Skip to main content
Top

2024 | OriginalPaper | Chapter

Mesoscale Mode Coupling Theory for the Weakly Asymmetric Simple Exclusion Process

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The asymmetric simple exclusion process and its analysis by mode coupling theory (MCT) is reviewed. To treat the weakly asymmetric case at large space scale \(x\varepsilon ^{-1}\), large time scale \(t \varepsilon ^{-\chi }\) and weak hopping bias \(b \varepsilon ^{\kappa }\) in the limit \(\varepsilon \rightarrow 0\) we develop a mesoscale MCT that allows for studying the crossover at \(\kappa =1/2\) and \(\chi =2\) from Kardar-Parisi-Zhang (KPZ) to Edwards-Wilkinson (EW) universality. The dynamical structure function is shown to satisfy for all \(\kappa \) an integral equation that is independent of the microscopic model parameters and has a solution that yields a scale-invariant function with the KPZ dynamical exponent \(z=3/2\) at scale \(\chi =3/2+\kappa \) for \(0\le \kappa <1/2\) and for \(\chi =2\) the exact Gaussian EW solution with \(z=2\) for \(\kappa >1/2\). At the crossover point it is a function of both scaling variables which converges at macroscopic scale to the conventional MCT approximation of KPZ universality for \(\kappa <1/2\). This fluctuation pattern confirms long-standing conjectures for \(\kappa \le 1/2\) and is in agreement with mathematically rigorous results for \(\kappa >1/2\) despite the numerous uncontrolled approximations on which MCT is based.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
One may infer \(\chi ^*= 3/2+\kappa \) also from an old result from coupling theory for the one-dimensional ASEP (\(\kappa =0\)) [101] but this does not directly predict the range \(0 < \kappa <1/2\) nor the behaviour at \(\kappa = 1/2\) unlike the mesoscale mode coupling theory developed below.
 
2
There is actually one particular model where this hypothesis can be proved rigorously with vanishing error in the mode coupling approximation, see the discussion in [76]. However, there is no general understanding of when MCT is a good approximation or for what type of cases it may break down.
 
3
This can be exemplified by taking as microscopic scale the atomistic scale of the molecules of which the beads and the channel are composed (with van-der-Waals or similar forces acting between them and Newton’s equation governing the dynamics), as mescoscopic scale the description in terms of hard-core beads and the channel as a confining geometry (with Brownian motion and hard-repulsion determining the noisy dynamics, i.e., the microscopic description in the picture above), and as macroscopic scale description with mild zooming in (with the continuous diffusion equation as dynamics, i.e., the mesoscopic description in the picture above).
 
4
With a view on studying later the limit \(\varepsilon \rightarrow 0\), only the \(\varepsilon \)-dependence of the parameters \(\Lambda _{i}(\varepsilon )\) is indicated.
 
Literature
1.
go back to reference Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59, 799–802 (1987)CrossRef Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59, 799–802 (1987)CrossRef
2.
go back to reference Ahmed, R., Bernardin, C., Gonçalves, P., Simon, M.: A microscopic derivation of coupled SPDE’s with a KPZ flavor. Ann. Inst. H. Poincaré Probab. Statist. 58, 890–915 (2022)MathSciNetCrossRef Ahmed, R., Bernardin, C., Gonçalves, P., Simon, M.: A microscopic derivation of coupled SPDE’s with a KPZ flavor. Ann. Inst. H. Poincaré Probab. Statist. 58, 890–915 (2022)MathSciNetCrossRef
3.
go back to reference Alexander, S., Holstein, T.: Lattice diffusion and the Heisenberg ferromagnet. Phys. Rev. B 18, 301 (1978)CrossRef Alexander, S., Holstein, T.: Lattice diffusion and the Heisenberg ferromagnet. Phys. Rev. B 18, 301 (1978)CrossRef
4.
go back to reference Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the contin-uum directed random polymer in 1+1 dimensions. Commun. Pure Appl. Math. 64, 466–537 (2011)CrossRef Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the contin-uum directed random polymer in 1+1 dimensions. Commun. Pure Appl. Math. 64, 466–537 (2011)CrossRef
6.
go back to reference Arratia, R.: The motion of a tagged particle in the simple symmetric exclusion system in Z. Ann. Probab. 11, 362–373 (1983)MathSciNetCrossRef Arratia, R.: The motion of a tagged particle in the simple symmetric exclusion system in Z. Ann. Probab. 11, 362–373 (1983)MathSciNetCrossRef
7.
go back to reference Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic, New York (1982) Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic, New York (1982)
8.
go back to reference Ben Avraham, D.: Complete exact solution of diffusion-limited coalescence, \(A+A -> A\). Phys. Rev. Lett. 81, 4756–4759 (1998)CrossRef Ben Avraham, D.: Complete exact solution of diffusion-limited coalescence, \(A+A -> A\). Phys. Rev. Lett. 81, 4756–4759 (1998)CrossRef
9.
go back to reference Belitsky, V., Schütz, G.M.: Diffusion and scattering of shocks in the partially asymmetric simple exclusion process. Electron. J. Probab. 7, paper 11, 1–21 (2002) Belitsky, V., Schütz, G.M.: Diffusion and scattering of shocks in the partially asymmetric simple exclusion process. Electron. J. Probab. 7, paper 11, 1–21 (2002)
10.
go back to reference Belitsky, V., Schütz, G.M.: Microscopic structure of shocks and antishocks in the ASEP conditioned on low current. J. Stat. Phys. 152, 93–111 (2013)MathSciNetCrossRef Belitsky, V., Schütz, G.M.: Microscopic structure of shocks and antishocks in the ASEP conditioned on low current. J. Stat. Phys. 152, 93–111 (2013)MathSciNetCrossRef
11.
go back to reference Bernardin, C., Stoltz, G.: Anomalous diffusion for a class of systems with two conserved quantities. Nonlinearity 25, 1099–1133 (2012)MathSciNetCrossRef Bernardin, C., Stoltz, G.: Anomalous diffusion for a class of systems with two conserved quantities. Nonlinearity 25, 1099–1133 (2012)MathSciNetCrossRef
12.
go back to reference Bernardin, C., Gonçalves, P.: Anomalous fluctuations for a perturbed Hamiltonian system with exponential interactions. Commun. Math. Phys. 325, 291–332 (2014)MathSciNetCrossRef Bernardin, C., Gonçalves, P.: Anomalous fluctuations for a perturbed Hamiltonian system with exponential interactions. Commun. Math. Phys. 325, 291–332 (2014)MathSciNetCrossRef
13.
go back to reference Bernardin, C., Gonçalves, P., Jara, M.: 3/4-fractional superdiffusion in a system of harmonic oscillators perturbed by a conservative noise. Arch. Rat. Mech. Anal. 220, 505–542 (2016)MathSciNetCrossRef Bernardin, C., Gonçalves, P., Jara, M.: 3/4-fractional superdiffusion in a system of harmonic oscillators perturbed by a conservative noise. Arch. Rat. Mech. Anal. 220, 505–542 (2016)MathSciNetCrossRef
14.
go back to reference Bernardin, C., Gonçalves, P., Jara, M.: Weakly harmonic oscillators perturbed by a conservative noise. Ann. Appl. Probab. 28, 1315–1355 (2018)MathSciNetCrossRef Bernardin, C., Gonçalves, P., Jara, M.: Weakly harmonic oscillators perturbed by a conservative noise. Ann. Appl. Probab. 28, 1315–1355 (2018)MathSciNetCrossRef
15.
go back to reference Bernardin, C., Gonçalves, P., Olla, S.: Space-time fluctuations in a quasi-static limit. arXiv:2305.05319 [math.PR], to appear in Math. Phys. Anal. Geom. (2024) Bernardin, C., Gonçalves, P., Olla, S.: Space-time fluctuations in a quasi-static limit. arXiv:​2305.​05319 [math.PR], to appear in Math. Phys. Anal. Geom. (2024)
16.
go back to reference Bertini, L., De Sole, A., Gabrielli, D., Jona Lasinio, G., Landim, C.: Macroscopic fluctuation theory. Rev. Mod. Phys. 87, 593–636 (2015)MathSciNetCrossRef Bertini, L., De Sole, A., Gabrielli, D., Jona Lasinio, G., Landim, C.: Macroscopic fluctuation theory. Rev. Mod. Phys. 87, 593–636 (2015)MathSciNetCrossRef
17.
go back to reference Bertini, L., Giacomin, G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183, 571–607 (1997)MathSciNetCrossRef Bertini, L., Giacomin, G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183, 571–607 (1997)MathSciNetCrossRef
18.
go back to reference Bertini, B., Collura, M., De Nardis, J., Fagotti, M.: Transport in out-of-equilibrium XXZ chains: exact profiles of charges and currents. Phys. Rev. Lett. 117, 207201 (2016)CrossRef Bertini, B., Collura, M., De Nardis, J., Fagotti, M.: Transport in out-of-equilibrium XXZ chains: exact profiles of charges and currents. Phys. Rev. Lett. 117, 207201 (2016)CrossRef
19.
go back to reference Bodineau, T., Derrida, B.: Distribution of current in non-equilibrium diffusive systems and phase transitions. Phys. Rev. E 72, 066110 (2005)MathSciNetCrossRef Bodineau, T., Derrida, B.: Distribution of current in non-equilibrium diffusive systems and phase transitions. Phys. Rev. E 72, 066110 (2005)MathSciNetCrossRef
20.
go back to reference Borodin, A., Petrov, L.: Lectures on Integrable probability: Stochastic vertex models and symmetric functions. In: Schehr, G., Altland, A., Fyodorov, Y.V., O’Connell, N., Cugliandolo, L.F. (eds.) Stochastic Processes and Random Matrices: Lecture Notes of the Les Houches Summer School: Volume 104, July 2015. Oxford University Press, Oxford (2017) Borodin, A., Petrov, L.: Lectures on Integrable probability: Stochastic vertex models and symmetric functions. In: Schehr, G., Altland, A., Fyodorov, Y.V., O’Connell, N., Cugliandolo, L.F. (eds.) Stochastic Processes and Random Matrices: Lecture Notes of the Les Houches Summer School: Volume 104, July 2015. Oxford University Press, Oxford (2017)
21.
go back to reference Buča, B., Prosen, T.: Connected correlations, fluctuations and current of magnetization in the steady state of boundary driven XXZ spin chains. J. Stat. Mech. 2016, 023102 (2016)MathSciNetCrossRef Buča, B., Prosen, T.: Connected correlations, fluctuations and current of magnetization in the steady state of boundary driven XXZ spin chains. J. Stat. Mech. 2016, 023102 (2016)MathSciNetCrossRef
23.
go back to reference Cardy, J.L.: Conformal Field Theory and Statistical Mechanics. In: Jacobsen, J., Ouvry, S., Pasquier, V., Serban, D., Cugliandolo, L. (eds.) Exact Methods in Low-dimensional Statistical Physics and Quantum Computing: Lecture Notes of the Les Houches Summer School: Volume 89, July 2008. Oxford University Press, Oxford (2010) Cardy, J.L.: Conformal Field Theory and Statistical Mechanics. In: Jacobsen, J., Ouvry, S., Pasquier, V., Serban, D., Cugliandolo, L. (eds.) Exact Methods in Low-dimensional Statistical Physics and Quantum Computing: Lecture Notes of the Les Houches Summer School: Volume 89, July 2008. Oxford University Press, Oxford (2010)
24.
go back to reference Castro-Alvaredo, O.A., Doyon, B., Yoshimura, T.: Emergent hydrodynamics in integrable quantum systems out of equilibrium. Phys. Rev. X 6, 041065 (2016) Castro-Alvaredo, O.A., Doyon, B., Yoshimura, T.: Emergent hydrodynamics in integrable quantum systems out of equilibrium. Phys. Rev. X 6, 041065 (2016)
25.
go back to reference Colaiori, F., Moore, M.A.: Numerical solution of the mode-coupling equations for the Kardar-Parisi-Zhang equation in one dimension. Phys. Rev. E 65, 017105 (2001)CrossRef Colaiori, F., Moore, M.A.: Numerical solution of the mode-coupling equations for the Kardar-Parisi-Zhang equation in one dimension. Phys. Rev. E 65, 017105 (2001)CrossRef
26.
go back to reference Corwin, I.: The Kardar-Parisi-Zhang equation and universality class. Random Matrices Theory Appl. 1, 1130001 (2012) Corwin, I.: The Kardar-Parisi-Zhang equation and universality class. Random Matrices Theory Appl. 1, 1130001 (2012)
27.
go back to reference De Masi, A., Presutti, E., Scacciatelli, E.: The weakly asymmetric simple exclusion process. Ann. Inst. H. Poincaré Probab. Statist. 25, 1–38 (1989)MathSciNet De Masi, A., Presutti, E., Scacciatelli, E.: The weakly asymmetric simple exclusion process. Ann. Inst. H. Poincaré Probab. Statist. 25, 1–38 (1989)MathSciNet
28.
go back to reference De Nardis, J., Medenjak, M., Karrasch, C., Ilievski, E.: Anomalous spin diffusion in one-dimensional antiferromagnets. Phys. Rev. Lett. 123, 186601 (2019)CrossRef De Nardis, J., Medenjak, M., Karrasch, C., Ilievski, E.: Anomalous spin diffusion in one-dimensional antiferromagnets. Phys. Rev. Lett. 123, 186601 (2019)CrossRef
29.
go back to reference De Nardis, J., Gopalakrishnan, S., Vasseur, R.: Nonlinear fluctuating hydrodynamics for Kardar-Parisi-Zhang scaling in isotropic spin chains. Phys. Rev. Lett. 131, 197102 (2023)MathSciNetCrossRef De Nardis, J., Gopalakrishnan, S., Vasseur, R.: Nonlinear fluctuating hydrodynamics for Kardar-Parisi-Zhang scaling in isotropic spin chains. Phys. Rev. Lett. 131, 197102 (2023)MathSciNetCrossRef
30.
go back to reference Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A Math. Gen. 26, 1493–1517 (1993)CrossRef Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A Math. Gen. 26, 1493–1517 (1993)CrossRef
31.
go back to reference Derrida, B., Janowsky, S.A., Lebowitz, J.L., Speer, E.R.: Exact solution of the totally asymmetric simple exclusion process: shock profiles. J. Stat. Phys. 73, 813–842 (1993)MathSciNetCrossRef Derrida, B., Janowsky, S.A., Lebowitz, J.L., Speer, E.R.: Exact solution of the totally asymmetric simple exclusion process: shock profiles. J. Stat. Phys. 73, 813–842 (1993)MathSciNetCrossRef
32.
go back to reference Derrida, B.: An exactly soluble nonequilibrium system: the asymmetric simple exclusion process. Phys. Rep. 301, 65–83 (1998)MathSciNetCrossRef Derrida, B.: An exactly soluble nonequilibrium system: the asymmetric simple exclusion process. Phys. Rep. 301, 65–83 (1998)MathSciNetCrossRef
33.
go back to reference Derrida, B., Lebowitz, J.L., Speer, E.R.: Large deviation of the density profile in the steady state of the open symmetric simple exclusion process. J. Stat Phys. 107, 599–634 (2002)MathSciNetCrossRef Derrida, B., Lebowitz, J.L., Speer, E.R.: Large deviation of the density profile in the steady state of the open symmetric simple exclusion process. J. Stat Phys. 107, 599–634 (2002)MathSciNetCrossRef
34.
go back to reference Derrida, B.: Non-equilibrium steady states: fluctuations, large deviations of the density, of the current. J. Stat. Mech. P07023 (2007) Derrida, B.: Non-equilibrium steady states: fluctuations, large deviations of the density, of the current. J. Stat. Mech. P07023 (2007)
35.
go back to reference Dittrich, P., Gärtner, J.: A central limit theorem for the weakly asymmetric simple exclusion process. Math. Nachr. 151, 75–93 (1991)MathSciNetCrossRef Dittrich, P., Gärtner, J.: A central limit theorem for the weakly asymmetric simple exclusion process. Math. Nachr. 151, 75–93 (1991)MathSciNetCrossRef
36.
go back to reference Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Oxford University Press, Oxford (1986) Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Oxford University Press, Oxford (1986)
37.
go back to reference Doyon B.: Lecture notes on generalised hydrodynamics. SciPost Phys. Lect. Notes 18 (2020) Doyon B.: Lecture notes on generalised hydrodynamics. SciPost Phys. Lect. Notes 18 (2020)
38.
go back to reference Edwards, S.F., Wilkinson, D.: The surface statistics of a granular aggregate. Proc. R. Soc. Lond. A 381, 17–31 (1982)CrossRef Edwards, S.F., Wilkinson, D.: The surface statistics of a granular aggregate. Proc. R. Soc. Lond. A 381, 17–31 (1982)CrossRef
39.
go back to reference Essler, F.H.L.: A short introduction to generalized hydrodynamics. Phys. A 127572 (2022) Essler, F.H.L.: A short introduction to generalized hydrodynamics. Phys. A 127572 (2022)
40.
go back to reference Ferrari, P.A., Kipnis, C., Saada, E.: Microscopic structure of travelling waves in the asymmetric simple exclusion process. Ann. Probab. 19, 226–244 (1991)MathSciNetCrossRef Ferrari, P.A., Kipnis, C., Saada, E.: Microscopic structure of travelling waves in the asymmetric simple exclusion process. Ann. Probab. 19, 226–244 (1991)MathSciNetCrossRef
41.
go back to reference Ferrari, P.A., Fontes, L.R.G.: Shock fluctuations in the asymmetric simple exclusion process. Probab. Theory Relat. Fields 99, 305–319 (1994)MathSciNetCrossRef Ferrari, P.A., Fontes, L.R.G.: Shock fluctuations in the asymmetric simple exclusion process. Probab. Theory Relat. Fields 99, 305–319 (1994)MathSciNetCrossRef
42.
go back to reference Ferrari, P.L., Spohn, H.: Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process. Commun. Math. Phys. 265, 1–44 (2006); Correction in 45–46 Ferrari, P.L., Spohn, H.: Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process. Commun. Math. Phys. 265, 1–44 (2006); Correction in 45–46
43.
go back to reference Frey, E., Täuber, U.C., Hwa, T.: Mode-coupling and renormalization group results for the noisy Burgers equation. Phys. Rev. E 53, 4424–4438 (1996)CrossRef Frey, E., Täuber, U.C., Hwa, T.: Mode-coupling and renormalization group results for the noisy Burgers equation. Phys. Rev. E 53, 4424–4438 (1996)CrossRef
44.
go back to reference Gärtner, J.: Convergence towards Burgers’ equation and propagation of chaos for weakly asymmetric exclusion processes. Stoch. Process. Appl. 27, 233–260 (1988)MathSciNetCrossRef Gärtner, J.: Convergence towards Burgers’ equation and propagation of chaos for weakly asymmetric exclusion processes. Stoch. Process. Appl. 27, 233–260 (1988)MathSciNetCrossRef
45.
go back to reference Gaudin, M.: The Bethe Wave Function. Cambridge University Press, Cambridge (2014)CrossRef Gaudin, M.: The Bethe Wave Function. Cambridge University Press, Cambridge (2014)CrossRef
47.
go back to reference Grynberg, M.D., Stinchcombe, R.B.: Dynamics of adsorption-desorption processes as a soluble problem of many fermions. Phys. Rev. E 52, 6013–6024 (1995)CrossRef Grynberg, M.D., Stinchcombe, R.B.: Dynamics of adsorption-desorption processes as a soluble problem of many fermions. Phys. Rev. E 52, 6013–6024 (1995)CrossRef
48.
go back to reference Gwa, L.H., Spohn, H.: Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation. Phys. Rev. A 46(2), 844–854 (1992)CrossRef Gwa, L.H., Spohn, H.: Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation. Phys. Rev. A 46(2), 844–854 (1992)CrossRef
49.
go back to reference Isserlis, L.: On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika 12, 134–139 (1918)CrossRef Isserlis, L.: On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika 12, 134–139 (1918)CrossRef
50.
go back to reference Jack, R.L., Thompson, I.R., Sollich, P.: Hyperuniformity and phase separation in biased ensembles of trajectories for diffusive systems. Phys. Rev. Lett. 114, 060601 (2015) Jack, R.L., Thompson, I.R., Sollich, P.: Hyperuniformity and phase separation in biased ensembles of trajectories for diffusive systems. Phys. Rev. Lett. 114, 060601 (2015)
51.
go back to reference Jara, M., Flores, G.R.M.: Stationary directed polymers and energy solutions of the Burgers equation. Stoch. Process. Appl. 130, 5973–5998 (2020)MathSciNetCrossRef Jara, M., Flores, G.R.M.: Stationary directed polymers and energy solutions of the Burgers equation. Stoch. Process. Appl. 130, 5973–5998 (2020)MathSciNetCrossRef
52.
go back to reference Jepsen, P.N., Lee, Y.K., Lin, H., et al.: Long-lived phantom helix states in Heisenberg quantum magnets. Nat. Phys. 18, 899–904 (2022)CrossRef Jepsen, P.N., Lee, Y.K., Lin, H., et al.: Long-lived phantom helix states in Heisenberg quantum magnets. Nat. Phys. 18, 899–904 (2022)CrossRef
53.
go back to reference Halpin-Healy, T., Takeuchi, K.A.: A KPZ Cocktail-Shaken, not Stirred... J. Stat. Phys. 160, 794–814 (2015) Halpin-Healy, T., Takeuchi, K.A.: A KPZ Cocktail-Shaken, not Stirred... J. Stat. Phys. 160, 794–814 (2015)
54.
go back to reference Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)CrossRef Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)CrossRef
55.
go back to reference Karevski, D., Popkov, V., Schütz, G.M.: Driven isotropic Heisenberg spin chain with arbitrary boundary twisting angle: exact results. Phys. Rev. E 88, 062118 (2013)CrossRef Karevski, D., Popkov, V., Schütz, G.M.: Driven isotropic Heisenberg spin chain with arbitrary boundary twisting angle: exact results. Phys. Rev. E 88, 062118 (2013)CrossRef
56.
go back to reference Karevski, D., Schütz, G.M.: Conformal invariance in driven diffusive systems at high currents. Phys. Rev. Lett. 118, 030601 (2017)CrossRef Karevski, D., Schütz, G.M.: Conformal invariance in driven diffusive systems at high currents. Phys. Rev. Lett. 118, 030601 (2017)CrossRef
57.
go back to reference Kerr, M.L., Kheruntsyan, K.V.: The theory of generalised hydrodynamics for the one-dimensional Bose gas. AAPPS Bull. 33, 25 (2023)CrossRef Kerr, M.L., Kheruntsyan, K.V.: The theory of generalised hydrodynamics for the one-dimensional Bose gas. AAPPS Bull. 33, 25 (2023)CrossRef
58.
go back to reference Kim, D.: Bethe ansatz solution for crossover scaling functions of the asymmetric XXZ chain and the KPZ-type growth model. Phys. Rev. E 52, 3512–3524 (1995)CrossRef Kim, D.: Bethe ansatz solution for crossover scaling functions of the asymmetric XXZ chain and the KPZ-type growth model. Phys. Rev. E 52, 3512–3524 (1995)CrossRef
59.
go back to reference Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999)CrossRef Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999)CrossRef
60.
go back to reference Krebs, K., Jafarpour, F.H., Schütz, G.M.: Microscopic structure of travelling wave solutions in a class of stochastic interacting particle systems. New J. Phys. 5, 145.1–145.14 (2003) Krebs, K., Jafarpour, F.H., Schütz, G.M.: Microscopic structure of travelling wave solutions in a class of stochastic interacting particle systems. New J. Phys. 5, 145.1–145.14 (2003)
61.
go back to reference Kriecherbauer, T., Krug, J.: A pedestrian’s view on interacting particle systems, KPZ universality and random matrices. J. Phys. A Math. Theor. 43, 403001 (2010)MathSciNetCrossRef Kriecherbauer, T., Krug, J.: A pedestrian’s view on interacting particle systems, KPZ universality and random matrices. J. Phys. A Math. Theor. 43, 403001 (2010)MathSciNetCrossRef
62.
go back to reference Krug, J.: Origins of scale invariance in growth processes. Adv. Phys. 46, 139–282 (1997)CrossRef Krug, J.: Origins of scale invariance in growth processes. Adv. Phys. 46, 139–282 (1997)CrossRef
63.
go back to reference Kukla, V., Kornatowski, J., Demuth, D., Girnus, I., Pfeifer, H., Rees, L.V.C., Schunk, S., Unger, K., Kärger, J.: NMR studies of single-file diffusion in unidimensional channel zeolites. Science 272, 702–704 (1996)CrossRef Kukla, V., Kornatowski, J., Demuth, D., Girnus, I., Pfeifer, H., Rees, L.V.C., Schunk, S., Unger, K., Kärger, J.: NMR studies of single-file diffusion in unidimensional channel zeolites. Science 272, 702–704 (1996)CrossRef
64.
go back to reference Langen, T., Erne, S., Geiger, R., Rauer, B., Schweigler, T., Kuhnert, M., Rohringer, W., Mazets, I.E., Gasenzer, T., Schmiedmayer, J.: Experimental observation of a generalized Gibbs ensemble. Science 348, 207–211 (2015)MathSciNetCrossRef Langen, T., Erne, S., Geiger, R., Rauer, B., Schweigler, T., Kuhnert, M., Rohringer, W., Mazets, I.E., Gasenzer, T., Schmiedmayer, J.: Experimental observation of a generalized Gibbs ensemble. Science 348, 207–211 (2015)MathSciNetCrossRef
65.
go back to reference Lieb, E., Robinson, D.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)MathSciNetCrossRef Lieb, E., Robinson, D.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)MathSciNetCrossRef
66.
go back to reference Liggett, T.M.: Stochastic Interacting Systems: Contact. Voter and Exclusion Processes. Springer, Berlin (1999) Liggett, T.M.: Stochastic Interacting Systems: Contact. Voter and Exclusion Processes. Springer, Berlin (1999)
67.
go back to reference Ljubotina, M., Žnidarič, M., Prosen, T., Ljubotina, M., Žnidarič, M., Prosen, T.: Kardar-Parisi-Zhang physics in the quantum Heisenberg magnet. Phys. Rev. Lett. 122, 210602 (2019) Ljubotina, M., Žnidarič, M., Prosen, T., Ljubotina, M., Žnidarič, M., Prosen, T.: Kardar-Parisi-Zhang physics in the quantum Heisenberg magnet. Phys. Rev. Lett. 122, 210602 (2019)
68.
69.
go back to reference MacDonald, J.T., Gibbs, J.H., Pipkin, A.C.: Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6, 1–25 (1968)CrossRef MacDonald, J.T., Gibbs, J.H., Pipkin, A.C.: Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6, 1–25 (1968)CrossRef
71.
go back to reference Perkins, T.T., Smith, D.E., Chu, S.: Direct observation of tube-like motion of a single polymer-chain. Science 264, 819–822 (1994)CrossRef Perkins, T.T., Smith, D.E., Chu, S.: Direct observation of tube-like motion of a single polymer-chain. Science 264, 819–822 (1994)CrossRef
72.
go back to reference Popkov, V., Schütz, G.M.: Transition probabilities and dynamic structure function in the ASEP conditioned on strong flux. J. Stat. Phys. 142, 627–639 (2011)MathSciNetCrossRef Popkov, V., Schütz, G.M.: Transition probabilities and dynamic structure function in the ASEP conditioned on strong flux. J. Stat. Phys. 142, 627–639 (2011)MathSciNetCrossRef
73.
go back to reference Popkov, V., Schmidt, J., Schütz, G.M.: Universality classes in two-component driven diffusive systems. J. Stat. Phys. 160, 835–860 (2015)MathSciNetCrossRef Popkov, V., Schmidt, J., Schütz, G.M.: Universality classes in two-component driven diffusive systems. J. Stat. Phys. 160, 835–860 (2015)MathSciNetCrossRef
74.
go back to reference Popkov, V., Schadschneider, A., Schmidt, J., Schütz, G.M.: Fibonacci family of dynamical universality classes. Proc. Natl. Acad. Sci. (USA) 112(41), 12645–12650 (2015)MathSciNetCrossRef Popkov, V., Schadschneider, A., Schmidt, J., Schütz, G.M.: Fibonacci family of dynamical universality classes. Proc. Natl. Acad. Sci. (USA) 112(41), 12645–12650 (2015)MathSciNetCrossRef
75.
76.
go back to reference Popkov, V., Schütz, G.M.: Quest for the golden ratio universality class. Submitted (2023) Popkov, V., Schütz, G.M.: Quest for the golden ratio universality class. Submitted (2023)
77.
go back to reference Prähofer, M., Spohn, H.: Exact scaling function for one-dimensional stationary KPZ growth. J. Stat. Phys. 115, 255–279 (2004) Prähofer, M., Spohn, H.: Exact scaling function for one-dimensional stationary KPZ growth. J. Stat. Phys. 115, 255–279 (2004)
78.
go back to reference Privman, V. (ed.): Nonequilibrium Statistical Mechanics in One Dimension. Cambridge University Press, Cambridge (1997) Privman, V. (ed.): Nonequilibrium Statistical Mechanics in One Dimension. Cambridge University Press, Cambridge (1997)
79.
go back to reference Prosen, T.: Exact nonequilibrium steady state of a strongly driven open XXZ chain. Phys. Rev. Lett. 107, 137201 (2011)CrossRef Prosen, T.: Exact nonequilibrium steady state of a strongly driven open XXZ chain. Phys. Rev. Lett. 107, 137201 (2011)CrossRef
80.
81.
go back to reference Quastel, J., Sarkar, S.: Convergence of exclusion processes and the KPZ equation to the KPZ fixed point. J. Am. Math. Soc. 36, 251–289 (2023)MathSciNetCrossRef Quastel, J., Sarkar, S.: Convergence of exclusion processes and the KPZ equation to the KPZ fixed point. J. Am. Math. Soc. 36, 251–289 (2023)MathSciNetCrossRef
82.
go back to reference Rezakhanlou, F.: Hydrodynamic limit for attractive particle systems on \(\mathbb{Z} ^d\). Commun. Math. Phys. 140, 417–448 (1991)CrossRef Rezakhanlou, F.: Hydrodynamic limit for attractive particle systems on \(\mathbb{Z} ^d\). Commun. Math. Phys. 140, 417–448 (1991)CrossRef
83.
go back to reference Roy, D., Dhar, A., Khanin, K., Kulkarni, M., Spohn, H.: Universality in coupled stochastic Burgers systems with degenerate flux Jacobian (2024). arXiv:2401.06399 [cond-mat.stat-mech] Roy, D., Dhar, A., Khanin, K., Kulkarni, M., Spohn, H.: Universality in coupled stochastic Burgers systems with degenerate flux Jacobian (2024). arXiv:​2401.​06399 [cond-mat.stat-mech]
84.
go back to reference Schmidt, J., Schütz, G.M., van Beijeren, H.: A lattice gas model for generic one-dimensional Hamiltonian Systems. J. Stat. Phys. 183, 8 (2021)MathSciNetCrossRef Schmidt, J., Schütz, G.M., van Beijeren, H.: A lattice gas model for generic one-dimensional Hamiltonian Systems. J. Stat. Phys. 183, 8 (2021)MathSciNetCrossRef
85.
go back to reference Schütz, G.M.: Diffusion-annihilation in the presence of a driving field. J. Phys. A Math. Gen. 28, 3405–3415 (1995)MathSciNetCrossRef Schütz, G.M.: Diffusion-annihilation in the presence of a driving field. J. Phys. A Math. Gen. 28, 3405–3415 (1995)MathSciNetCrossRef
86.
go back to reference Schütz, G.M.: The Heisenberg chain as a dynamical model for protein synthesis-Some theoretical and experimental results. Int. J. Mod. Phys. B 11, 197–202 (1997)MathSciNetCrossRef Schütz, G.M.: The Heisenberg chain as a dynamical model for protein synthesis-Some theoretical and experimental results. Int. J. Mod. Phys. B 11, 197–202 (1997)MathSciNetCrossRef
87.
go back to reference Schütz, G.M.: Non-equilibrium relaxation law for entangled polymers. Eur. Lett. 48, 623–628 (1999)CrossRef Schütz, G.M.: Non-equilibrium relaxation law for entangled polymers. Eur. Lett. 48, 623–628 (1999)CrossRef
88.
go back to reference Schütz, G.M.: Exactly solvable models for many-body systems far from equilibrium. In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical Phenomena, vol. 19. Academic Press, London (2001) Schütz, G.M.: Exactly solvable models for many-body systems far from equilibrium. In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical Phenomena, vol. 19. Academic Press, London (2001)
89.
go back to reference Schütz, G.M.: Fluctuations in stochastic interacting particle systems. In: Giacomin, G., Olla, S., Saada, E., Spohn, H., Stoltz, G. (eds.) Stochastic Dynamics out of Equilibrium. IHPStochDyn 2017. Springer Proceedings in Mathematics & Statistics, vol. 282. Springer, Cham (2019) Schütz, G.M.: Fluctuations in stochastic interacting particle systems. In: Giacomin, G., Olla, S., Saada, E., Spohn, H., Stoltz, G. (eds.) Stochastic Dynamics out of Equilibrium. IHPStochDyn 2017. Springer Proceedings in Mathematics & Statistics, vol. 282. Springer, Cham (2019)
90.
go back to reference Shank, C.V., Yen, R., Fork, R.L., Orenstein, J., Baker, G.L.: Picosecond dynamics of photoexcited gap states in polyacetylene. Phys. Rev. Lett. 49, 1660–1663 (1982)CrossRef Shank, C.V., Yen, R., Fork, R.L., Orenstein, J., Baker, G.L.: Picosecond dynamics of photoexcited gap states in polyacetylene. Phys. Rev. Lett. 49, 1660–1663 (1982)CrossRef
92.
go back to reference Spohn, H.: Long-range correlations for stochastic lattice gases in a non-equilibrium steady state. J. Phys. A Math. Gen. 16, 4275–4291 (1983)CrossRef Spohn, H.: Long-range correlations for stochastic lattice gases in a non-equilibrium steady state. J. Phys. A Math. Gen. 16, 4275–4291 (1983)CrossRef
93.
go back to reference Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991)CrossRef Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991)CrossRef
94.
go back to reference Spohn, H.: Bosonization, vicinal surfaces, and hydrodynamic fluctuation theory. Phys. Rev. E 60, 6411–6420 (1999)MathSciNetCrossRef Spohn, H.: Bosonization, vicinal surfaces, and hydrodynamic fluctuation theory. Phys. Rev. E 60, 6411–6420 (1999)MathSciNetCrossRef
95.
96.
go back to reference Spohn, H., Stoltz, G.: Nonlinear fluctuating hydrodynamics in one dimension: the case of two conserved fields. J. Stat. Phys. 160, 861–884 (2015)MathSciNetCrossRef Spohn, H., Stoltz, G.: Nonlinear fluctuating hydrodynamics in one dimension: the case of two conserved fields. J. Stat. Phys. 160, 861–884 (2015)MathSciNetCrossRef
97.
go back to reference Spohn, H.: The Kardar-Parisi-Zhang equation: a statistical physics perspective. In: Stochastic Processes and Random Matrices, Lecture Notes of the Les Houches Summer School, Volume 104, July 2015. Oxford University Press, Oxford, UK (2017) Spohn, H.: The Kardar-Parisi-Zhang equation: a statistical physics perspective. In: Stochastic Processes and Random Matrices, Lecture Notes of the Les Houches Summer School, Volume 104, July 2015. Oxford University Press, Oxford, UK (2017)
98.
go back to reference Takeuchi, K.A., Sano, M.: Universal fluctuations of growing interfaces: evidence in turbulent liquid crystals. Phys. Rev. Lett. 104, 230601 (2010)CrossRef Takeuchi, K.A., Sano, M.: Universal fluctuations of growing interfaces: evidence in turbulent liquid crystals. Phys. Rev. Lett. 104, 230601 (2010)CrossRef
99.
go back to reference Takeuchi, K.A., Sano, M., Sasamoto, T., Spohn, H.: Growing interfaces uncover universal fluctuations behind scale invariance. Sci. Rep. (Nat.) 1, 34 (2011) Takeuchi, K.A., Sano, M., Sasamoto, T., Spohn, H.: Growing interfaces uncover universal fluctuations behind scale invariance. Sci. Rep. (Nat.) 1, 34 (2011)
100.
go back to reference van Beijeren, H., Kehr, K.W., Kutner, R.: Diffusion in concentrated lattice gases. III. Tracer diffusion on a one-dimensional lattice. Phys. Rev. B 28, 5711–5723 (1983) van Beijeren, H., Kehr, K.W., Kutner, R.: Diffusion in concentrated lattice gases. III. Tracer diffusion on a one-dimensional lattice. Phys. Rev. B 28, 5711–5723 (1983)
101.
go back to reference van Beijeren, H., Kutner, R., Spohn, H.: Excess noise for driven diffusive systems. Phys. Rev. Lett. 54, 2026–2029 (1985)MathSciNetCrossRef van Beijeren, H., Kutner, R., Spohn, H.: Excess noise for driven diffusive systems. Phys. Rev. Lett. 54, 2026–2029 (1985)MathSciNetCrossRef
102.
go back to reference van Beijeren, H.: Exact results for transport properties of one-dimensional Hamiltonian systems. Phys. Rev. Lett. 108, 180601 (2012)CrossRef van Beijeren, H.: Exact results for transport properties of one-dimensional Hamiltonian systems. Phys. Rev. Lett. 108, 180601 (2012)CrossRef
103.
go back to reference Vardeny, Z., Strait, V., Moses, D., Chung, T.C., Heeger, A.J.: Picosecond photoinduced dichroism in Trans-(CH)x: direct measurement of soliton diffusion. Phys. Rev. Lett. 49, 1657–1660 (1982)CrossRef Vardeny, Z., Strait, V., Moses, D., Chung, T.C., Heeger, A.J.: Picosecond photoinduced dichroism in Trans-(CH)x: direct measurement of soliton diffusion. Phys. Rev. Lett. 49, 1657–1660 (1982)CrossRef
104.
go back to reference Vidmar, L., Ronzheimer, J.P., Schreiber, M., Braun, S., Hodgman, S.S., Langer, S., Heidrich-Meisner, F., Bloch, I., Schneider, U.: Dynamical quasicondensation of hard-core bosons at finite momenta. Phys. Rev. Lett. 115, 175301 (2015)CrossRef Vidmar, L., Ronzheimer, J.P., Schreiber, M., Braun, S., Hodgman, S.S., Langer, S., Heidrich-Meisner, F., Bloch, I., Schneider, U.: Dynamical quasicondensation of hard-core bosons at finite momenta. Phys. Rev. Lett. 115, 175301 (2015)CrossRef
105.
go back to reference Wei, Q.-H., Bechinger, C., Leiderer, P.: Single-File diffusion of colloids in one-dimensional channels. Science 287, 625–627 (2000)CrossRef Wei, Q.-H., Bechinger, C., Leiderer, P.: Single-File diffusion of colloids in one-dimensional channels. Science 287, 625–627 (2000)CrossRef
107.
go back to reference Ye, B., Machado, F., Kemp, J., Hutson, R.B., Yao, N.Y.: Universal Kardar-Parisi-Zhang dynamics in integrable quantum systems. Phys. Rev. Lett. 129, 230602 (2022)MathSciNetCrossRef Ye, B., Machado, F., Kemp, J., Hutson, R.B., Yao, N.Y.: Universal Kardar-Parisi-Zhang dynamics in integrable quantum systems. Phys. Rev. Lett. 129, 230602 (2022)MathSciNetCrossRef
Metadata
Title
Mesoscale Mode Coupling Theory for the Weakly Asymmetric Simple Exclusion Process
Author
Gunter M. Schütz
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-65195-3_16

Premium Partner