Skip to main content
Top

2025 | OriginalPaper | Chapter

MERLiN: Single-Shot Material Estimation and Relighting for Photometric Stereo

Authors : Ashish Tiwari, Satoshi Ikehata, Shanmuganathan Raman

Published in: Computer Vision – ECCV 2024

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Photometric stereo typically demands intricate data acquisition setups involving multiple light sources to recover surface normals accurately. In this paper, we propose MERLiN, an attention-based hourglass network that integrates single image-based inverse rendering and relighting within a single unified framework. We evaluate the performance of photometric stereo methods using these relit images and demonstrate how they can circumvent the underlying challenge of complex data acquisition. Our physically-based model is trained on a large synthetic dataset containing complex shapes with spatially varying BRDF and is designed to handle indirect illumination effects to improve material reconstruction and relighting. Through extensive qualitative and quantitative evaluation, we demonstrate that the proposed framework generalizes well to real-world images, achieving high-quality shape, material estimation, and relighting. We assess these synthetically relit images over photometric stereo benchmark methods for their physical correctness and resulting normal estimation accuracy, paving the way towards single-shot photometric stereo through physically-based relighting. This work allows us to address the single image-based inverse rendering problem holistically, applying well to both synthetic and real data and taking a step towards mitigating the challenge of data acquisition in photometric stereo.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
The dataset uses a camera-centric coordinate system with the camera at the origin and xyz directions correspond to uvd.
 
Literature
1.
go back to reference Aittala, M., Aila, T., Lehtinen, J.: Reflectance modeling by neural texture synthesis. ACM Trans. Graph. (ToG) 35(4), 1–13 (2016)CrossRef Aittala, M., Aila, T., Lehtinen, J.: Reflectance modeling by neural texture synthesis. ACM Trans. Graph. (ToG) 35(4), 1–13 (2016)CrossRef
2.
go back to reference Bell, S., Upchurch, P., Snavely, N., Bala, K.: Material recognition in the wild with the materials in context database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3479–3487 (2015) Bell, S., Upchurch, P., Snavely, N., Bala, K.: Material recognition in the wild with the materials in context database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3479–3487 (2015)
3.
go back to reference Chandraker, M.K., Kahl, F., Kriegman, D.J.: Reflections on the generalized bas-relief ambiguity. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 788–795. IEEE (2005) Chandraker, M.K., Kahl, F., Kriegman, D.J.: Reflections on the generalized bas-relief ambiguity. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 788–795. IEEE (2005)
4.
go back to reference Deschaintre, V., Aittala, M., Durand, F., Drettakis, G., Bousseau, A.: Single-image SVBRDF capture with a rendering-aware deep network. ACM Trans. Graph. (ToG) 37(4), 1–15 (2018)CrossRef Deschaintre, V., Aittala, M., Durand, F., Drettakis, G., Bousseau, A.: Single-image SVBRDF capture with a rendering-aware deep network. ACM Trans. Graph. (ToG) 37(4), 1–15 (2018)CrossRef
5.
go back to reference Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2650–2658 (2015) Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2650–2658 (2015)
6.
go back to reference Goldman, D.B., Curless, B., Hertzmann, A., Seitz, S.M.: Shape and spatially-varying BRDFs from photometric stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1060–1071 (2009)CrossRef Goldman, D.B., Curless, B., Hertzmann, A., Seitz, S.M.: Shape and spatially-varying BRDFs from photometric stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1060–1071 (2009)CrossRef
7.
go back to reference Hill, S., et al.: Physically based shading in theory and practice. In: ACM SIGGRAPH 2020 Courses, pp. 1–12 (2020) Hill, S., et al.: Physically based shading in theory and practice. In: ACM SIGGRAPH 2020 Courses, pp. 1–12 (2020)
8.
go back to reference Horn, B.K.: Shape from shading: a method for obtaining the shape of a smooth opaque object from one view (1970) Horn, B.K.: Shape from shading: a method for obtaining the shape of a smooth opaque object from one view (1970)
9.
go back to reference Horn, B.K., Brooks, M.J.: Shape from Shading. MIT Press, Cambridge (1989) Horn, B.K., Brooks, M.J.: Shape from Shading. MIT Press, Cambridge (1989)
10.
go back to reference Ikehata, S.: Scalable, detailed and mask-free universal photometric stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13198–13207 (2023) Ikehata, S.: Scalable, detailed and mask-free universal photometric stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13198–13207 (2023)
11.
go back to reference Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017) Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)
12.
go back to reference Johnson, M.K., Adelson, E.H.: Shape estimation in natural illumination. In: CVPR 2011, pp. 2553–2560. IEEE (2011) Johnson, M.K., Adelson, E.H.: Shape estimation in natural illumination. In: CVPR 2011, pp. 2553–2560. IEEE (2011)
13.
go back to reference Karis, B., Games, E.: Real shading in unreal engine 4. Proc. Phys. Based Shading Theory Pract. 4(3), 1 (2013) Karis, B., Games, E.: Real shading in unreal engine 4. Proc. Phys. Based Shading Theory Pract. 4(3), 1 (2013)
14.
go back to reference Kaya, B., Kumar, S., Oliveira, C., Ferrari, V., Van Gool, L.: Uncalibrated neural inverse rendering for photometric stereo of general surfaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3804–3814 (2021) Kaya, B., Kumar, S., Oliveira, C., Ferrari, V., Van Gool, L.: Uncalibrated neural inverse rendering for photometric stereo of general surfaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3804–3814 (2021)
16.
go back to reference Li, J., Li, H.: Neural reflectance for shape recovery with shadow handling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16221–16230 (2022) Li, J., Li, H.: Neural reflectance for shape recovery with shadow handling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16221–16230 (2022)
18.
go back to reference Li, J., Robles-Kelly, A., You, S., Matsushita, Y.: Learning to minify photometric stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7568–7576 (2019) Li, J., Robles-Kelly, A., You, S., Matsushita, Y.: Learning to minify photometric stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7568–7576 (2019)
19.
go back to reference Li, X., Dong, Y., Peers, P., Tong, X.: Modeling surface appearance from a single photograph using self-augmented convolutional neural networks. ACM Trans. Graph. (ToG) 36(4), 1–11 (2017) Li, X., Dong, Y., Peers, P., Tong, X.: Modeling surface appearance from a single photograph using self-augmented convolutional neural networks. ACM Trans. Graph. (ToG) 36(4), 1–11 (2017)
20.
go back to reference Li, Z., Snavely, N.: CGIntrinsics: better intrinsic image decomposition through physically-based rendering. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 371–387 (2018) Li, Z., Snavely, N.: CGIntrinsics: better intrinsic image decomposition through physically-based rendering. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 371–387 (2018)
21.
go back to reference Li, Z., Sunkavalli, K., Chandraker, M.: Materials for masses: SVBRDF acquisition with a single mobile phone image. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 72–87 (2018) Li, Z., Sunkavalli, K., Chandraker, M.: Materials for masses: SVBRDF acquisition with a single mobile phone image. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 72–87 (2018)
22.
go back to reference Li, Z., Xu, Z., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Learning to reconstruct shape and spatially-varying reflectance from a single image. ACM Trans. Graph. (TOG) 37(6), 1–11 (2018)CrossRef Li, Z., Xu, Z., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Learning to reconstruct shape and spatially-varying reflectance from a single image. ACM Trans. Graph. (TOG) 37(6), 1–11 (2018)CrossRef
23.
go back to reference Li, Z., et al.: Relit-NeuLF: efficient relighting and novel view synthesis via neural 4D light field. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 7007–7016 (2023) Li, Z., et al.: Relit-NeuLF: efficient relighting and novel view synthesis via neural 4D light field. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 7007–7016 (2023)
24.
go back to reference Lichy, D., Sengupta, S., Jacobs, D.W.: Fast light-weight near-field photometric stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12612–12621 (2022) Lichy, D., Sengupta, S., Jacobs, D.W.: Fast light-weight near-field photometric stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12612–12621 (2022)
25.
go back to reference Lichy, D., Wu, J., Sengupta, S., Jacobs, D.W.: Shape and material capture at home. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6123–6133 (2021) Lichy, D., Wu, J., Sengupta, S., Jacobs, D.W.: Shape and material capture at home. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6123–6133 (2021)
26.
go back to reference Liu, Y., Li, Y., You, S., Lu, F.: Unsupervised learning for intrinsic image decomposition from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3248–3257 (2020) Liu, Y., Li, Y., You, S., Lu, F.: Unsupervised learning for intrinsic image decomposition from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3248–3257 (2020)
27.
go back to reference Mecca, R., Logothetis, F., Budvytis, I., Cipolla, R.: LUCES: a dataset for near-field point light source photometric stereo. arXiv preprint arXiv:2104.13135 (2021) Mecca, R., Logothetis, F., Budvytis, I., Cipolla, R.: LUCES: a dataset for near-field point light source photometric stereo. arXiv preprint arXiv:​2104.​13135 (2021)
28.
go back to reference Meka, A., et al.: LIME: live intrinsic material estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6315–6324 (2018) Meka, A., et al.: LIME: live intrinsic material estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6315–6324 (2018)
29.
go back to reference Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)CrossRef Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)CrossRef
32.
go back to reference Oxholm, G., Nishino, K.: Shape and reflectance estimation in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 376–389 (2015)CrossRef Oxholm, G., Nishino, K.: Shape and reflectance estimation in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 376–389 (2015)CrossRef
33.
go back to reference Rematas, K., Ritschel, T., Fritz, M., Gavves, E., Tuytelaars, T.: Deep reflectance maps. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4508–4516 (2016) Rematas, K., Ritschel, T., Fritz, M., Gavves, E., Tuytelaars, T.: Deep reflectance maps. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4508–4516 (2016)
35.
go back to reference Sengupta, S., Gu, J., Kim, K., Liu, G., Jacobs, D.W., Kautz, J.: Neural inverse rendering of an indoor scene from a single image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8598–8607 (2019) Sengupta, S., Gu, J., Kim, K., Liu, G., Jacobs, D.W., Kautz, J.: Neural inverse rendering of an indoor scene from a single image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8598–8607 (2019)
36.
go back to reference Shi, J., Dong, Y., Su, H., Yu, S.X.: Learning non-lambertian object intrinsics across shapenet categories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1685–1694 (2017) Shi, J., Dong, Y., Su, H., Yu, S.X.: Learning non-lambertian object intrinsics across shapenet categories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1685–1694 (2017)
37.
go back to reference Shu, Z., Yumer, E., Hadap, S., Sunkavalli, K., Shechtman, E., Samaras, D.: Neural face editing with intrinsic image disentangling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5541–5550 (2017) Shu, Z., Yumer, E., Hadap, S., Sunkavalli, K., Shechtman, E., Samaras, D.: Neural face editing with intrinsic image disentangling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5541–5550 (2017)
38.
go back to reference Srinivasan, P.P., Deng, B., Zhang, X., Tancik, M., Mildenhall, B., Barron, J.T.: NeRV: neural reflectance and visibility fields for relighting and view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7495–7504 (2021) Srinivasan, P.P., Deng, B., Zhang, X., Tancik, M., Mildenhall, B., Barron, J.T.: NeRV: neural reflectance and visibility fields for relighting and view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7495–7504 (2021)
39.
go back to reference Sun, T., et al.: Single image portrait relighting. ACM Trans. Graph. (TOG) 38(4), 1–12 (2019)CrossRef Sun, T., et al.: Single image portrait relighting. ACM Trans. Graph. (TOG) 38(4), 1–12 (2019)CrossRef
41.
go back to reference Tiwari, A., Raman, S.: LERPS: lighting estimation and relighting for photometric stereo. In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2060–2064. IEEE (2022) Tiwari, A., Raman, S.: LERPS: lighting estimation and relighting for photometric stereo. In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2060–2064. IEEE (2022)
42.
go back to reference Wimbauer, F., Wu, S., Rupprecht, C.: De-rendering 3D objects in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18490–18499 (2022) Wimbauer, F., Wu, S., Rupprecht, C.: De-rendering 3D objects in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18490–18499 (2022)
43.
go back to reference Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19(1), 139–144 (1980)CrossRef Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19(1), 139–144 (1980)CrossRef
44.
go back to reference Wu, H., Hu, Z., Li, L., Zhang, Y., Fan, C., Yu, X.: NeFII: inverse rendering for reflectance decomposition with near-field indirect illumination. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4295–4304 (2023) Wu, H., Hu, Z., Li, L., Zhang, Y., Fan, C., Yu, X.: NeFII: inverse rendering for reflectance decomposition with near-field indirect illumination. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4295–4304 (2023)
45.
go back to reference Xu, Y., Zoss, G., Chandran, P., Gross, M., Bradley, D., Gotardo, P.: ReNeRF: relightable neural radiance fields with nearfield lighting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 22581–22591 (2023) Xu, Y., Zoss, G., Chandran, P., Gross, M., Bradley, D., Gotardo, P.: ReNeRF: relightable neural radiance fields with nearfield lighting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 22581–22591 (2023)
46.
go back to reference Xu, Z., Sunkavalli, K., Hadap, S., Ramamoorthi, R.: Deep image-based relighting from optimal sparse samples. ACM Trans. Graph. (ToG) 37(4), 1–13 (2018)CrossRef Xu, Z., Sunkavalli, K., Hadap, S., Ramamoorthi, R.: Deep image-based relighting from optimal sparse samples. ACM Trans. Graph. (ToG) 37(4), 1–13 (2018)CrossRef
47.
go back to reference Yamamoto, T., Nakazawa, A.: General improvement method of specular component separation using high-emphasis filter and similarity function. ITE Trans. Media Technol. Appl. 7(2), 92–102 (2019) Yamamoto, T., Nakazawa, A.: General improvement method of specular component separation using high-emphasis filter and similarity function. ITE Trans. Media Technol. Appl. 7(2), 92–102 (2019)
48.
go back to reference Yang, J., Liu, Q., Zhang, K.: Stacked hourglass network for robust facial landmark localisation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 79–87 (2017) Yang, J., Liu, Q., Zhang, K.: Stacked hourglass network for robust facial landmark localisation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 79–87 (2017)
49.
go back to reference Yi, R., Zhu, C., Xu, K.: Weakly-supervised single-view image relighting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8402–8411 (2023) Yi, R., Zhu, C., Xu, K.: Weakly-supervised single-view image relighting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8402–8411 (2023)
50.
go back to reference Yu, Y., Smith, W.A.: InverseRenderNet: learning single image inverse rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3155–3164 (2019) Yu, Y., Smith, W.A.: InverseRenderNet: learning single image inverse rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3155–3164 (2019)
51.
go back to reference Yu, Y., Smith, W.A.: Outdoor inverse rendering from a single image using multiview self-supervision. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3659–3675 (2021) Yu, Y., Smith, W.A.: Outdoor inverse rendering from a single image using multiview self-supervision. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3659–3675 (2021)
52.
go back to reference Zhang, X., et al.: Neural light transport for relighting and view synthesis. ACM Trans. Graph. (TOG) 40(1), 1–17 (2021)CrossRef Zhang, X., et al.: Neural light transport for relighting and view synthesis. ACM Trans. Graph. (TOG) 40(1), 1–17 (2021)CrossRef
53.
go back to reference Zhou, H., Hadap, S., Sunkavalli, K., Jacobs, D.W.: Deep single-image portrait relighting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7194–7202 (2019) Zhou, H., Hadap, S., Sunkavalli, K., Jacobs, D.W.: Deep single-image portrait relighting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7194–7202 (2019)
54.
go back to reference Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Metadata
Title
MERLiN: Single-Shot Material Estimation and Relighting for Photometric Stereo
Authors
Ashish Tiwari
Satoshi Ikehata
Shanmuganathan Raman
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-73254-6_15

Premium Partner