Skip to main content
Top

2020 | OriginalPaper | Chapter

4. Memristor, der Speicherwiderstand

Author : Titu-Marius I. Băjenescu

Published in: Zuverlässige Bauelemente für elektronische Systeme

Publisher: Springer Fachmedien Wiesbaden

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Zusammenfassung

Ein neuronales Netzwerk wird modelliert mit elektrischen Schaltkreisen. Der „Memistor“ (ein Widerstand mit Speicher) – Abschn. 4.1.1 – wurde entwickelt, um eine elektronisch variable Verstärkungsregelung zusammen mit dem Speicher zu erhalten, der zum Speichern der Erfahrungen des Systems erforderlich ist. Die Erfahrungen werden in ihrer kompaktesten Form gespeichert. Memristoren (Abschn. 4.1.2) sind im Grunde genommen eine vierte Klasse von elektrischen Schaltungen, die den Widerstand, den Kondensator und die Induktivität verbinden, der einzigartige Eigenschaften hat vor allem im Nanobereich. So variiert der Widerstand eines Memristors je nach der Funktion des Memristance-Gerätes. Die neuronalen Netze sind RMS-Aufgaben (Recognition, Data Mining and Synthesis) den Embedded Systemen gewidmet (Abschn. 4.3). Diese MEMS-Vorrichtungen werden in verschiedenen Stadien während des Herstellungsprozesses getestet (Abschn. 4.2.1), um die Leistung und Zuverlässigkeit der Vorrichtung zu prüfen. Die Spintronik verwendet eine bekannte Wirkung (Spin Transfer), um simultan memristive Nanosynapsen und effizientere Nanoneuronen zu realisieren. Die Forscher haben eine neue Art Memristor, basierend auf den Tunneleffekt, entwickelt (Abschn. 4.5.2). Durch Modulation des elektrischen Feldes ist es möglich, den elektrischen Widerstand zu variieren. Eine Memristor-Synapse besteht aus einer dünnen ferroelektrischen Schicht zwischen zwei Elektroden. Deren Leitfähigkeit kann ähnlich wie in Neuronen durch Strompulse gesteuert werden.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Schrag, G.: Modellierung gekoppelter Effekte in Mikrosystemen auf kontinuierlicher Feldebene und Systemebene. Ph. D. Dissertation, T. U. München (2002) Schrag, G.: Modellierung gekoppelter Effekte in Mikrosystemen auf kontinuierlicher Feldebene und Systemebene. Ph. D. Dissertation, T. U. München (2002)
2.
go back to reference McCulloch, W.S., Pitts, W.H.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)CrossRefMathSciNetMATH McCulloch, W.S., Pitts, W.H.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)CrossRefMathSciNetMATH
3.
go back to reference Widrow, B.: An adaptive ADALINE neuron using chemical memistors. Technical Report TR 1553-2, Stanford Electronics Laboratories Technical Report, 23 Oct. 1960 Widrow, B.: An adaptive ADALINE neuron using chemical memistors. Technical Report TR 1553-2, Stanford Electronics Laboratories Technical Report, 23 Oct. 1960
4.
go back to reference Thakoor, S., et al.: Solid state thin film memistor for electronic neural networks. J. Appl. Phys. 67(6), 3132–3134 (1990)CrossRef Thakoor, S., et al.: Solid state thin film memistor for electronic neural networks. J. Appl. Phys. 67(6), 3132–3134 (1990)CrossRef
5.
go back to reference Gibbons, J., Beadle, W.: Switching properties of thin NiO films. Solid State Electron. 7, 785–797 (1964)CrossRef Gibbons, J., Beadle, W.: Switching properties of thin NiO films. Solid State Electron. 7, 785–797 (1964)CrossRef
6.
go back to reference Fano, R., et al.: Electromagnetic Fields, Energy and Forces. MIT Press, Cambridge (1968). Chapter 6 Fano, R., et al.: Electromagnetic Fields, Energy and Forces. MIT Press, Cambridge (1968). Chapter 6
7.
go back to reference Chua, L.: Memristor – The missing circuit element. IEEE Trans. Circuits Theory CT-18(5), 507–519 (1971)CrossRef Chua, L.: Memristor – The missing circuit element. IEEE Trans. Circuits Theory CT-18(5), 507–519 (1971)CrossRef
8.
go back to reference Strukov, D.B., Snider, G.S., Stewart, Williams, R.S.: The missing memristor found. Nature 453(May), 80–83 (2008)CrossRef Strukov, D.B., Snider, G.S., Stewart, Williams, R.S.: The missing memristor found. Nature 453(May), 80–83 (2008)CrossRef
10.
go back to reference Hutchby, J., Garner, M.: Assessment of the potential & maturity of selected emerging research memory technologies. Workshop & ERD/ERM working group meeting, Barza, Italy, April 6–7, (2010) Hutchby, J., Garner, M.: Assessment of the potential & maturity of selected emerging research memory technologies. Workshop & ERD/ERM working group meeting, Barza, Italy, April 6–7, (2010)
11.
go back to reference Kickuth, R.: Neuromorphic engineering: Bottom up – Statt top down-Forschung. CLB, 10, 440–450, 449 (2010) Kickuth, R.: Neuromorphic engineering: Bottom up – Statt top down-Forschung. CLB, 10, 440–450, 449 (2010)
12.
go back to reference Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: Memristiveʼ switches enable ‚Stateful‘ logic operations via material implication. Nature 464, 873–876 (2010)CrossRef Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: Memristiveʼ switches enable ‚Stateful‘ logic operations via material implication. Nature 464, 873–876 (2010)CrossRef
13.
go back to reference Murali, K., Lakshmanan, M.: Effect of sinusoidal excitation on the Chua’s circuit – I: Fundamental theory and applications. IEEE Trans. Circuits Syst. 39(4), 264–270 (1992)CrossRefMATH Murali, K., Lakshmanan, M.: Effect of sinusoidal excitation on the Chua’s circuit – I: Fundamental theory and applications. IEEE Trans. Circuits Syst. 39(4), 264–270 (1992)CrossRefMATH
14.
go back to reference Muthuswamy, B., Chua, L.O.: Simplest chaotic circuit. Int. J. Bifurc. Chaos 20(5), 1567–1580 (2010)CrossRef Muthuswamy, B., Chua, L.O.: Simplest chaotic circuit. Int. J. Bifurc. Chaos 20(5), 1567–1580 (2010)CrossRef
16.
go back to reference Kvatinsky, S.: Memristor-based circuits and architectures. Ph. D. Dissertation, Technion Haifa (May 2014) Kvatinsky, S.: Memristor-based circuits and architectures. Ph. D. Dissertation, Technion Haifa (May 2014)
18.
19.
go back to reference Moore K.S.: Atom-thin memristors discovered. IEEE Spectrum, 28. Januar 2018 Moore K.S.: Atom-thin memristors discovered. IEEE Spectrum, 28. Januar 2018
20.
go back to reference Xia, Q., et al.: Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9(10), 3640–3644 (2009)CrossRef Xia, Q., et al.: Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9(10), 3640–3644 (2009)CrossRef
21.
go back to reference Kim, H., et al.: Memristor emulator for memristor circuit applications. IEEE Trans. Circuit Syst. I: Regul. Pap. 9(10), 2422–2431 (2012)MathSciNet Kim, H., et al.: Memristor emulator for memristor circuit applications. IEEE Trans. Circuit Syst. I: Regul. Pap. 9(10), 2422–2431 (2012)MathSciNet
22.
go back to reference Lewis, D.L., Lee, H.H.S.: Architectural Evaluation of 3D Stacked RRAM Caches In: Proceedings IEEE Int. 3D System Integration Conference, 3D-IC, San Francisco, September 2009, S. 28–30 Lewis, D.L., Lee, H.H.S.: Architectural Evaluation of 3D Stacked RRAM Caches In: Proceedings IEEE Int. 3D System Integration Conference, 3D-IC, San Francisco, September 2009, S. 28–30
23.
go back to reference Williams, R.: How we found the missing memristor. IEEE Spectr. 45(12), 28–34 (2008)CrossRef Williams, R.: How we found the missing memristor. IEEE Spectr. 45(12), 28–34 (2008)CrossRef
24.
go back to reference Kavehei, O., et al.: The fourth element: Characteristics, modelling and electromagnetic theory of the memristor. Proc. R. Soc. A 466, 2175–2202 (2010)CrossRefMathSciNetMATH Kavehei, O., et al.: The fourth element: Characteristics, modelling and electromagnetic theory of the memristor. Proc. R. Soc. A 466, 2175–2202 (2010)CrossRefMathSciNetMATH
25.
go back to reference Snider, G.S.: Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18, 365202–365213 (2007)CrossRef Snider, G.S.: Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18, 365202–365213 (2007)CrossRef
26.
go back to reference Boehm, F.J. (Hrsg.): Nanomedical Devices and Systems Designs. CRC Press, Boca Raton (2016) Boehm, F.J. (Hrsg.): Nanomedical Devices and Systems Designs. CRC Press, Boca Raton (2016)
27.
go back to reference Johnson, S.L., et al.: Memristive switching of single-component metallic nanowires. Nanotechnology 21, 125204–125205 (2010)CrossRef Johnson, S.L., et al.: Memristive switching of single-component metallic nanowires. Nanotechnology 21, 125204–125205 (2010)CrossRef
28.
go back to reference Panayiotis, S.G.: A Mathematical framework for the analysis and modelling of memristor nanodevices. Dissertation, Doctor of Philosophy in Chemistry of Imperial College London (March 2013) Panayiotis, S.G.: A Mathematical framework for the analysis and modelling of memristor nanodevices. Dissertation, Doctor of Philosophy in Chemistry of Imperial College London (March 2013)
29.
go back to reference Chan, H.C.H.: Memristive switching devices for non-volatile memories. Bachelor of Science Dissertation, City University of Hong Kong (March 2014) Chan, H.C.H.: Memristive switching devices for non-volatile memories. Bachelor of Science Dissertation, City University of Hong Kong (March 2014)
30.
go back to reference Strukov, D.B., Williams, R.S.: Exponential ionic drift: Fast switching and low volatility of thin-film memristors. Appl. Phys. A 94, 515–519 (2009)CrossRef Strukov, D.B., Williams, R.S.: Exponential ionic drift: Fast switching and low volatility of thin-film memristors. Appl. Phys. A 94, 515–519 (2009)CrossRef
32.
go back to reference Kim, H., et al.: Memristor bridge synapses. Proc. IEEE 100(6), 2061–2070 (2012)CrossRef Kim, H., et al.: Memristor bridge synapses. Proc. IEEE 100(6), 2061–2070 (2012)CrossRef
37.
go back to reference Chua, L.: State-of-the-art. Invited Paper, W7 memristor science and technology, Date 14, Dresden, 28. März 2014 Chua, L.: State-of-the-art. Invited Paper, W7 memristor science and technology, Date 14, Dresden, 28. März 2014
38.
go back to reference Scott, J., Bozano, L.: Nonvolatile memory elements based on organic materials. Advanced Materials 19(11), 1452–1463 (2007)CrossRef Scott, J., Bozano, L.: Nonvolatile memory elements based on organic materials. Advanced Materials 19(11), 1452–1463 (2007)CrossRef
39.
go back to reference Heremans, P., et al.: Polymer and organic nonvolatile memory devices. Chem. Mater. 23(3), 341–358 (2011)CrossRef Heremans, P., et al.: Polymer and organic nonvolatile memory devices. Chem. Mater. 23(3), 341–358 (2011)CrossRef
40.
go back to reference Lee, C., et al.: Memory bistable mechanisms of organic memory devices. Appl. Phy. Lett. 97(4), 043301–043303 (2010)CrossRef Lee, C., et al.: Memory bistable mechanisms of organic memory devices. Appl. Phy. Lett. 97(4), 043301–043303 (2010)CrossRef
42.
go back to reference Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F.N., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1988)CrossRef Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F.N., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1988)CrossRef
43.
go back to reference Chanthbouala, A., et al.: A ferroelectric memristor. Nat. Mater. 11, 860–864 (2012)CrossRef Chanthbouala, A., et al.: A ferroelectric memristor. Nat. Mater. 11, 860–864 (2012)CrossRef
45.
go back to reference Kim, D.J., et al.: Ferroelectric tunnel memristor. Nano Lett. 12(10), 5697–5702 (2012)CrossRef Kim, D.J., et al.: Ferroelectric tunnel memristor. Nano Lett. 12(10), 5697–5702 (2012)CrossRef
46.
go back to reference Băjenescu, T.-M.: Micro and nanodevices, manufacturability and reliability. Qual. Assur. 84(Oct.-Dec.), 24–32 (2015) Băjenescu, T.-M.: Micro and nanodevices, manufacturability and reliability. Qual. Assur. 84(Oct.-Dec.), 24–32 (2015)
47.
go back to reference Băjenescu, T.-M.: Reliability aspects of MEMS and RF microswitches. Meridian Ingineresc. 4, 13–19 (2015) Băjenescu, T.-M.: Reliability aspects of MEMS and RF microswitches. Meridian Ingineresc. 4, 13–19 (2015)
48.
go back to reference Băjenescu, T.-M.: Nanoreliability and manufacturability. EEA 61(2), 20–30 (2013) Băjenescu, T.-M.: Nanoreliability and manufacturability. EEA 61(2), 20–30 (2013)
49.
go back to reference Kozma, R., et al.: Are memristors the future of AI? In: Kozma, R., et al. (Hrsg.) Advances in Neuromorphic Memristor Science and Applications. Springer, Dordrecht (2012)CrossRef Kozma, R., et al.: Are memristors the future of AI? In: Kozma, R., et al. (Hrsg.) Advances in Neuromorphic Memristor Science and Applications. Springer, Dordrecht (2012)CrossRef
50.
go back to reference Indiveri, G., et al.: Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24(38), 2013 (2013)CrossRef Indiveri, G., et al.: Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24(38), 2013 (2013)CrossRef
51.
go back to reference Liu, J., Alippi, C., Bouchon-Meunier, B., Greenwood, G.W., Abbass, H. (Hrsg.): Advances in Computational Intelligence. Springer, Berlin (2012) Liu, J., Alippi, C., Bouchon-Meunier, B., Greenwood, G.W., Abbass, H. (Hrsg.): Advances in Computational Intelligence. Springer, Berlin (2012)
52.
go back to reference Kvatisnky, S., et al.: Memristor-based multithreading. IEEE Comput. Archit. Lett. 13(1), 41–44 (2014)CrossRef Kvatisnky, S., et al.: Memristor-based multithreading. IEEE Comput. Archit. Lett. 13(1), 41–44 (2014)CrossRef
54.
go back to reference Cabaret, T.: Etude, réalisation et caractérisation des memristors organiques électro-greffés en tant que nanosynapses de circuits neuro-inspirés. Thèse de doctorat, Université Paris-Sud (2014) Cabaret, T.: Etude, réalisation et caractérisation des memristors organiques électro-greffés en tant que nanosynapses de circuits neuro-inspirés. Thèse de doctorat, Université Paris-Sud (2014)
55.
go back to reference Hellemans, A.: Six-state memristor opens door to weird computing. IEEE Spectrum, 21. November 2014 Hellemans, A.: Six-state memristor opens door to weird computing. IEEE Spectrum, 21. November 2014
57.
go back to reference Băjenescu, T.-M.: Memristorul și câteva din aplicațiile sale. EEA 3, 44–50 (2015) Băjenescu, T.-M.: Memristorul și câteva din aplicațiile sale. EEA 3, 44–50 (2015)
58.
go back to reference Russer, P., et al.: Memristive Bauelemente. In: Russer, P., et al. (Hrsg.) Nanoelektronik: Kleiner – Schneller – Besser, S. 171. Springer Vieweg & Acatech, Berlin (2013) Russer, P., et al.: Memristive Bauelemente. In: Russer, P., et al. (Hrsg.) Nanoelektronik: Kleiner – Schneller – Besser, S. 171. Springer Vieweg & Acatech, Berlin (2013)
59.
go back to reference Valsa, J., Biolek, D., Biolek, Z.: An analogue model of the memristor. Int. J. Numer. Model.: Electron. Netw. Devices Fields 24(4), 400–408 (2011)CrossRefMATH Valsa, J., Biolek, D., Biolek, Z.: An analogue model of the memristor. Int. J. Numer. Model.: Electron. Netw. Devices Fields 24(4), 400–408 (2011)CrossRefMATH
60.
go back to reference Pershin, Y.V., Di Ventra, M.: Practical approach to programmable analogue circuits with memristors. IEEE Trans. Circuits Syst. I: Regul. Pap. 57(8), 1857–1864 (2010)CrossRefMathSciNet Pershin, Y.V., Di Ventra, M.: Practical approach to programmable analogue circuits with memristors. IEEE Trans. Circuits Syst. I: Regul. Pap. 57(8), 1857–1864 (2010)CrossRefMathSciNet
61.
go back to reference Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S.: Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008)CrossRef Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S.: Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008)CrossRef
62.
go back to reference Liu, S., Wu, N., Ignatiev, A.: Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phy. Lett. 76, 2749–2751 (2000)CrossRef Liu, S., Wu, N., Ignatiev, A.: Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phy. Lett. 76, 2749–2751 (2000)CrossRef
63.
go back to reference Tour, J.M., Tao, H.: Electronics: The fourth element. Nature 453(May), 42–43 (2008)CrossRef Tour, J.M., Tao, H.: Electronics: The fourth element. Nature 453(May), 42–43 (2008)CrossRef
64.
go back to reference Sacchetto, D., et al.: Applications of multi-terminal memristive devices: A review. IEEE Circuits Syst. Second Quart. 13(2), 23–41 (2013)CrossRef Sacchetto, D., et al.: Applications of multi-terminal memristive devices: A review. IEEE Circuits Syst. Second Quart. 13(2), 23–41 (2013)CrossRef
65.
go back to reference Iu, H.H.-C., Fitch, A.L.: Development of Memristor Based Circuits. World Scientific, Singapore (2013)CrossRef Iu, H.H.-C., Fitch, A.L.: Development of Memristor Based Circuits. World Scientific, Singapore (2013)CrossRef
66.
go back to reference Caspani, A., et al.: Dynamic nonlinear behavior of torsional resonators in MEMS. J. Micromech. Microeng. 24, 095025–095029 (2014)CrossRef Caspani, A., et al.: Dynamic nonlinear behavior of torsional resonators in MEMS. J. Micromech. Microeng. 24, 095025–095029 (2014)CrossRef
Metadata
Title
Memristor, der Speicherwiderstand
Author
Titu-Marius I. Băjenescu
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-658-22178-2_4