 5) parallel counter circuit based on capacitive threshold logic gates. IEEE J. Solid-State Circuits 31(8), 1177–1183 (1996)CrossRef Y. Leblebici, H. Ozdemir, A. Kepkep, U. Cilingiroglu, A compact high-speed (31, 5) parallel counter circuit based on capacitive threshold logic gates. IEEE J. Solid-State Circuits 31(8), 1177–1183 (1996)CrossRef
43.
go back to reference I. Vourkas, G.C. Sirakoulis, A novel design and modeling paradigm for memristor-based crossbar circuits. IEEE Trans. Nanotechnol. 11(6), 1151–1159 (2012)CrossRef I. Vourkas, G.C. Sirakoulis, A novel design and modeling paradigm for memristor-based crossbar circuits. IEEE Trans. Nanotechnol. 11(6), 1151–1159 (2012)CrossRef
44.
go back to reference J.R. Heath, P.J. Kuekes, G.S. Snider, R.S. Williams, A defect-tolerant computer architecture: opportunities for nanotechnology. Science 280(5370), 1716–1721 (1998)CrossRef J.R. Heath, P.J. Kuekes, G.S. Snider, R.S. Williams, A defect-tolerant computer architecture: opportunities for nanotechnology. Science 280(5370), 1716–1721 (1998)CrossRef
45.
go back to reference I. Vourkas, G.C. Sirakoulis, Nano-crossbar memories comprising parallel/serial complementary memristive switches. BioNanoScience 4(2), 166–179 (2014)CrossRef I. Vourkas, G.C. Sirakoulis, Nano-crossbar memories comprising parallel/serial complementary memristive switches. BioNanoScience 4(2), 166–179 (2014)CrossRef
46.
go back to reference A. Chen, Accessibility of nano-crossbar arrays of resistive switching devices, in 11th IEEE Conference on Nanotechnology (IEEE-NANO), Portland, OR (2011) A. Chen, Accessibility of nano-crossbar arrays of resistive switching devices, in 11th IEEE Conference on Nanotechnology (IEEE-NANO), Portland, OR (2011)
47.
go back to reference S. Shin, K. Kim, S.M. Kang, Analysis of passive memristive devices array: data-dependent statistical model and self-adaptable sense resistance for RRAMs. IEEE Proc. 100(6), 2021–2032 (2012)CrossRef S. Shin, K. Kim, S.M. Kang, Analysis of passive memristive devices array: data-dependent statistical model and self-adaptable sense resistance for RRAMs. IEEE Proc. 100(6), 2021–2032 (2012)CrossRef
48.
go back to reference J. Liang, H.-S.P. Wong, Cross-point memory array without cell selectors—Device characteristics and data storage pattern dependencies. IEEE Trans. Electron. Devices 57(10), 2531–2538 (2010)CrossRef J. Liang, H.-S.P. Wong, Cross-point memory array without cell selectors—Device characteristics and data storage pattern dependencies. IEEE Trans. Electron. Devices 57(10), 2531–2538 (2010)CrossRef
49.
go back to reference M.A. Zidan, H.A.H. Fahmy, M.M. Hussain, K.N. Salama, Memristor-based memory: the sneak paths problem and solutions. Microelectronics J. 44(2), 176–183 (2013)CrossRef M.A. Zidan, H.A.H. Fahmy, M.M. Hussain, K.N. Salama, Memristor-based memory: the sneak paths problem and solutions. Microelectronics J. 44(2), 176–183 (2013)CrossRef
50.
go back to reference I. Vourkas, D. Stathis and G.C. Sirakoulis, Improved read voltage margins with alternative topologies for memristor-based crossbar memories, in 21st IFIP/IEEE International Conference on on Very Large Scale Integrated (VLSI-SoC), Istanbul (2013) I. Vourkas, D. Stathis and G.C. Sirakoulis, Improved read voltage margins with alternative topologies for memristor-based crossbar memories, in 21st IFIP/IEEE International Conference on on Very Large Scale Integrated (VLSI-SoC), Istanbul (2013)
51.
go back to reference I. Vourkas, A. Batsos, G.C. Sirakoulis, SPICE modeling of nonlinear memristive behavior. Int. J. Circ. Theor. Appl. 43(5), 553–565 (2015) I. Vourkas, A. Batsos, G.C. Sirakoulis, SPICE modeling of nonlinear memristive behavior. Int. J. Circ. Theor. Appl. 43(5), 553–565 (2015)
52.
go back to reference I. Vourkas, G.C. Sirakoulis, Employing threshold-based behavior and network dynamics for the creation of memristive logic circuits and architectures. Physica Status Solidi (c), in Proceedings of E-MRS 2014 Spring Meeting Symposium S: Memristor materials, mechanisms and devices for unconventional computing, vol. 12, no. 1-2, pp. 168–174 (2015) I. Vourkas, G.C. Sirakoulis, Employing threshold-based behavior and network dynamics for the creation of memristive logic circuits and architectures. Physica Status Solidi (c), in Proceedings of E-MRS 2014 Spring Meeting Symposium S: Memristor materials, mechanisms and devices for unconventional computing, vol. 12, no. 1-2, pp. 168–174 (2015)
54.
go back to reference Y. Ho, G.M. Huang, P. Li, Dynamical properties and design analysis for nonvolatile memristor memories. IEEE Trans. Circuits Syst. I, Reg. Papers 58(4), 724–736 (2011)MathSciNetCrossRef Y. Ho, G.M. Huang, P. Li, Dynamical properties and design analysis for nonvolatile memristor memories. IEEE Trans. Circuits Syst. I, Reg. Papers 58(4), 724–736 (2011)MathSciNetCrossRef
Metadata
Title
Memristor-Based Logic Circuits
Authors
Ioannis Vourkas
Georgios Ch. Sirakoulis
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-22647-7_4