Skip to main content
Top
Published in: Journal of Materials Science 13/2019

05-04-2019 | Chemical routes to materials

Mesoporous electronegative nanocomposites of SBA-15 with CaO–CeO2 for polycarbonate depolymerization

Authors: Yuchen Yang, Chengyang Wang, Fusheng Liu, Xinixn Sun, Guohui Qin, Yuting Liu, Jun Gao

Published in: Journal of Materials Science | Issue 13/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The depolymerization of polycarbonate (PC) into bisphenol A (BPA) is performed by defective xCaO/Ce-SBA-15 nanocomposite assisted by plasma treatment. For such composite catalyst, CaO and CeO2 particles are finely encapsulated into the tubular SBA-15 without leaching or aggregation occurring. Abundant oxygen vacancies are generated from the doping of Ca and Ce atoms into the lattice of SBA-15 composite via the plasma surface engineering, entrusting strong basic sites to such mesoporous composite. The interface interaction between Ca and Ce with defective dimensional support materials predominated to generate maximum basic sites is of critical importance in tailoring the BPA yield. CaO/Ce-SBA-15 with rich oxygen vacancies and rough surface creates rich basic sites to achieve the high efficiency of PC alcoholysis and durable repeated cycles. Meanwhile, the synergistic catalysis between CaO and CeO2 is achieved, while SBA-15 with smaller disordered pores and fine connectivity between adjacent large pore channels enables a good dispersity of such xCaO/Ce-SBA-15 composite and finely prevents the leaching of Ca and Ce particles. Additionally, the high-density defects from the substitution of Ce by Ca and Si atoms as well as the plasma treatment play active basic sites during PC adsorption and activation. Such graft also leads SBA-15 itself becoming a solid base. Hence, the superior of PC depolymerization and superior durability are obtained due to the composition synergistic effects and rich abundant basic sites. It is noted that the abundant Ca on ceria surface provides affluent electrons, which makes decreased Ce valence in CeO2 subsurface and elevation of basic sites. This work explores the generation of tunable basic sites for SBA-15 and is instructive for fabricating desirable multicomponent catalysts composed of bifunctional non-novel catalyst for heterogeneous catalysis with rich surface oxygen vacancies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Piñero R, García J, Cocero MJ (2005) Chemical recycling of polycarbonate in a semi-continuous lab-plant. A green route with methanol and methanol–water mixtures. Green Chem 7:380–387CrossRef Piñero R, García J, Cocero MJ (2005) Chemical recycling of polycarbonate in a semi-continuous lab-plant. A green route with methanol and methanol–water mixtures. Green Chem 7:380–387CrossRef
2.
go back to reference Huang Y, Liu S, Pan Z (2011) Effects of plastic additives on depolymerization of polycarbonate in sub-critical water. Polym Degrad Stabil 96:1405–1410CrossRef Huang Y, Liu S, Pan Z (2011) Effects of plastic additives on depolymerization of polycarbonate in sub-critical water. Polym Degrad Stabil 96:1405–1410CrossRef
3.
go back to reference Kuran W, Gorecki P (1983) Degradation and depolymerization of poly (propylene carbonate) by diethylzinc. Macromol Chem Phys 184:907–912CrossRef Kuran W, Gorecki P (1983) Degradation and depolymerization of poly (propylene carbonate) by diethylzinc. Macromol Chem Phys 184:907–912CrossRef
4.
go back to reference Piñero-Hernanz R, García-Serna J, Cocero MJ (2006) Nonstationary model of the semicontinuous depolymerization of polycarbonate. AIChE J 52:4186–4199CrossRef Piñero-Hernanz R, García-Serna J, Cocero MJ (2006) Nonstationary model of the semicontinuous depolymerization of polycarbonate. AIChE J 52:4186–4199CrossRef
5.
go back to reference Kuran W, Listoś T (1994) Degradation of poly (propylene carbonate) by coordination catalysts containing phenolatozinc and alcoholatozinc species. Macromol Chem Phys 195:101 Kuran W, Listoś T (1994) Degradation of poly (propylene carbonate) by coordination catalysts containing phenolatozinc and alcoholatozinc species. Macromol Chem Phys 195:101
6.
go back to reference Iannone F, Casiello M, Monopoli A, Cotugno P, Sportelli MC, Picca RA, Nacci A (2017) Ionic liquids/ZnO nanoparticles as recyclable catalyst for polycarbonate depolymerization. J Mol Catal A: Chem 426:107–116CrossRef Iannone F, Casiello M, Monopoli A, Cotugno P, Sportelli MC, Picca RA, Nacci A (2017) Ionic liquids/ZnO nanoparticles as recyclable catalyst for polycarbonate depolymerization. J Mol Catal A: Chem 426:107–116CrossRef
7.
go back to reference Tsintzou GP, Achilias DS (2013) Chemical recycling of polycarbonate based wastes using alkaline hydrolysis under microwave irradiation. Waste Biomass Valori 4:3–7CrossRef Tsintzou GP, Achilias DS (2013) Chemical recycling of polycarbonate based wastes using alkaline hydrolysis under microwave irradiation. Waste Biomass Valori 4:3–7CrossRef
8.
go back to reference Pan Z, Hu Z, Shi Y, Shen Y, Wang J, Chou IM (2014) Depolymerization of polycarbonate with catalyst in hot compressed water in fused silica capillary and autoclave reactors. RSC Adv 4:19992–19998CrossRef Pan Z, Hu Z, Shi Y, Shen Y, Wang J, Chou IM (2014) Depolymerization of polycarbonate with catalyst in hot compressed water in fused silica capillary and autoclave reactors. RSC Adv 4:19992–19998CrossRef
9.
go back to reference Fang Y, Jin H, Pan Z, Zou X, Lin C (2009) Catalytic depolymerization of polycarbonate in sub-critical ethanol. J Chem Ind Eng Soc 2:016 Fang Y, Jin H, Pan Z, Zou X, Lin C (2009) Catalytic depolymerization of polycarbonate in sub-critical ethanol. J Chem Ind Eng Soc 2:016
10.
go back to reference Li B, Xue F, Wang J, Ding E, Li Z (2017) Process analysis of controllable polycarbonate depolymerization in ethylene glycol. Prog Rubber Plast Recycl Technol 33:39CrossRef Li B, Xue F, Wang J, Ding E, Li Z (2017) Process analysis of controllable polycarbonate depolymerization in ethylene glycol. Prog Rubber Plast Recycl Technol 33:39CrossRef
11.
go back to reference Korn MR, Gagné MR (1998) Convenient depolymerization route to telechelic polycarbonate oligomers. Macromolecules 31:4023–4026CrossRef Korn MR, Gagné MR (1998) Convenient depolymerization route to telechelic polycarbonate oligomers. Macromolecules 31:4023–4026CrossRef
12.
go back to reference Quaranta E, Sgherza D, Tartaro G (2017) Depolymerization of poly (bisphenol A carbonate) under mild conditions by solvent-free alcoholysis catalyzed by 1, 8-diazabicyclo [5.4.0] undec-7-ene as a recyclable organocatalyst: a route to chemical recycling of waste polycarbonate. Green Chem 19:5422–5434CrossRef Quaranta E, Sgherza D, Tartaro G (2017) Depolymerization of poly (bisphenol A carbonate) under mild conditions by solvent-free alcoholysis catalyzed by 1, 8-diazabicyclo [5.4.0] undec-7-ene as a recyclable organocatalyst: a route to chemical recycling of waste polycarbonate. Green Chem 19:5422–5434CrossRef
13.
go back to reference Zhao Y, Liu M, Zhao R, Liu F, Ge X, Yu S (2018) Heterogeneous CaO (SrO, BaO)/MCF as highly active and recyclable catalysts for the glycolysis of poly (ethylene terephthalate). Research Chem Intermed 44:7711–7729CrossRef Zhao Y, Liu M, Zhao R, Liu F, Ge X, Yu S (2018) Heterogeneous CaO (SrO, BaO)/MCF as highly active and recyclable catalysts for the glycolysis of poly (ethylene terephthalate). Research Chem Intermed 44:7711–7729CrossRef
14.
go back to reference Liu YY, Qin GH, Song XY, Ding JW, Liu FS, Yu ST, Ge XP (2018) Mesoporous alumina modified calcium catalyst for alcoholysis of polycarbonate. J Taiwan Inst Chem Eng 86:222–229CrossRef Liu YY, Qin GH, Song XY, Ding JW, Liu FS, Yu ST, Ge XP (2018) Mesoporous alumina modified calcium catalyst for alcoholysis of polycarbonate. J Taiwan Inst Chem Eng 86:222–229CrossRef
15.
go back to reference Yang Y, Zhang CM, Xu YY, Li YW, Xiang HW (2001) Determination of depolymerization products in supercritical methanolysis of poly (ethylene terephthalate) polyester by reversed phase high performance liquid chromatography. Chin J Anal Chem 807:101–109 Yang Y, Zhang CM, Xu YY, Li YW, Xiang HW (2001) Determination of depolymerization products in supercritical methanolysis of poly (ethylene terephthalate) polyester by reversed phase high performance liquid chromatography. Chin J Anal Chem 807:101–109
16.
go back to reference Darensbourg DJ, Wei SH, Wilson SJ (2013) Depolymerization of poly (indene carbonate). A unique degradation pathway. Macromolecules 46:3228–3233CrossRef Darensbourg DJ, Wei SH, Wilson SJ (2013) Depolymerization of poly (indene carbonate). A unique degradation pathway. Macromolecules 46:3228–3233CrossRef
17.
go back to reference Kumar CR, Anand N, Kloekhorst A, Cannilla C, Bonura G, Frusteri F, Heeres HJ (2015) Solvent free depolymerization of Kraft lignin to alkyl-phenolics using supported NiMo and CoMo catalysts. Green Chem 17:4921CrossRef Kumar CR, Anand N, Kloekhorst A, Cannilla C, Bonura G, Frusteri F, Heeres HJ (2015) Solvent free depolymerization of Kraft lignin to alkyl-phenolics using supported NiMo and CoMo catalysts. Green Chem 17:4921CrossRef
18.
go back to reference Wang DC, Chen LW, Chiu WY (1995) Kinetic study on depolymerization by glycolysis of poly (ethylene terephthalate) with bisphenol A. Appl Macromol Chem Phys 230:47–71 Wang DC, Chen LW, Chiu WY (1995) Kinetic study on depolymerization by glycolysis of poly (ethylene terephthalate) with bisphenol A. Appl Macromol Chem Phys 230:47–71
19.
go back to reference Xie W, Yang X, Fan M (2015) Novel solid base catalyst for biodiesel production: mesoporous SBA-15 silica immobilized with 1, 3-dicyclohexyl-2-octylguanidine. Renew Energ 80:230–237CrossRef Xie W, Yang X, Fan M (2015) Novel solid base catalyst for biodiesel production: mesoporous SBA-15 silica immobilized with 1, 3-dicyclohexyl-2-octylguanidine. Renew Energ 80:230–237CrossRef
20.
go back to reference Albuquerque MCG, Jiménez-Urbistondo I, Santamaría-González J, Mérida-Robles JM, Moreno-Tost R, Rodríguez-Castellón E, Jiménez-López A, Azevedo DCS, Cavalcante CL Jr, Maireles-Torres P (2008) CaO supported on mesoporous silicas as basic catalysts for alcolysis reactions. Appl Catal A Gen 334:35–43CrossRef Albuquerque MCG, Jiménez-Urbistondo I, Santamaría-González J, Mérida-Robles JM, Moreno-Tost R, Rodríguez-Castellón E, Jiménez-López A, Azevedo DCS, Cavalcante CL Jr, Maireles-Torres P (2008) CaO supported on mesoporous silicas as basic catalysts for alcolysis reactions. Appl Catal A Gen 334:35–43CrossRef
22.
go back to reference Pino L, Vita A, Laganà M, Recupero V (2011) Hydrogen production by methane tri-reforming process over Ni–Ce catalysts: effect of La-doping. Appl Catal B Environ 104:64–73CrossRef Pino L, Vita A, Laganà M, Recupero V (2011) Hydrogen production by methane tri-reforming process over Ni–Ce catalysts: effect of La-doping. Appl Catal B Environ 104:64–73CrossRef
23.
go back to reference Rezaei M, Alavi SM, Sahebdelfar S, Liu XM, Qian L, Yan ZF (2007) CO2–CH4 reforming over nickel catalysts supported on mesoporous nanocrystalline zirconia with high surface area. Energy Fuel 21:581–589CrossRef Rezaei M, Alavi SM, Sahebdelfar S, Liu XM, Qian L, Yan ZF (2007) CO2–CH4 reforming over nickel catalysts supported on mesoporous nanocrystalline zirconia with high surface area. Energy Fuel 21:581–589CrossRef
24.
go back to reference Thitsartarn W, Maneerung T, Kawi S, Kawi S (2015) Highly active and durable Ca-doped Ce-SBA-15 catalyst for biodiesel production. Energy 89:946–956CrossRef Thitsartarn W, Maneerung T, Kawi S, Kawi S (2015) Highly active and durable Ca-doped Ce-SBA-15 catalyst for biodiesel production. Energy 89:946–956CrossRef
25.
go back to reference Timofeeva MN, Jhung SH, Hwang YK, Kim DK, Panchenko VN, Melgunov MS, Chesalov YA, Chang JS (2007) Ce-silica mesoporous SBA-15-type materials for oxidative catalysis: synthesis, characterization, and catalytic application. Appl Catal A Gen 317:1–10CrossRef Timofeeva MN, Jhung SH, Hwang YK, Kim DK, Panchenko VN, Melgunov MS, Chesalov YA, Chang JS (2007) Ce-silica mesoporous SBA-15-type materials for oxidative catalysis: synthesis, characterization, and catalytic application. Appl Catal A Gen 317:1–10CrossRef
26.
go back to reference Ochs D, Braun B, Maus-Friedrichs W, Kempter V (1998) CO2 chemisorption at Ca and CaO surfaces: a study with MIES, UPS(HeI) and XPS. Surf Sci 417:406–414CrossRef Ochs D, Braun B, Maus-Friedrichs W, Kempter V (1998) CO2 chemisorption at Ca and CaO surfaces: a study with MIES, UPS(HeI) and XPS. Surf Sci 417:406–414CrossRef
27.
go back to reference Voigts F, Bebensee F, Dahle S, Volgmann K, Maus-Friedrichs W (2009) The adsorption of CO2 and CO on Ca and CaO films studied with MIES. UPS and XPS. Surf Sci 603:40–49CrossRef Voigts F, Bebensee F, Dahle S, Volgmann K, Maus-Friedrichs W (2009) The adsorption of CO2 and CO on Ca and CaO films studied with MIES. UPS and XPS. Surf Sci 603:40–49CrossRef
28.
go back to reference Escamilla-Perea L, Nava R, Pawelec B, Rosmaninho MG, Peza-Ledesma CL, Fierro JLG (2010) SBA-15-supported gold nanoparticles decorated by CeO2: structural characteristics and CO oxidation activity. Appl Catal A: Gen 381:42–53CrossRef Escamilla-Perea L, Nava R, Pawelec B, Rosmaninho MG, Peza-Ledesma CL, Fierro JLG (2010) SBA-15-supported gold nanoparticles decorated by CeO2: structural characteristics and CO oxidation activity. Appl Catal A: Gen 381:42–53CrossRef
29.
go back to reference Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Kenneth SW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Appl Chem 87:1051–1069CrossRef Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Kenneth SW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Appl Chem 87:1051–1069CrossRef
30.
go back to reference Xin C, Hu M, Wang K, Wang X (2017) Significant enhancement of photocatalytic reduction of CO2 with H2O over ZnO by the formation of basic zinc carbonate. Langmuir 33:6667–6676CrossRef Xin C, Hu M, Wang K, Wang X (2017) Significant enhancement of photocatalytic reduction of CO2 with H2O over ZnO by the formation of basic zinc carbonate. Langmuir 33:6667–6676CrossRef
31.
go back to reference Wang WW, Yu WZ, Du PP, Xu H, Jin Z, Si R, Ma C, Shi S, Jia CJ, Yan CH (2017) Crystal plane effect of ceria on supported copper oxide cluster catalyst for CO Oxidation: importance of metal-support interaction. ACS Catal 7:1313–1329CrossRef Wang WW, Yu WZ, Du PP, Xu H, Jin Z, Si R, Ma C, Shi S, Jia CJ, Yan CH (2017) Crystal plane effect of ceria on supported copper oxide cluster catalyst for CO Oxidation: importance of metal-support interaction. ACS Catal 7:1313–1329CrossRef
32.
go back to reference Xie W, Hong P, Chen L (2006) Alcolysis of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Appl Catal A Gen 300:67–74CrossRef Xie W, Hong P, Chen L (2006) Alcolysis of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Appl Catal A Gen 300:67–74CrossRef
33.
go back to reference Guo F, Wei NN, Xiu ZL, Fang Z (2012) Alcolysis mechanism of soybean oil to biodiesel catalyzed by calcined sodium silicate. Fuel 93:468–472CrossRef Guo F, Wei NN, Xiu ZL, Fang Z (2012) Alcolysis mechanism of soybean oil to biodiesel catalyzed by calcined sodium silicate. Fuel 93:468–472CrossRef
34.
go back to reference Laha SC, Mukherjee P, Sainkar SR, Kumar R (2002) Cerium containing MCM-41-type mesoporous materials and their acidic and redox catalytic properties. J Catal 207:213–223CrossRef Laha SC, Mukherjee P, Sainkar SR, Kumar R (2002) Cerium containing MCM-41-type mesoporous materials and their acidic and redox catalytic properties. J Catal 207:213–223CrossRef
35.
go back to reference Hung IM, Wang HP, Lai WH, Fung KZ, Hon MH (2004) Preparation of mesoporous cerium oxide templated by tri-block copolymer for solid oxide fuel cell. Electrochim Acta 50:745–748CrossRef Hung IM, Wang HP, Lai WH, Fung KZ, Hon MH (2004) Preparation of mesoporous cerium oxide templated by tri-block copolymer for solid oxide fuel cell. Electrochim Acta 50:745–748CrossRef
36.
go back to reference Yao W, Chen Y, Min L, Fang H, Yan ZY, Wang HL, Wang JQ (2006) Liquid oxidation of cyclohexane to cyclohexanol over cerium-doped MCM-41. J Mole Cataly A Chem 246:162–166CrossRef Yao W, Chen Y, Min L, Fang H, Yan ZY, Wang HL, Wang JQ (2006) Liquid oxidation of cyclohexane to cyclohexanol over cerium-doped MCM-41. J Mole Cataly A Chem 246:162–166CrossRef
Metadata
Title
Mesoporous electronegative nanocomposites of SBA-15 with CaO–CeO2 for polycarbonate depolymerization
Authors
Yuchen Yang
Chengyang Wang
Fusheng Liu
Xinixn Sun
Guohui Qin
Yuting Liu
Jun Gao
Publication date
05-04-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 13/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03560-2

Other articles of this Issue 13/2019

Journal of Materials Science 13/2019 Go to the issue

Premium Partners