Skip to main content
Top

2010 | OriginalPaper | Chapter

9. Metabolic and Co-metabolic Degradation of Industrially Important Chlorinated Organics Under Aerobic Conditions

Authors : Ferhan Çeçen, Bilge Alpaslan Kocamemi, Özgür Aktaş

Published in: Xenobiotics in the Urban Water Cycle

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chlorinated organic compounds are the frequently detected xenobiotics in industrial effluents. They may enter surface water, groundwater and soil systems. Examples are presented on the level of these compounds in aquatic systems. The chapter then addresses the biological removal of these compounds by aerobicmetabolism in which the substrate is used as an energy and carbon source. However, the major part of chlorinated organic compounds is resistant to metabolic removal. Yet, some can effectively be removed through aerobic co-metabolism in bioremediation of polluted groundwater and soil and in wastewater treatment systems. In aerobic co-metabolic removal of these compounds different types of substrates can be used as primary growth-substrates such as phenol, toluene, propane, methane, ammonia and others which are extensively reviewed in this chapter. The basic features of natural and enhanced bioremediation are also outlined in the chapter. The aerobic co-metabolism is exploited mainly for bioremediation of chlorinated aliphatic compounds such as trichloroethylene (TCE) in groundwater and in some cases for chlorinated benzenes and phenols. Examples of field-, pilot- and laboratory studies are documented which deal with aerobic co-metabolic removal of chlorinated compounds.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adriaens, P., & Focht, D. D. (1991). Cometabolism of 3,4-dichlorobenzoate by Acitenobacter sp. strain 4-CB1. Applied and Environmental Microbiology, 57, 173–179. Adriaens, P., & Focht, D. D. (1991). Cometabolism of 3,4-dichlorobenzoate by Acitenobacter sp. strain 4-CB1. Applied and Environmental Microbiology, 57, 173–179.
go back to reference Ahmed, M., & Focht, D. D. (1973). Degradation of polychlorinated biphenyl by two species of Achromobacter. Canadian Journal of Microbiology, 19, 47–52.CrossRef Ahmed, M., & Focht, D. D. (1973). Degradation of polychlorinated biphenyl by two species of Achromobacter. Canadian Journal of Microbiology, 19, 47–52.CrossRef
go back to reference Aktaş, Ö., & Çeçen, F. (2007). Adsorption, desorption and bioregeneration in the treatment of 2-chlorophenol with activated carbon. Journal of Hazardous Materials, 141, 769–777.CrossRef Aktaş, Ö., & Çeçen, F. (2007). Adsorption, desorption and bioregeneration in the treatment of 2-chlorophenol with activated carbon. Journal of Hazardous Materials, 141, 769–777.CrossRef
go back to reference Aktaş, Ö., & Çeçen, F. (2009). Cometabolic bioregeneration of activated carbons loaded with 2-chlorophenol. Bioresource Technology, 100, 4604–4610. Aktaş, Ö., & Çeçen, F. (2009). Cometabolic bioregeneration of activated carbons loaded with 2-chlorophenol. Bioresource Technology, 100, 4604–4610.
go back to reference Aktaş, Ö. (2006). Bioregeneration of activated carbon in the treatment of phenolic Compounds. Ph.D. Thesis, Bogaziçi University, Institute of Environmental Sciences. Aktaş, Ö. (2006). Bioregeneration of activated carbon in the treatment of phenolic Compounds. Ph.D. Thesis, Bogaziçi University, Institute of Environmental Sciences.
go back to reference Alpaslan Kocamemi, B. (2005). Cometabolic degradation of trichloroethylene (TCE) and 1,2-dichloroethane (1,2-DCA) in nitrification systems. Ph.D. Thesis, Bogazici University, Institute of Environmental Sciences. Alpaslan Kocamemi, B. (2005). Cometabolic degradation of trichloroethylene (TCE) and 1,2-dichloroethane (1,2-DCA) in nitrification systems. Ph.D. Thesis, Bogazici University, Institute of Environmental Sciences.
go back to reference Alpaslan Kocamemi, B., & Çeçen, F. (2005). Cometabolic degradation of TCE in enriched nitrifying batch systems. Journal of Hazardous Materials, B125, 260–265.CrossRef Alpaslan Kocamemi, B., & Çeçen, F. (2005). Cometabolic degradation of TCE in enriched nitrifying batch systems. Journal of Hazardous Materials, B125, 260–265.CrossRef
go back to reference Alpaslan Kocamemi, B., & Çeçen, F. (2007a). Kinetic analysis of the inhibitory effect of trichloroethylene (TCE) on nitrification in cometabolic degradation. Biodegradation, 18, 71–81.CrossRef Alpaslan Kocamemi, B., & Çeçen, F. (2007a). Kinetic analysis of the inhibitory effect of trichloroethylene (TCE) on nitrification in cometabolic degradation. Biodegradation, 18, 71–81.CrossRef
go back to reference Alpaslan Kocamemi, B., & Çeçen, F. (2007b). Inhibitory effect of the xenobiotic 1, 2-DCA in a nitrifying biofilm reactor. Water Science and Technology, 55, 67–73.CrossRef Alpaslan Kocamemi, B., & Çeçen, F. (2007b). Inhibitory effect of the xenobiotic 1, 2-DCA in a nitrifying biofilm reactor. Water Science and Technology, 55, 67–73.CrossRef
go back to reference Alvarez-Cohen, L., & Speitel, G. E., Jr. (2001). Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation, 12, 105–126.CrossRef Alvarez-Cohen, L., & Speitel, G. E., Jr. (2001). Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation, 12, 105–126.CrossRef
go back to reference Arciero, D., Vannelli, T., Logan, M., & Hooper, A. B. (1989). Degradation of trichloroethylene by ammonia-oxidizing bacterium Nitrosomonas europaea. Biochemistry and Biophysical Research Communications, 159, 640–643.CrossRef Arciero, D., Vannelli, T., Logan, M., & Hooper, A. B. (1989). Degradation of trichloroethylene by ammonia-oxidizing bacterium Nitrosomonas europaea. Biochemistry and Biophysical Research Communications, 159, 640–643.CrossRef
go back to reference Bae, B., Autenrieth, R. L., & Bonner, J. S. (1995). Kinetics of multiple phenolic-compounds degradation with a mixed culture in a continuous-flow reactor. Water Environment Research, 67, 215–223.CrossRef Bae, B., Autenrieth, R. L., & Bonner, J. S. (1995). Kinetics of multiple phenolic-compounds degradation with a mixed culture in a continuous-flow reactor. Water Environment Research, 67, 215–223.CrossRef
go back to reference Basu, S. K., & Oleszkiewicz, J. A. (1995). Factors affecting aerobic biodegradation of 2-chlorophenol in sequencing batch reactors. Environmental Technology, 16, 1135–1143.CrossRef Basu, S. K., & Oleszkiewicz, J. A. (1995). Factors affecting aerobic biodegradation of 2-chlorophenol in sequencing batch reactors. Environmental Technology, 16, 1135–1143.CrossRef
go back to reference Bradley, P. M. (2003). History and ecology of chloroethene biodegradation: A review. Bioremediation Journal, 7, 81–109.CrossRef Bradley, P. M. (2003). History and ecology of chloroethene biodegradation: A review. Bioremediation Journal, 7, 81–109.CrossRef
go back to reference Buitron, G., Gonzales, A., & Lopez-Marin, L. M. (1998). Biodegradation of phenolic compounds by an acclimated activated sludge and isolated bacteria. Water Science and Technology, 37, 371–378.CrossRef Buitron, G., Gonzales, A., & Lopez-Marin, L. M. (1998). Biodegradation of phenolic compounds by an acclimated activated sludge and isolated bacteria. Water Science and Technology, 37, 371–378.CrossRef
go back to reference Byl, T. D., & Williams, S. D. (2000). Biodegradation of chlorinated ethenes at a karst site in Middle Tennessee. U.S. Geolological Survey, Water-Resources Investigations Report 99–4285. Nashville, Tennessee. Byl, T. D., & Williams, S. D. (2000). Biodegradation of chlorinated ethenes at a karst site in Middle Tennessee. U.S. Geolological Survey, Water-Resources Investigations Report 99–4285. Nashville, Tennessee.
go back to reference Chang, H., & Alvarez-Cohen, L. (1995a). Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol. Biotechnology and Bioengineering, 45, 440–449.CrossRef Chang, H., & Alvarez-Cohen, L. (1995a). Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol. Biotechnology and Bioengineering, 45, 440–449.CrossRef
go back to reference Chang, H., & Alvarez-Cohen, L. (1995b). Model for the cometabolic biodegradation of chlorinated organics. Environmental Science and Technology, 29, 2357–2367.CrossRef Chang, H., & Alvarez-Cohen, L. (1995b). Model for the cometabolic biodegradation of chlorinated organics. Environmental Science and Technology, 29, 2357–2367.CrossRef
go back to reference Chang, H., & Alvarez-Cohen, L. (1996). Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane-oxidizing cultures. Applied and Environmental Microbiology, 62, 3371–3377. Chang, H., & Alvarez-Cohen, L. (1996). Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane-oxidizing cultures. Applied and Environmental Microbiology, 62, 3371–3377.
go back to reference Chaundry, G. R., & Chapalamadugu, S. (1991). Biodegradation of halogenated organic compounds. Microbiological Reviews, 55, 59–79. Chaundry, G. R., & Chapalamadugu, S. (1991). Biodegradation of halogenated organic compounds. Microbiological Reviews, 55, 59–79.
go back to reference Chiavola, A., Baciocchi, R., Irvine, R. L., Gavasci, R., & Sirini, P. (2004). Aerobic biodegradation of 3-chlorophenol in a sequencing batch reactor: effect of cometabolism. Water Science and Technology, 50, 235–242. Chiavola, A., Baciocchi, R., Irvine, R. L., Gavasci, R., & Sirini, P. (2004). Aerobic biodegradation of 3-chlorophenol in a sequencing batch reactor: effect of cometabolism. Water Science and Technology, 50, 235–242.
go back to reference Corbella, M. E., Garrido-Pertierra, A., & Puyet, A. (2001). Induction of the halobenzoate catabolic pathway and cometabolism of ortho-chlorobenzoates in Pseudomonas aeruginosa 142 grown on glucose-supplemented media. Biodegradation, 12, 149–157.CrossRef Corbella, M. E., Garrido-Pertierra, A., & Puyet, A. (2001). Induction of the halobenzoate catabolic pathway and cometabolism of ortho-chlorobenzoates in Pseudomonas aeruginosa 142 grown on glucose-supplemented media. Biodegradation, 12, 149–157.CrossRef
go back to reference De Los Cobos-Vasconcelos, D., Santoyo-Tepole, F., Juarez-Ramirez, C., Ruiz-Ordaz, N., & Galindez-Mayer, C. J. J. (2006). Cometabolic degradation of chlorophenols by a strain of burkholderia in fed batch culture. Enzyme and Microbial Technology, 40, 57–60.CrossRef De Los Cobos-Vasconcelos, D., Santoyo-Tepole, F., Juarez-Ramirez, C., Ruiz-Ordaz, N., & Galindez-Mayer, C. J. J. (2006). Cometabolic degradation of chlorophenols by a strain of burkholderia in fed batch culture. Enzyme and Microbial Technology, 40, 57–60.CrossRef
go back to reference Dermietzel, J., & Vieth, A. (2002). Chloroaromatics in groundwater: Chances of bioremediation. Environmental Geology, 41, 683–689.CrossRef Dermietzel, J., & Vieth, A. (2002). Chloroaromatics in groundwater: Chances of bioremediation. Environmental Geology, 41, 683–689.CrossRef
go back to reference Dominguez, R. F., da Silva, M. L. B., McGuire, T. M., Adamsaon, D., Newell, C. J., & Alvarez, P. J. J. (2008). Aerobic bioremediation of chlorobenzene source-zone soil in flow-through columns: performance assessment using quantitative PCR. Biodegradation, 19, 545–553.CrossRef Dominguez, R. F., da Silva, M. L. B., McGuire, T. M., Adamsaon, D., Newell, C. J., & Alvarez, P. J. J. (2008). Aerobic bioremediation of chlorobenzene source-zone soil in flow-through columns: performance assessment using quantitative PCR. Biodegradation, 19, 545–553.CrossRef
go back to reference Dyer, M., Van Heiningen, E., & Gerritse, J. (2000). In situ bioremediation of 1, 2-dichloroethane under anaerobic conditions. Geotechnical and Geological Engineering, 18, 313–334.CrossRef Dyer, M., Van Heiningen, E., & Gerritse, J. (2000). In situ bioremediation of 1, 2-dichloroethane under anaerobic conditions. Geotechnical and Geological Engineering, 18, 313–334.CrossRef
go back to reference Ely, R. L., Hyman, M. R., Arp, D. J., Guenther, R. B., & Williamson, K. J. (1995). A cometabolic kinetics model incorporating enzyme inhibition, inactivation, and recovery: II Trichloroethylene degradation experiments. Biotechnology and Bioengineering, 46, 232–245.CrossRef Ely, R. L., Hyman, M. R., Arp, D. J., Guenther, R. B., & Williamson, K. J. (1995). A cometabolic kinetics model incorporating enzyme inhibition, inactivation, and recovery: II Trichloroethylene degradation experiments. Biotechnology and Bioengineering, 46, 232–245.CrossRef
go back to reference Ely, R. L., Williamson, K. J., Hyman, M. R., & Arp, D. J. (1997). Cometabolism of chlorinated solvents by nitrifying bacteria: kinetics, substrate, interactions, toxicity effects, and bacterial response. Biotechnology and Bioengineering, 54, 520–534.CrossRef Ely, R. L., Williamson, K. J., Hyman, M. R., & Arp, D. J. (1997). Cometabolism of chlorinated solvents by nitrifying bacteria: kinetics, substrate, interactions, toxicity effects, and bacterial response. Biotechnology and Bioengineering, 54, 520–534.CrossRef
go back to reference EPA. (2000). Engineered approaches to in-situ bioremediation of chlorinated solvents: Fundamentals and field applications. U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office, Washington, DC. EPA. (2000). Engineered approaches to in-situ bioremediation of chlorinated solvents: Fundamentals and field applications. U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office, Washington, DC.
go back to reference Ettala, M., Koskela, J., & Kiesila, A. (1992). Removal of chlorophenols in a municipal sewage treatment plant using activated sludge. Water Research, 26(6), 797–804.CrossRef Ettala, M., Koskela, J., & Kiesila, A. (1992). Removal of chlorophenols in a municipal sewage treatment plant using activated sludge. Water Research, 26(6), 797–804.CrossRef
go back to reference Fahmy, M., Kut, O. M., & Heinzle, E. (1994). Anaerobic-aerobic fluidized bed biotreatment of sulphite pulp bleaching effluents - II. Fate of individual chlorophenolic compounds. Water Research, 28(9), 1997–2010.CrossRef Fahmy, M., Kut, O. M., & Heinzle, E. (1994). Anaerobic-aerobic fluidized bed biotreatment of sulphite pulp bleaching effluents - II. Fate of individual chlorophenolic compounds. Water Research, 28(9), 1997–2010.CrossRef
go back to reference Farabegoli, G., Chiavola, Z., & Rolle, E. (2008). Remediation of chlorophenol and phenol contaminated groundwater by a sequencing batch biofilm reactor. Water Science and Technology, 58, 295–301.CrossRef Farabegoli, G., Chiavola, Z., & Rolle, E. (2008). Remediation of chlorophenol and phenol contaminated groundwater by a sequencing batch biofilm reactor. Water Science and Technology, 58, 295–301.CrossRef
go back to reference Feidieker, D., Kampfer, P., & Dott, W. (1995). Field-scale investigations on the biodegradation of chlorinated aromatic compounds and HCH in the subsurface environment. Journal of Contaminant Hydrology, 19(2), 145–169.CrossRef Feidieker, D., Kampfer, P., & Dott, W. (1995). Field-scale investigations on the biodegradation of chlorinated aromatic compounds and HCH in the subsurface environment. Journal of Contaminant Hydrology, 19(2), 145–169.CrossRef
go back to reference Field, J. A., & Sierra-Alvarez, R. (2004). Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Reviews in Environmental Science and Bio/Technology, 3, 185–254.CrossRef Field, J. A., & Sierra-Alvarez, R. (2004). Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Reviews in Environmental Science and Bio/Technology, 3, 185–254.CrossRef
go back to reference Hyman, M. R., Russell, S. A., Ely, R. L., Williamson, K. J., & Arp, D. J. (1995). Inhibition, inactivation, and recovery of ammonia-oxidizing activity in cometabolism of trichloroethylene by Nitrosomonas europaea. Applied and Environmental Microbiology, 61(4), 1480–1487. Hyman, M. R., Russell, S. A., Ely, R. L., Williamson, K. J., & Arp, D. J. (1995). Inhibition, inactivation, and recovery of ammonia-oxidizing activity in cometabolism of trichloroethylene by Nitrosomonas europaea. Applied and Environmental Microbiology, 61(4), 1480–1487.
go back to reference ICSS. (Ed.) (2006). Manual for biological remediation techniques. Materialien zur Altlastenbehandlung Nr. 1/2000. Mikrobiologische Sanierungsverfahren Sächsisches Landesamt für Umwelt und Geologie, Dresden. ICSS. (Ed.) (2006). Manual for biological remediation techniques. Materialien zur Altlastenbehandlung Nr. 1/2000. Mikrobiologische Sanierungsverfahren Sächsisches Landesamt für Umwelt und Geologie, Dresden.
go back to reference Iwasaki, T., Miyauchi, K., Masai, E., & Fukuda, M. (2006). Multiple-subunit genes of the aromatic-ring-hydroxylating dioxygenase play an active role in biphenyl and polychlorinated biphenyl degradation in Rhodococcus sp strain RHA1. Applied and Environmental Microbiology, 72, 5396–5402.CrossRef Iwasaki, T., Miyauchi, K., Masai, E., & Fukuda, M. (2006). Multiple-subunit genes of the aromatic-ring-hydroxylating dioxygenase play an active role in biphenyl and polychlorinated biphenyl degradation in Rhodococcus sp strain RHA1. Applied and Environmental Microbiology, 72, 5396–5402.CrossRef
go back to reference Jechorek, M., Wendlandt, K. D., & Beck, M. (2003). Cometabolic degradation of chlorinated aromatic compounds. Journal of Biotechnology, 102, 93–98.CrossRef Jechorek, M., Wendlandt, K. D., & Beck, M. (2003). Cometabolic degradation of chlorinated aromatic compounds. Journal of Biotechnology, 102, 93–98.CrossRef
go back to reference Kao, C. M., & Prosser, J. (1999). Intrinsic bioremediation of trichloroethylene and chlorobenzene: Filed and laboratory studies. Journal of Hazardous Materials, 69, 67–79.CrossRef Kao, C. M., & Prosser, J. (1999). Intrinsic bioremediation of trichloroethylene and chlorobenzene: Filed and laboratory studies. Journal of Hazardous Materials, 69, 67–79.CrossRef
go back to reference Kim, M. H., & Hao, O. J. (1999). Cometabolic degradation of chlorophenols by Acinetobacter species. Water Research, 33(2), 562–574.CrossRef Kim, M. H., & Hao, O. J. (1999). Cometabolic degradation of chlorophenols by Acinetobacter species. Water Research, 33(2), 562–574.CrossRef
go back to reference Kim, Y., Istaok, J. D., & Semprini, L. (2004). Push-pull tests for assessing in situ aerobic cometabolism. Ground Water, 42(2), 229–237. Kim, Y., Istaok, J. D., & Semprini, L. (2004). Push-pull tests for assessing in situ aerobic cometabolism. Ground Water, 42(2), 229–237.
go back to reference Kim, Y., Semprini, L., & Arp, D. J. (1997). Aerobic cometabolism of chloroform and 1, 1, 1-trichloroethane by butane-grown microorganisms. Bioremediation Journal, 1(2), 135–148.CrossRef Kim, Y., Semprini, L., & Arp, D. J. (1997). Aerobic cometabolism of chloroform and 1, 1, 1-trichloroethane by butane-grown microorganisms. Bioremediation Journal, 1(2), 135–148.CrossRef
go back to reference Kohler, H.-P. E., Kohler-Staub, D., & Focht, D. D. (1988). Cometabolism of polychlorinated biphenyls: Enhanced transformation of Aroclor 1254 by growing bacterial cells. Applied and Environmental Microbiology, 54(8), 1940–1945. Kohler, H.-P. E., Kohler-Staub, D., & Focht, D. D. (1988). Cometabolism of polychlorinated biphenyls: Enhanced transformation of Aroclor 1254 by growing bacterial cells. Applied and Environmental Microbiology, 54(8), 1940–1945.
go back to reference Kuo, M. T., Chen, C. M., Lin, C. H., Fang, H. C., & Lee, C. H. (2000). Surveys of volatile organic compounds in soil and groundwater at industrial sites in Taiwan. Bulletin of Environmental Contamination and Toxicology, 65(5), 654–659.CrossRef Kuo, M. T., Chen, C. M., Lin, C. H., Fang, H. C., & Lee, C. H. (2000). Surveys of volatile organic compounds in soil and groundwater at industrial sites in Taiwan. Bulletin of Environmental Contamination and Toxicology, 65(5), 654–659.CrossRef
go back to reference Lewandowski, B. B., & Varuntanya, C. P. (1988). The use of pure cultures as a means of understanding the performance of mixed cultures in biodegradation of phenolics. In R. J. Scholze, E. D. Smith & J. T. Bandy (Eds.), Biotechnology for degradation of toxic chemicals in hazardous wastes (pp. 292–315). Washington, DC: U.S. Environmental Protection Agency. Lewandowski, B. B., & Varuntanya, C. P. (1988). The use of pure cultures as a means of understanding the performance of mixed cultures in biodegradation of phenolics. In R. J. Scholze, E. D. Smith & J. T. Bandy (Eds.), Biotechnology for degradation of toxic chemicals in hazardous wastes (pp. 292–315). Washington, DC: U.S. Environmental Protection Agency.
go back to reference Li, Y., & Loh, K. C. (2005). Cometabolic transformation of high concentrations of 4-chlorophenol in an immobilized cell hollow fiber membrane bioreactor. Journal of Environmental Engineering, 131, 1285–1292.CrossRef Li, Y., & Loh, K. C. (2005). Cometabolic transformation of high concentrations of 4-chlorophenol in an immobilized cell hollow fiber membrane bioreactor. Journal of Environmental Engineering, 131, 1285–1292.CrossRef
go back to reference Liu, D., Maguire, R. J., Pacepavicius, B., & Dutka, B. J. (2006). Biodegradation of recalcitrant chlorophenols by cometabolism. Environmental Toxicology and Water Quality, 6, 85–95. Liu, D., Maguire, R. J., Pacepavicius, B., & Dutka, B. J. (2006). Biodegradation of recalcitrant chlorophenols by cometabolism. Environmental Toxicology and Water Quality, 6, 85–95.
go back to reference Loh, K. C., & Wu, T. T. (2006). Cometabolic transformation of 2-chlorophenol and 4-chlorophenol in the presence of phenol by Pseudomonas putida. Canadian Journal of Chemical Engineering, 84, 356–367.CrossRef Loh, K. C., & Wu, T. T. (2006). Cometabolic transformation of 2-chlorophenol and 4-chlorophenol in the presence of phenol by Pseudomonas putida. Canadian Journal of Chemical Engineering, 84, 356–367.CrossRef
go back to reference Lorbeer, H., Starke, S., Gozan, M., Tiehm, A., & Werner, P. (2002). Bioremediation of chlorobenzene-contaminated groundwater on granular activated carbon barriers. Water, Air, and Soil Pollution: Focus, 2, 183–193.CrossRef Lorbeer, H., Starke, S., Gozan, M., Tiehm, A., & Werner, P. (2002). Bioremediation of chlorobenzene-contaminated groundwater on granular activated carbon barriers. Water, Air, and Soil Pollution: Focus, 2, 183–193.CrossRef
go back to reference McCarty, P. L. (2000). Novel biological removal of hazradous chemicals at trace levels. Water Science and Technology, 42, 49–60. McCarty, P. L. (2000). Novel biological removal of hazradous chemicals at trace levels. Water Science and Technology, 42, 49–60.
go back to reference McCarty, P. L., Goltz, M. N., Hopkins, G. D., Dolan, M. E., Allan, J. P., Kawakami, B. T., et al. (1998). Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection. Environmental Science and Technology, 32, 88–100.CrossRef McCarty, P. L., Goltz, M. N., Hopkins, G. D., Dolan, M. E., Allan, J. P., Kawakami, B. T., et al. (1998). Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection. Environmental Science and Technology, 32, 88–100.CrossRef
go back to reference Oldenhius, R., Vink, R. L. J. M., Janssen, D. B., & Witholt, B. (1989). Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Applied and Environmental Microbiology, 55, 2819–2826. Oldenhius, R., Vink, R. L. J. M., Janssen, D. B., & Witholt, B. (1989). Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Applied and Environmental Microbiology, 55, 2819–2826.
go back to reference Puhakka, J. A., Shieh, W. K., Jaervinen, K., & Melin, E. (1992). Chlorophenol degradation under oxic and anoxic conditions. Water Science and Technology, 25, 147–152. Puhakka, J. A., Shieh, W. K., Jaervinen, K., & Melin, E. (1992). Chlorophenol degradation under oxic and anoxic conditions. Water Science and Technology, 25, 147–152.
go back to reference Quan, X., Yang, Z., Shi, H., Tang, Q., & Qian, Y. (2005). The effect of a secondary chlorophenol presence on the removal of 2, 4-dichlorophenol (2, 4-DCP) in an activated sludge system bioaugmented with 2, 4-DCP degrading culture. Process Biochemistry, 40, 3462–3467.CrossRef Quan, X., Yang, Z., Shi, H., Tang, Q., & Qian, Y. (2005). The effect of a secondary chlorophenol presence on the removal of 2, 4-dichlorophenol (2, 4-DCP) in an activated sludge system bioaugmented with 2, 4-DCP degrading culture. Process Biochemistry, 40, 3462–3467.CrossRef
go back to reference Rasche, M. E., Hyman, M. R., & Arp, D. J. (1991). Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea: Cometabolic inactivation of ammonia monooxygenase and substrate specificity. Applied and Environmental Microbiology, 57, 2986–2994. Rasche, M. E., Hyman, M. R., & Arp, D. J. (1991). Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea: Cometabolic inactivation of ammonia monooxygenase and substrate specificity. Applied and Environmental Microbiology, 57, 2986–2994.
go back to reference Sabel, G. V., & Clark, T. P. (1984). Volatile organic compounds as indicators of municipal solid waste leachate contamination. Waste Management and Research, 2, 119–130. Sabel, G. V., & Clark, T. P. (1984). Volatile organic compounds as indicators of municipal solid waste leachate contamination. Waste Management and Research, 2, 119–130.
go back to reference Şahinkaya, E., & Dilek, F. B. (2005). Biodegradation of 4-chlorophenol by acclimated and unacclimated activated sludge-evaluation of biokinetic coefficients. Environmental Research, 99, 243–252.CrossRef Şahinkaya, E., & Dilek, F. B. (2005). Biodegradation of 4-chlorophenol by acclimated and unacclimated activated sludge-evaluation of biokinetic coefficients. Environmental Research, 99, 243–252.CrossRef
go back to reference Salmeron-Alcocer, A., Ruiz-Ordaz, N., Juarez-Ramirez, C., & Galindez-Mayer, J. (2007). Continuous biodegradation of single and mixed chlorophenols by a mixed microbial culture constituted by Burkholderia sp. Microbacterium phyllosphaerae and Candida tropicalis. Biochemical Engineering Journal, 37, 201–211.CrossRef Salmeron-Alcocer, A., Ruiz-Ordaz, N., Juarez-Ramirez, C., & Galindez-Mayer, J. (2007). Continuous biodegradation of single and mixed chlorophenols by a mixed microbial culture constituted by Burkholderia sp. Microbacterium phyllosphaerae and Candida tropicalis. Biochemical Engineering Journal, 37, 201–211.CrossRef
go back to reference Saul, M.T. (2000). Aerobic cometabolism of halogenated aliphatic hydrocarbons: a technology overview. In Remediation Journal, 11, (pp. 29–36). Saul, M.T. (2000). Aerobic cometabolism of halogenated aliphatic hydrocarbons: a technology overview. In Remediation Journal, 11, (pp. 29–36).
go back to reference Schmidt, K. R., & Tiehm, A. (2008). Natural attenuation of chloroethenes: identification of sequential reductive/oxidative biodegradation by microcosm studies. Water Science and Technology, 58, 1137–1145.CrossRef Schmidt, K. R., & Tiehm, A. (2008). Natural attenuation of chloroethenes: identification of sequential reductive/oxidative biodegradation by microcosm studies. Water Science and Technology, 58, 1137–1145.CrossRef
go back to reference Semprini, L., Roberts, P. V., & Hopkins, G. D. (1990). A field evaluation of in-situ biodegradation of chlorinated ethenes: results of biostimulation and biotransformation experiments. Ground Water, 28, 715–727.CrossRef Semprini, L., Roberts, P. V., & Hopkins, G. D. (1990). A field evaluation of in-situ biodegradation of chlorinated ethenes: results of biostimulation and biotransformation experiments. Ground Water, 28, 715–727.CrossRef
go back to reference Spain, J. (1997). Future vision: Compounds with potential for natural attenuation. In Proceedings of the Symposium on natural attenuation of chlorinated organics in groundwater (pp. 137–141). EPA/540/R-97/504. Spain, J. (1997). Future vision: Compounds with potential for natural attenuation. In Proceedings of the Symposium on natural attenuation of chlorinated organics in groundwater (pp. 137–141). EPA/540/R-97/504.
go back to reference Speitel, G. E., & Segar, R. L. (1995). Cometabolism in biofilm reactors. Water Science and Technology, 31, 215–225.CrossRef Speitel, G. E., & Segar, R. L. (1995). Cometabolism in biofilm reactors. Water Science and Technology, 31, 215–225.CrossRef
go back to reference Staps, S., van Eekert, M., van Heiningen, E., Borger, A., Rijnaarts, H., Hetterschijt, R., et al. (1999). Biodegradation of chloroethenes and chlorobenzenes in a two-phase anaerobic/microaerobic treatment zone system. In H. Weiss, H. Rijnaarts, S. Staps, & P. Merkel (Eds.), Safira (SAnierungsForschung in Regional kontaminierten Aquiferen) - Abstracts of the Workshop of November 17–18, 1999 at Bitterfeld Germany, The Helmholtz Centre for Environmental Research (UFZ), Report No. 23/2000 (0948–9452) (pp. 26–40). Staps, S., van Eekert, M., van Heiningen, E., Borger, A., Rijnaarts, H., Hetterschijt, R., et al. (1999). Biodegradation of chloroethenes and chlorobenzenes in a two-phase anaerobic/microaerobic treatment zone system. In H. Weiss, H. Rijnaarts, S. Staps, & P. Merkel (Eds.), Safira (SAnierungsForschung in Regional kontaminierten Aquiferen) - Abstracts of the Workshop of November 17–18, 1999 at Bitterfeld Germany, The Helmholtz Centre for Environmental Research (UFZ), Report No. 23/2000 (0948–9452) (pp. 26–40).
go back to reference Takase, I., Omori, T., & Minoda, Y. (1986). Microbial degradation products from biphenyl-related compounds. Agricultural Biology and Chemistry, 50, 681–686. Takase, I., Omori, T., & Minoda, Y. (1986). Microbial degradation products from biphenyl-related compounds. Agricultural Biology and Chemistry, 50, 681–686.
go back to reference Tiehm, A., Schulze, S., Böckle, K., Müller, A., Lorbeer, H., & Werner, P. (2000). Elimination of chloroorganics in a reactive wall system by biodegradation on activated carbon. In Proceedings of the Seventh International FZK/TNO Conference on Contaminated Soil (pp. 924–931). 18–22 September 2000, Leipzig, Germany. Tiehm, A., Schulze, S., Böckle, K., Müller, A., Lorbeer, H., & Werner, P. (2000). Elimination of chloroorganics in a reactive wall system by biodegradation on activated carbon. In Proceedings of the Seventh International FZK/TNO Conference on Contaminated Soil (pp. 924–931). 18–22 September 2000, Leipzig, Germany.
go back to reference Unell, M., Norddin, K., Jernberg, C., Stenström, J., & Jansson, J. K. (2008). Degradation of mixtures of phenolic compounds by Arthrobacter chlorophenolicus A6. Biodegradation, 19, 495–505.CrossRef Unell, M., Norddin, K., Jernberg, C., Stenström, J., & Jansson, J. K. (2008). Degradation of mixtures of phenolic compounds by Arthrobacter chlorophenolicus A6. Biodegradation, 19, 495–505.CrossRef
go back to reference Vannelli, T., Logan, M., Arciero, D. M., & Hooper, A. B. (1990). Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Applied Environmental Microbiology, 56, 1169–1171. Vannelli, T., Logan, M., Arciero, D. M., & Hooper, A. B. (1990). Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Applied Environmental Microbiology, 56, 1169–1171.
go back to reference Wang, S. J., & Loh, K. C. (1999). Facilitation of cometabolic degradation of 4-chlorophenol using glucose as an added growth substrate. Biodegradation, 10, 261–269.CrossRef Wang, S. J., & Loh, K. C. (1999). Facilitation of cometabolic degradation of 4-chlorophenol using glucose as an added growth substrate. Biodegradation, 10, 261–269.CrossRef
go back to reference Ward, C. H., Cherry, J. A., & Scalf, M. R. (1997). Subsurface restoration. Chelsea, MI: Ann Arbor Press. Ward, C. H., Cherry, J. A., & Scalf, M. R. (1997). Subsurface restoration. Chelsea, MI: Ann Arbor Press.
go back to reference Wünsche, L., Lorbeer, H., Vogt, C., Seifert, K., Jorks, S., Hard, B. C., & Babel, W. (1999). Microbial colonization of the subsurface at the test site and degradation of chlorobenzenes by autochthonous bacteria of the quarternary aquifer. In H. Weiss, H. Rijnaarts, S. Staps, & P. Merkel (Eds.), Safira (SAnierungsForschung In Regional kontaminierten Aquiferen) - Abstracts of the Workshop of November 17–18, 1999 at Bitterfeld Germany, The Helmholtz Centre for Environmental Research (UFZ), Report No. 23/2000 (0948–9452) (pp. 13–25). Wünsche, L., Lorbeer, H., Vogt, C., Seifert, K., Jorks, S., Hard, B. C., & Babel, W. (1999). Microbial colonization of the subsurface at the test site and degradation of chlorobenzenes by autochthonous bacteria of the quarternary aquifer. In H. Weiss, H. Rijnaarts, S. Staps, & P. Merkel (Eds.), Safira (SAnierungsForschung In Regional kontaminierten Aquiferen) - Abstracts of the Workshop of November 17–18, 1999 at Bitterfeld Germany, The Helmholtz Centre for Environmental Research (UFZ), Report No. 23/2000 (0948–9452) (pp. 13–25).
go back to reference Wymore, R. A., Lee, M. H., Keener, W. K., Miller, S. C., Colwell, F. S., Watwood, M. E., et al. (2007). Field evidence for intrinsic aerobic chlorinated ethane cometabolism by methanotrophs expressing soluble methane monoxygenase. Bioremediation Journal, 11, 125–139.CrossRef Wymore, R. A., Lee, M. H., Keener, W. K., Miller, S. C., Colwell, F. S., Watwood, M. E., et al. (2007). Field evidence for intrinsic aerobic chlorinated ethane cometabolism by methanotrophs expressing soluble methane monoxygenase. Bioremediation Journal, 11, 125–139.CrossRef
go back to reference Yeager, C. M., Arthur, K. M., Bottomley, P. J., & Arp, D. J. (2004). Trichloroethylene degradation by toluene-oxidizing bacteria grown on non-aromatic substrates. Biodegradation, 15, 19–28.CrossRef Yeager, C. M., Arthur, K. M., Bottomley, P. J., & Arp, D. J. (2004). Trichloroethylene degradation by toluene-oxidizing bacteria grown on non-aromatic substrates. Biodegradation, 15, 19–28.CrossRef
go back to reference Ziagova, M., & Liakopoulou-Kyriakides, M. (2007a). Kinetics of 2, 4-dichlorophenol and 4-Cl-m-cresol degradation by Pseudomonas sp cultures in the presence of glucose. Chemosphere, 68, 921–927.CrossRef Ziagova, M., & Liakopoulou-Kyriakides, M. (2007a). Kinetics of 2, 4-dichlorophenol and 4-Cl-m-cresol degradation by Pseudomonas sp cultures in the presence of glucose. Chemosphere, 68, 921–927.CrossRef
go back to reference Ziagova, M., & Liakopoulou-Kyriakides, M. (2007b). Comparison of cometabolic degradation of 1, 2-dichlorobenzene by Pseudomonas sp and Staphylococcus xylosus. Enzyme and Microbial Technology, 40, 1244–1250.CrossRef Ziagova, M., & Liakopoulou-Kyriakides, M. (2007b). Comparison of cometabolic degradation of 1, 2-dichlorobenzene by Pseudomonas sp and Staphylococcus xylosus. Enzyme and Microbial Technology, 40, 1244–1250.CrossRef
Metadata
Title
Metabolic and Co-metabolic Degradation of Industrially Important Chlorinated Organics Under Aerobic Conditions
Authors
Ferhan Çeçen
Bilge Alpaslan Kocamemi
Özgür Aktaş
Copyright Year
2010
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-90-481-3509-7_9