Skip to main content
Top

2020 | OriginalPaper | Chapter

3. Mercury Porosimetry

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter first explains the basic underlying theory for the mercury porosimetry technique. It then discusses some experimental issues not normally covered in any length in manuals for commercially available apparatus, particularly how data analysis changes depending upon the mechanical properties of the sample studied. The next section then describes the range of different sorts of experiments that can be performed with a commercial porosimeter, how the data can be analysed, and the types of void space descriptors that can be obtained. It will be seen that mercury porosimetry can provide information on more than just exterior pore neck size distributions but also surface area, pore network connectivity and degree of spatial heterogeneity. It will also be shown how porosimetry can be made an absolute rather than a relative measure of pore sizes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alié C, Pirard R, Pirard J-P (2001) Mercury porosimetry applied to porous silica materials: successive buckling and intrusion mechanisms. Colloids Surf A 187–188:367–374 Alié C, Pirard R, Pirard J-P (2001) Mercury porosimetry applied to porous silica materials: successive buckling and intrusion mechanisms. Colloids Surf A 187–188:367–374
go back to reference Androutsopoulos GP, Mann R (1979) Evaluation of mercury porosimeter experiments using a network pore structure model. Chem Eng Sci 34(10):1203–1212 Androutsopoulos GP, Mann R (1979) Evaluation of mercury porosimeter experiments using a network pore structure model. Chem Eng Sci 34(10):1203–1212
go back to reference Bell WK, Van Brakel J, Heertjes PM (1981) Mercury penetration and retraction hysteresis in closely packed spheres. Powder Technol 29(1):75–88 Bell WK, Van Brakel J, Heertjes PM (1981) Mercury penetration and retraction hysteresis in closely packed spheres. Powder Technol 29(1):75–88
go back to reference Day M, Parker IB, Bell J, Fletcher R, Duffie J, Sing KSW, Nicolson D (1994) Modeling of mercury intrusion and extrusion. In: Rodríguez-Reinoso F, Rouquerol J, Unger KK, Sing K (eds) Characterisation of Porous Solids III (COPS III). Stud Surf Sci Catal 87:225–234 Day M, Parker IB, Bell J, Fletcher R, Duffie J, Sing KSW, Nicolson D (1994) Modeling of mercury intrusion and extrusion. In: Rodríguez-Reinoso F, Rouquerol J, Unger KK, Sing K (eds) Characterisation of Porous Solids III (COPS III). Stud Surf Sci Catal 87:225–234
go back to reference Diamond S (2000) Mercury porosimetry—an inappropriate method for the measurement of pore size distributions in cement-based materials. Cem Concr Res 30(10):1517–1525 Diamond S (2000) Mercury porosimetry—an inappropriate method for the measurement of pore size distributions in cement-based materials. Cem Concr Res 30(10):1517–1525
go back to reference Fatt I (1956) The network model of porous media. 1. Capillary pressure characteristics. Trans Am Inst Min Met Engrs 207(7):144–159 Fatt I (1956) The network model of porous media. 1. Capillary pressure characteristics. Trans Am Inst Min Met Engrs 207(7):144–159
go back to reference Felipe C, Cordero S, Kornhauser I, Zgrablich G, López R, Rojas F (2006) Domain complexion diagrams related to mercury intrusion-extrusion in Monte Carlo-simulated porous networks. Part Part Syst Charact 23(1):48–60 Felipe C, Cordero S, Kornhauser I, Zgrablich G, López R, Rojas F (2006) Domain complexion diagrams related to mercury intrusion-extrusion in Monte Carlo-simulated porous networks. Part Part Syst Charact 23(1):48–60
go back to reference Giesche H (2006) Mercury porosimetry: a general (practical) overview. Part Part Syst Charact 23:9–19 Giesche H (2006) Mercury porosimetry: a general (practical) overview. Part Part Syst Charact 23:9–19
go back to reference Gregg SJ, Sing KSW (1982) Adsorption. Surface area and porosity. Academic Press, London Gregg SJ, Sing KSW (1982) Adsorption. Surface area and porosity. Academic Press, London
go back to reference Hitchcock I, Lunel M, Bakalis S, Fletcher RS, Holt EM, Rigby SP (2014) Improving sensitivity and accuracy of pore structural characterisation using scanning curves in integrated gas sorption and mercury porosimetry experiments. J Colloid Interface Sci 417:88–99 Hitchcock I, Lunel M, Bakalis S, Fletcher RS, Holt EM, Rigby SP (2014) Improving sensitivity and accuracy of pore structural characterisation using scanning curves in integrated gas sorption and mercury porosimetry experiments. J Colloid Interface Sci 417:88–99
go back to reference Hyväluoma J, Turpeinen T, Raiskinmäki P, Jäsberg A, Koponen A, Kataja M, Timonen J, Ramaswamy S (2007) Intrusion of nonwetting liquid in paper. Phys Rev E 75:036301 Hyväluoma J, Turpeinen T, Raiskinmäki P, Jäsberg A, Koponen A, Kataja M, Timonen J, Ramaswamy S (2007) Intrusion of nonwetting liquid in paper. Phys Rev E 75:036301
go back to reference Katz AJ, Thompson AH (1986) Quantitative prediction of permeability in porous rock. Phys Rev B 34(11):8179–8181 Katz AJ, Thompson AH (1986) Quantitative prediction of permeability in porous rock. Phys Rev B 34(11):8179–8181
go back to reference Kloubek J (1981) Hysteresis in porosimetry. Powder Technol 29(1):63–73 Kloubek J (1981) Hysteresis in porosimetry. Powder Technol 29(1):63–73
go back to reference Laudon GM, Matthews GP, Gane PAC (2008) Modelling diffusion from simulated porous structures. Chem Eng Sci 63(7):1987–1996 Laudon GM, Matthews GP, Gane PAC (2008) Modelling diffusion from simulated porous structures. Chem Eng Sci 63(7):1987–1996
go back to reference Liabastre AA, Orr C (1978) Evaluation of pore structure by mercury penetration. J Colloid Interface Sci 64:1–18 Liabastre AA, Orr C (1978) Evaluation of pore structure by mercury penetration. J Colloid Interface Sci 64:1–18
go back to reference Martic G, Gentner F, Seveno D, Coulon D, De Coninck J, Blake TD (2002) A molecular dynamics simulation of capillary imbibition. Langmuir 18(21):7971–7976 Martic G, Gentner F, Seveno D, Coulon D, De Coninck J, Blake TD (2002) A molecular dynamics simulation of capillary imbibition. Langmuir 18(21):7971–7976
go back to reference Matthews GP, Ridgway CJ, Spearing MC (1995) Void space modeling of mercury intrusion hysteresis in sandstone, paper coating and other porous media. J Colloid Interface Sci 171:8–27 Matthews GP, Ridgway CJ, Spearing MC (1995) Void space modeling of mercury intrusion hysteresis in sandstone, paper coating and other porous media. J Colloid Interface Sci 171:8–27
go back to reference Mayer RP, Stowe RB (1965) Mercury porosimetry—breakthrough pressure for penetration between packed spheres. J Colloid Interface Sci 20(8):893–911 Mayer RP, Stowe RB (1965) Mercury porosimetry—breakthrough pressure for penetration between packed spheres. J Colloid Interface Sci 20(8):893–911
go back to reference Portsmouth RL, Gladden LF (1991) Determination of pore connectivity by mercury porosimetry. Chem Eng Sci 46(12):3023–3036 Portsmouth RL, Gladden LF (1991) Determination of pore connectivity by mercury porosimetry. Chem Eng Sci 46(12):3023–3036
go back to reference Reverberi A, Ferraiolo G, Peloso A (1966) Determination by experiment of the distribution function of the cylindrical macropores and ink bottles in porous systems. Ann Chim 56(12):1552–1561 Reverberi A, Ferraiolo G, Peloso A (1966) Determination by experiment of the distribution function of the cylindrical macropores and ink bottles in porous systems. Ann Chim 56(12):1552–1561
go back to reference Rigby SP (2000a) New methodologies in mercury porosimetry. In: Rodriguez-Reinoso F, McEnaney B, Rouquerol J (eds) Characterization of Porous Solids VI (COPS-VI). Stud Surf Sci Catal 144: 185–192 Rigby SP (2000a) New methodologies in mercury porosimetry. In: Rodriguez-Reinoso F, McEnaney B, Rouquerol J (eds) Characterization of Porous Solids VI (COPS-VI). Stud Surf Sci Catal 144: 185–192
go back to reference Rigby SP (2000b) A hierarchical structural model for the interpretation of mercury porosimetry and nitrogen sorption. J Colloid Interface Sci 224(2):382–396 Rigby SP (2000b) A hierarchical structural model for the interpretation of mercury porosimetry and nitrogen sorption. J Colloid Interface Sci 224(2):382–396
go back to reference Rigby SP, Chigada P (2010) MF-DFT and experimental investigations of the origins of hysteresis in mercury porosimetry of silica materials. Langmuir 26(1):241–248 Rigby SP, Chigada P (2010) MF-DFT and experimental investigations of the origins of hysteresis in mercury porosimetry of silica materials. Langmuir 26(1):241–248
go back to reference Rigby SP, Edler KJ (2002) The influence of mercury contact angle, surface tension and retraction mechanism on the interpretation of mercury porosimetry data. J Colloid Interface Sci 250:175–190 Rigby SP, Edler KJ (2002) The influence of mercury contact angle, surface tension and retraction mechanism on the interpretation of mercury porosimetry data. J Colloid Interface Sci 250:175–190
go back to reference Rigby SP, Chigada PI, Wang J, Wilkinson SK, Bateman H, Al-Duri B, Wood J, Bakalis S, Miri T (2011) Improving the interpretation of mercury porosimetry data using computerised X-ray tomography and mean-field DFT. Chem Eng Sci 66(11):2328–2339 Rigby SP, Chigada PI, Wang J, Wilkinson SK, Bateman H, Al-Duri B, Wood J, Bakalis S, Miri T (2011) Improving the interpretation of mercury porosimetry data using computerised X-ray tomography and mean-field DFT. Chem Eng Sci 66(11):2328–2339
go back to reference Rigby SP, Hasan M, Stevens L, Williams HEL, Fletcher RS (2017) Determination of pore network accessibility in hierarchical porous solids. Ind Eng Chem Res 56(50):14822–14831 Rigby SP, Hasan M, Stevens L, Williams HEL, Fletcher RS (2017) Determination of pore network accessibility in hierarchical porous solids. Ind Eng Chem Res 56(50):14822–14831
go back to reference Tsakiroglou CD, Payatakes AC (1990) A new simulator of mercury porosimetry for the characterization of porous materials. J Colloid Interface Sci 137(2):315–339 Tsakiroglou CD, Payatakes AC (1990) A new simulator of mercury porosimetry for the characterization of porous materials. J Colloid Interface Sci 137(2):315–339
go back to reference Tsakiroglou CD, Payatakes AC (1998) Mercury intrusion and retraction in model porous media. Adv Colloid Interface Sci 75(3):215–253 Tsakiroglou CD, Payatakes AC (1998) Mercury intrusion and retraction in model porous media. Adv Colloid Interface Sci 75(3):215–253
go back to reference Wang S, Javadpour F, Feng Q (2016) Confinement correction to mercury intrusion capillary pressure of shale nanopores. Sci Rep 6:20160 Wang S, Javadpour F, Feng Q (2016) Confinement correction to mercury intrusion capillary pressure of shale nanopores. Sci Rep 6:20160
go back to reference Wardlaw NC, McKellar M (1981) Mercury porosimetry and the interpretation of pore geometry in sedimentary rocks and artificial models. Powder Technol 29:127–143 Wardlaw NC, McKellar M (1981) Mercury porosimetry and the interpretation of pore geometry in sedimentary rocks and artificial models. Powder Technol 29:127–143
go back to reference Wenzel RN (1949) Surface roughness and contact angle. J Phys Chem 53(9):1466–1467 Wenzel RN (1949) Surface roughness and contact angle. J Phys Chem 53(9):1466–1467
go back to reference Yuan HH, Swanson BF (1989) Resolving pore-space characteristics by rate-controlled porosimetry. SPE-14892 4(1):17–24 Yuan HH, Swanson BF (1989) Resolving pore-space characteristics by rate-controlled porosimetry. SPE-14892 4(1):17–24
Metadata
Title
Mercury Porosimetry
Author
Sean Patrick Rigby
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-47418-8_3

Premium Partners