Skip to main content
Top
Published in:
Cover of the book

2022 | OriginalPaper | Chapter

Metal Halide Perovskite-Based Phosphors and Their Applications in LEDs

Authors : Jizhong Song, Leimeng Xu

Published in: Hybrid Phosphor Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electric lighting has become a significant part of human daily life, accounting for approximately 15% of global power consumption. Among various illumination, white light-emitting diodes (WLEDs) have become a major research focus of the industry due to their long lifespan and high energy efficiency. Current commercial WLEDs are fabricated mainly through utilizing blue LEDs with phosphor coatings. Under the environment of energy-saving emission reduction, according to the haitz’s law of LED industry, LED will follow the development process of aiming high brightness and low cost. Thus, exploring new phosphors for lightings, compatible with the cost reduce, is highly desired. Metal halide perovskite phosphors have attracted wide attention due to their outstanding luminescence feature and low-cost solution-processing. In this chapter, we first introduced perovskite phosphors of different colors, including three primary colors (blue, green, red), and other colors (e.g. white, yellow and orange). Then, we further summarized the stability improvement strategies of through hybrizing perovskite phosphors with inorganic materials, organic molecules and polymer, and the non-luminous perovskites and luminous perovskites. Finally, we presented some strategies of perovskite phosphor applications in WLEDs, such as by combining GaN chip with three-primary-color perovskite phosphors, through energy transfer in one perovskite, and by doping ions in perovskites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chen, D.Q., Xiang, W.D., Liang, X.J., et al.: Advances in transparent glass-ceramic phosphors for white light-emitting diodes-a review. J. Eur. Ceram. Soc. 35, 859–869 (2015)CrossRef Chen, D.Q., Xiang, W.D., Liang, X.J., et al.: Advances in transparent glass-ceramic phosphors for white light-emitting diodes-a review. J. Eur. Ceram. Soc. 35, 859–869 (2015)CrossRef
2.
go back to reference Zhou, Q., Dolgov, L., Srivastava, A.M., et al.: Mn2+ and Mn4+ red phosphors: synthesis, luminescence and applications in WLEDs. A review. J. Mater. Chem. C 6, 2652–2671 (2018)CrossRef Zhou, Q., Dolgov, L., Srivastava, A.M., et al.: Mn2+ and Mn4+ red phosphors: synthesis, luminescence and applications in WLEDs. A review. J. Mater. Chem. C 6, 2652–2671 (2018)CrossRef
3.
go back to reference Chen, D., Zhou, Y., Zhong, J.: A review on Mn4+ activators in solids for warm white light-emitting diodes. RSC Adv. 6, 86285–86296 (2016)CrossRef Chen, D., Zhou, Y., Zhong, J.: A review on Mn4+ activators in solids for warm white light-emitting diodes. RSC Adv. 6, 86285–86296 (2016)CrossRef
4.
go back to reference Cho, J., Park, J.H., Kim, J.K., et al.: White light-emitting diodes: history, progress, and future. Laser Photonics Rev. 11, 1600147 (2017)CrossRef Cho, J., Park, J.H., Kim, J.K., et al.: White light-emitting diodes: history, progress, and future. Laser Photonics Rev. 11, 1600147 (2017)CrossRef
5.
go back to reference Luo, J., Wang, X., Li, S., et al.: Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 563, 541–545 (2018)CrossRef Luo, J., Wang, X., Li, S., et al.: Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 563, 541–545 (2018)CrossRef
7.
go back to reference Mroziewicz, B.: Revolution in technology of LEDs, are the Craford’s and Haitz’s laws still in power? Elektronika 47, 380–382 (2006) Mroziewicz, B.: Revolution in technology of LEDs, are the Craford’s and Haitz’s laws still in power? Elektronika 47, 380–382 (2006)
8.
go back to reference Perumal, A., Shendre, S., Li, M., et al.: High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices. Sci. Rep. 6, 36733 (2016)CrossRef Perumal, A., Shendre, S., Li, M., et al.: High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices. Sci. Rep. 6, 36733 (2016)CrossRef
9.
go back to reference Rosales, B.A., Men, L., Cady, S.D., et al.: Persistent dopants and phase segregation in organolead mixed-halide perovskites. Chem. Mater. 28, 6848–6859 (2016)CrossRef Rosales, B.A., Men, L., Cady, S.D., et al.: Persistent dopants and phase segregation in organolead mixed-halide perovskites. Chem. Mater. 28, 6848–6859 (2016)CrossRef
10.
go back to reference Wang, A.F., Yan, X.X., Zhang, M., et al.: Controlled synthesis of lead-free and stable perovskite derivative Cs2SnI6 nanocrystals via a facile hot-injection process. Chem. Mater. 28, 8132–8140 (2016)CrossRef Wang, A.F., Yan, X.X., Zhang, M., et al.: Controlled synthesis of lead-free and stable perovskite derivative Cs2SnI6 nanocrystals via a facile hot-injection process. Chem. Mater. 28, 8132–8140 (2016)CrossRef
11.
go back to reference Amendola, V., Fortunati, I., Marega, C., et al.: High-purity hybrid organolead halide perovskite nanoparticles obtained by pulsed-laser irradiation in liquid. ChemPhysChem 18, 1047–1054 (2017)CrossRef Amendola, V., Fortunati, I., Marega, C., et al.: High-purity hybrid organolead halide perovskite nanoparticles obtained by pulsed-laser irradiation in liquid. ChemPhysChem 18, 1047–1054 (2017)CrossRef
12.
go back to reference Li, X.L., Li, L.H., Ma, Z.H., et al.: Low-cost synthesis, fluorescent properties, growth mechanism and structure of CH3NH3PbI3 with millimeter grains. Optik 142, 293–300 (2017)CrossRef Li, X.L., Li, L.H., Ma, Z.H., et al.: Low-cost synthesis, fluorescent properties, growth mechanism and structure of CH3NH3PbI3 with millimeter grains. Optik 142, 293–300 (2017)CrossRef
13.
go back to reference Ruan, L., Shen, W., Wang, A., et al.: Alkyl-thiol ligand-induced shape- and crystalline phase-controlled synthesis of stable perovskite-related CsPb2Br5 nanocrystals at room temperature. J. Phys. Chem. Lett. 8, 3853–3860 (2017)CrossRef Ruan, L., Shen, W., Wang, A., et al.: Alkyl-thiol ligand-induced shape- and crystalline phase-controlled synthesis of stable perovskite-related CsPb2Br5 nanocrystals at room temperature. J. Phys. Chem. Lett. 8, 3853–3860 (2017)CrossRef
14.
go back to reference Protesescu, L., Yakunin, S., Nazarenko, O., et al.: Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling. ACS Appl. Nano Mater. 1, 1300–1308 (2018)CrossRef Protesescu, L., Yakunin, S., Nazarenko, O., et al.: Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling. ACS Appl. Nano Mater. 1, 1300–1308 (2018)CrossRef
15.
go back to reference Dong, L., Chen, Z., Ye, L., et al.: Gram-scale synthesis of all-inorganic perovskite quantum dots with high Mn substitution ratio and enhanced dual-color emission. Nano Res. 12, 1733–1738 (2019)CrossRef Dong, L., Chen, Z., Ye, L., et al.: Gram-scale synthesis of all-inorganic perovskite quantum dots with high Mn substitution ratio and enhanced dual-color emission. Nano Res. 12, 1733–1738 (2019)CrossRef
16.
go back to reference Zhang, T.T., Li, H.Y., Yang, P.Z., et al.: Room-temperature synthesized formamidinium lead halide perovskite quantum dots with bright luminescence and color-tunability for efficient light emitting. Org. Electron. 68, 76–84 (2019)CrossRef Zhang, T.T., Li, H.Y., Yang, P.Z., et al.: Room-temperature synthesized formamidinium lead halide perovskite quantum dots with bright luminescence and color-tunability for efficient light emitting. Org. Electron. 68, 76–84 (2019)CrossRef
17.
go back to reference Brown, A.A.M., Damodaran, B., Jiang, L.D., et al.: Lead halide perovskite nanocrystals: room temperature syntheses toward commercial viability. Adv Energy Mater. 10, 2001349 (2020)CrossRef Brown, A.A.M., Damodaran, B., Jiang, L.D., et al.: Lead halide perovskite nanocrystals: room temperature syntheses toward commercial viability. Adv Energy Mater. 10, 2001349 (2020)CrossRef
18.
go back to reference Cui, J., Xu, F.F., Dong, Q., et al.: Facile, low-cost, and large-scale synthesis of CsPbBr3 nanorods at room-temperature with 86 % photoluminescence quantum yield. Mater. Res. Bull. 124, 110731 (2020) Cui, J., Xu, F.F., Dong, Q., et al.: Facile, low-cost, and large-scale synthesis of CsPbBr3 nanorods at room-temperature with 86 % photoluminescence quantum yield. Mater. Res. Bull. 124, 110731 (2020)
19.
go back to reference Liu, Q., Liu, K.K., Liang, Y.C., et al.: Gram-scale and solvent-free synthesis of Mn-doped lead halide perovskite nanocrystals. J. Alloys Compd. 815, 152393 (2020) Liu, Q., Liu, K.K., Liang, Y.C., et al.: Gram-scale and solvent-free synthesis of Mn-doped lead halide perovskite nanocrystals. J. Alloys Compd. 815, 152393 (2020)
20.
go back to reference Akkerman, Q.A., Gandini, M., Di Stasio, F., et al.: Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat. Energy. 2, 16194 (2016)CrossRef Akkerman, Q.A., Gandini, M., Di Stasio, F., et al.: Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat. Energy. 2, 16194 (2016)CrossRef
21.
go back to reference Chen, X., Peng, L., Huang, K., et al.: Non-injection gram-scale synthesis of cesium lead halide perovskite quantum dots with controllable size and composition. Nano Res. 9, 1994–2006 (2016)CrossRef Chen, X., Peng, L., Huang, K., et al.: Non-injection gram-scale synthesis of cesium lead halide perovskite quantum dots with controllable size and composition. Nano Res. 9, 1994–2006 (2016)CrossRef
22.
go back to reference Audebert, P., Clavier, G., Alain-Rizzo, V., et al.: Synthesis of new perovskite luminescent nanoparticles in the visible range. Chem. Mater. 21, 210–214 (2009)CrossRef Audebert, P., Clavier, G., Alain-Rizzo, V., et al.: Synthesis of new perovskite luminescent nanoparticles in the visible range. Chem. Mater. 21, 210–214 (2009)CrossRef
23.
go back to reference Schmidt, L.C., Pertegas, A., Gonzalez-Carrero, S., et al.: Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 136, 850–853 (2014)CrossRef Schmidt, L.C., Pertegas, A., Gonzalez-Carrero, S., et al.: Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 136, 850–853 (2014)CrossRef
24.
go back to reference Zhang, F., Huang, S., Wang, P., et al.: Colloidal synthesis of air-stable CH3NH3PbI3 quantum dots by gaining chemical insight into the solvent effects. Chem. Mater. 29, 3793–3799 (2017)CrossRef Zhang, F., Huang, S., Wang, P., et al.: Colloidal synthesis of air-stable CH3NH3PbI3 quantum dots by gaining chemical insight into the solvent effects. Chem. Mater. 29, 3793–3799 (2017)CrossRef
25.
go back to reference Zhang, F., Zhong, H., Chen, C., et al.: Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9, 4533–4542 (2015)CrossRef Zhang, F., Zhong, H., Chen, C., et al.: Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9, 4533–4542 (2015)CrossRef
26.
go back to reference Zheng, X., Deng, Y., Chen, B., et al.: Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and efficient perovskite solar cells. Adv. Mater. 30, 1803428 (2018)CrossRef Zheng, X., Deng, Y., Chen, B., et al.: Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and efficient perovskite solar cells. Adv. Mater. 30, 1803428 (2018)CrossRef
27.
go back to reference Song, J., Li, J., Li, X., et al.: Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 27, 7162–7167 (2015)CrossRef Song, J., Li, J., Li, X., et al.: Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 27, 7162–7167 (2015)CrossRef
28.
go back to reference Wang, Y., Li, X., Song, J., et al.: All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv. Mater. 27, 7101–7108 (2015)CrossRef Wang, Y., Li, X., Song, J., et al.: All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv. Mater. 27, 7101–7108 (2015)CrossRef
29.
go back to reference Akkerman, Q.A., Raino, G., Kovalenko, M.V., et al.: Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018)CrossRef Akkerman, Q.A., Raino, G., Kovalenko, M.V., et al.: Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018)CrossRef
30.
go back to reference Akkerman, Q.A., Abdelhady, A.L., Manna, L.: Zero-dimensional cesium lead halides: history, properties, and challenges. J. Phys. Chem. Lett. 9, 2326–2337 (2018)CrossRef Akkerman, Q.A., Abdelhady, A.L., Manna, L.: Zero-dimensional cesium lead halides: history, properties, and challenges. J. Phys. Chem. Lett. 9, 2326–2337 (2018)CrossRef
31.
go back to reference Mao, L., Stoumpos, C.C., Kanatzidis, M.G.: Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141, 1171–1190 (2019)CrossRef Mao, L., Stoumpos, C.C., Kanatzidis, M.G.: Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141, 1171–1190 (2019)CrossRef
32.
go back to reference Chang, Y.H., Lin, J.C., Chen, Y.C., et al.: Facile synthesis of two-dimensional Ruddlesden-Popper perovskite quantum dots with fine-tunable optical properties. Nanoscale Res. Lett. 13, 247 (2018)CrossRef Chang, Y.H., Lin, J.C., Chen, Y.C., et al.: Facile synthesis of two-dimensional Ruddlesden-Popper perovskite quantum dots with fine-tunable optical properties. Nanoscale Res. Lett. 13, 247 (2018)CrossRef
33.
go back to reference Protesescu, L., Yakunin, S., Bodnarchuk, M.I., et al.: Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015)CrossRef Protesescu, L., Yakunin, S., Bodnarchuk, M.I., et al.: Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015)CrossRef
34.
go back to reference Weidman, M.C., Goodman, A.J., Tisdale, W.A.: Colloidal halide perovskite nanoplatelets: an exciting new class of semiconductor nanomaterials. Chem. Mater. 29, 5019–5030 (2017)CrossRef Weidman, M.C., Goodman, A.J., Tisdale, W.A.: Colloidal halide perovskite nanoplatelets: an exciting new class of semiconductor nanomaterials. Chem. Mater. 29, 5019–5030 (2017)CrossRef
35.
go back to reference Liu, W., Zheng, J., Cao, S., et al.: General strategy for rapid production of low-dimensional all-inorganic CsPbBr3 perovskite nanocrystals with controlled dimensionalities and sizes. Inorg. Chem. 57, 1598–1603 (2018)CrossRef Liu, W., Zheng, J., Cao, S., et al.: General strategy for rapid production of low-dimensional all-inorganic CsPbBr3 perovskite nanocrystals with controlled dimensionalities and sizes. Inorg. Chem. 57, 1598–1603 (2018)CrossRef
36.
go back to reference Dong, Y., Wang, Y.K., Yuan, F., et al.: Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020)CrossRef Dong, Y., Wang, Y.K., Yuan, F., et al.: Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020)CrossRef
37.
go back to reference Hao, F., Stoumpos, C.C., Cao, D.H., et al.: Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photonics 8, 489–494 (2014)CrossRef Hao, F., Stoumpos, C.C., Cao, D.H., et al.: Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photonics 8, 489–494 (2014)CrossRef
38.
go back to reference Kumar, M.H., Dharani, S., Leong, W.L., et al.: Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26, 7122–7127 (2014)CrossRef Kumar, M.H., Dharani, S., Leong, W.L., et al.: Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26, 7122–7127 (2014)CrossRef
39.
go back to reference Liao, W., Zhao, D., Yu, Y., et al.: Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22. Adv. Mater. 28, 9333–9340 (2016)CrossRef Liao, W., Zhao, D., Yu, Y., et al.: Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22. Adv. Mater. 28, 9333–9340 (2016)CrossRef
40.
go back to reference Zhao, Z., Gu, F., Li, Y., et al.: Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12. Adv. Sci. 4, 1700204 (2017) Zhao, Z., Gu, F., Li, Y., et al.: Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12. Adv. Sci. 4, 1700204 (2017)
41.
go back to reference Liao, Y.Q., Liu, H.F., Zhou, W.J., et al.: Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc. 139, 6693–6699 (2017)CrossRef Liao, Y.Q., Liu, H.F., Zhou, W.J., et al.: Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc. 139, 6693–6699 (2017)CrossRef
42.
go back to reference Wu, C., Zhang, Q., Liu, Y., et al.: The dawn of lead-free perovskite solar cell: highly stable double perovskite Cs2AgBiBr6 film. Adv. Sci. 5, 1700759 (2018)CrossRef Wu, C., Zhang, Q., Liu, Y., et al.: The dawn of lead-free perovskite solar cell: highly stable double perovskite Cs2AgBiBr6 film. Adv. Sci. 5, 1700759 (2018)CrossRef
43.
go back to reference Wei, F.X., Deng, Z.Y., Sun, S.J., et al.: Synthesis and properties of a lead-free hybrid double perovskite: (CH3NH3)2AgBiBr6. Chem. Mater. 29, 1089–1094 (2017)CrossRef Wei, F.X., Deng, Z.Y., Sun, S.J., et al.: Synthesis and properties of a lead-free hybrid double perovskite: (CH3NH3)2AgBiBr6. Chem. Mater. 29, 1089–1094 (2017)CrossRef
44.
go back to reference Jin, Z.X., Zhang, Z., Xiu, J.W., et al.: A critical review on bismuth and antimony halide based perovskites and their derivatives for photovoltaic applications: recent advances and challenges. J. Mater. Chem. A 8, 16166–16188 (2020)CrossRef Jin, Z.X., Zhang, Z., Xiu, J.W., et al.: A critical review on bismuth and antimony halide based perovskites and their derivatives for photovoltaic applications: recent advances and challenges. J. Mater. Chem. A 8, 16166–16188 (2020)CrossRef
45.
go back to reference Wei, Y., Yang, H., Gao, Z., et al.: Bismuth activated full spectral double perovskite luminescence materials by excitation and valence control for future intelligent LED lighting. Chem. Comm. 56, 9170–9173 (2020)CrossRef Wei, Y., Yang, H., Gao, Z., et al.: Bismuth activated full spectral double perovskite luminescence materials by excitation and valence control for future intelligent LED lighting. Chem. Comm. 56, 9170–9173 (2020)CrossRef
46.
go back to reference Leng, M.Y., Yang, Y., Zeng, K., et al.: All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Adv. Funct. Mater. 28, 1704446 (2018)CrossRef Leng, M.Y., Yang, Y., Zeng, K., et al.: All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Adv. Funct. Mater. 28, 1704446 (2018)CrossRef
47.
go back to reference Kumawat, N.K., Liu, X.K., Kabra, D., et al.: Blue perovskite light-emitting diodes: progress, challenges and future directions. Nanoscale 11, 2109–2120 (2019)CrossRef Kumawat, N.K., Liu, X.K., Kabra, D., et al.: Blue perovskite light-emitting diodes: progress, challenges and future directions. Nanoscale 11, 2109–2120 (2019)CrossRef
48.
go back to reference Nedelcu, G., Protesescu, L., Yakunin, S., et al.: Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 15, 5635–5640 (2015)CrossRef Nedelcu, G., Protesescu, L., Yakunin, S., et al.: Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 15, 5635–5640 (2015)CrossRef
49.
go back to reference Rao, L., Tang, Y., Yan, C., et al.: Tuning the emission spectrum of highly stable cesium lead halide perovskite nanocrystals through poly(lactic acid)-assisted anion-exchange reactions. J. Mater. Chem. C 6, 5375–5383 (2018)CrossRef Rao, L., Tang, Y., Yan, C., et al.: Tuning the emission spectrum of highly stable cesium lead halide perovskite nanocrystals through poly(lactic acid)-assisted anion-exchange reactions. J. Mater. Chem. C 6, 5375–5383 (2018)CrossRef
50.
go back to reference Ramasamy, P., Lim, D.H., Kim, B., et al.: All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Comm. 52, 2067–2070 (2016)CrossRef Ramasamy, P., Lim, D.H., Kim, B., et al.: All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Comm. 52, 2067–2070 (2016)CrossRef
51.
go back to reference Chen, Y.C., Chou, H.L., Lin, J.C., et al.: Enhanced luminescence and stability of cesium lead halide perovskite CsPbX3 nanocrystals by Cu2+-assisted anion exchange reactions. J. Phys. Chem. C 123, 2353–2360 (2019)CrossRef Chen, Y.C., Chou, H.L., Lin, J.C., et al.: Enhanced luminescence and stability of cesium lead halide perovskite CsPbX3 nanocrystals by Cu2+-assisted anion exchange reactions. J. Phys. Chem. C 123, 2353–2360 (2019)CrossRef
52.
go back to reference Dutt, V.G.V., Akhil, S., Mishra, N.: Fast, tunable and reversible anion-exchange in CsPbBr3 perovskite nanocrystals with hydrohalic acids. CrystEngComm 22, 5022–5030 (2020)CrossRef Dutt, V.G.V., Akhil, S., Mishra, N.: Fast, tunable and reversible anion-exchange in CsPbBr3 perovskite nanocrystals with hydrohalic acids. CrystEngComm 22, 5022–5030 (2020)CrossRef
53.
go back to reference Fang, S., Li, G., Lu, Y., et al.: Highly luminescent CsPbX3 (X = Cl, Br, I) nanocrystals achieved by a rapid anion exchange at room temperature. Chem. Eur. J. 24, 1898–1904 (2018)CrossRef Fang, S., Li, G., Lu, Y., et al.: Highly luminescent CsPbX3 (X = Cl, Br, I) nanocrystals achieved by a rapid anion exchange at room temperature. Chem. Eur. J. 24, 1898–1904 (2018)CrossRef
54.
go back to reference Li, F., Liu, Y., Wang, H., et al.: Postsynthetic surface trap removal of CsPbX3 (X = Cl, Br, or I) quantum dots via a ZnX2/hexane solution toward an enhanced luminescence quantum yield. Chem. Mater. 30, 8546–8554 (2018)CrossRef Li, F., Liu, Y., Wang, H., et al.: Postsynthetic surface trap removal of CsPbX3 (X = Cl, Br, or I) quantum dots via a ZnX2/hexane solution toward an enhanced luminescence quantum yield. Chem. Mater. 30, 8546–8554 (2018)CrossRef
55.
go back to reference Akkerman, Q.A., D’Innocenzo, V., Accornero, S., et al.: Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 137, 10276–10281 (2015)CrossRef Akkerman, Q.A., D’Innocenzo, V., Accornero, S., et al.: Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 137, 10276–10281 (2015)CrossRef
56.
go back to reference Jang, D.M., Park, K., Kim, D.H., et al.: Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning. Nano Lett. 15, 5191–5199 (2015)CrossRef Jang, D.M., Park, K., Kim, D.H., et al.: Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning. Nano Lett. 15, 5191–5199 (2015)CrossRef
57.
go back to reference Karimata, I., Kobori, Y., Tachikawa, T.: Direct observation of charge collection at nanometer-scale iodide-rich perovskites during halide exchange reaction on CH3NH3PbBr3. J. Phys. Chem. Lett. 8, 1724–1728 (2017)CrossRef Karimata, I., Kobori, Y., Tachikawa, T.: Direct observation of charge collection at nanometer-scale iodide-rich perovskites during halide exchange reaction on CH3NH3PbBr3. J. Phys. Chem. Lett. 8, 1724–1728 (2017)CrossRef
58.
go back to reference Li, M., Zhang, X., Lu, S., et al.: Phase transformation, morphology control, and luminescence evolution of cesium lead halide nanocrystals in the anion exchange process. RSC Adv. 6, 103382–103389 (2016)CrossRef Li, M., Zhang, X., Lu, S., et al.: Phase transformation, morphology control, and luminescence evolution of cesium lead halide nanocrystals in the anion exchange process. RSC Adv. 6, 103382–103389 (2016)CrossRef
59.
go back to reference Parobek, D., Dong, Y., Qiao, T., et al.: Photoinduced anion exchange in cesium lead halide perovskite nanocrystals. J. Am. Chem. Soc. 139, 4358–4361 (2017)CrossRef Parobek, D., Dong, Y., Qiao, T., et al.: Photoinduced anion exchange in cesium lead halide perovskite nanocrystals. J. Am. Chem. Soc. 139, 4358–4361 (2017)CrossRef
60.
go back to reference Li, G.J., Ho, J.Y.L., Wong, M., et al.: Reversible anion exchange reaction in solid halide perovskites and its implication in photovoltaics. J. Phys. Chem. C 119, 26883–26888 (2015)CrossRef Li, G.J., Ho, J.Y.L., Wong, M., et al.: Reversible anion exchange reaction in solid halide perovskites and its implication in photovoltaics. J. Phys. Chem. C 119, 26883–26888 (2015)CrossRef
61.
go back to reference Weidman, M.C., Seitz, M., Stranks, S.D., et al.: Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS Nano 10, 7830–7839 (2016)CrossRef Weidman, M.C., Seitz, M., Stranks, S.D., et al.: Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS Nano 10, 7830–7839 (2016)CrossRef
62.
go back to reference Kumar, S., Jagielski, J., Yakunin, S., et al.: Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano 10, 9720–9729 (2016)CrossRef Kumar, S., Jagielski, J., Yakunin, S., et al.: Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano 10, 9720–9729 (2016)CrossRef
63.
go back to reference Akkerman, Q.A., Motti, S.G., Srimath Kandada, A.R., et al.: Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 138, 1010–1016 (2016)CrossRef Akkerman, Q.A., Motti, S.G., Srimath Kandada, A.R., et al.: Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 138, 1010–1016 (2016)CrossRef
64.
go back to reference Pan, J., Quan, L.N., Zhao, Y., et al.: Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28, 8718–8725 (2016)CrossRef Pan, J., Quan, L.N., Zhao, Y., et al.: Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28, 8718–8725 (2016)CrossRef
65.
go back to reference Shen, Z., Zhao, S., Song, D., et al.: Improving the quality and luminescence performance of all-inorganic perovskite nanomaterials for light-emitting devices by surface engineering. Small 16, 1907089 (2020)CrossRef Shen, Z., Zhao, S., Song, D., et al.: Improving the quality and luminescence performance of all-inorganic perovskite nanomaterials for light-emitting devices by surface engineering. Small 16, 1907089 (2020)CrossRef
66.
go back to reference Xing, J., Zhao, Y., Askerka, M., et al.: Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat. Commun. 9, 3541 (2018)CrossRef Xing, J., Zhao, Y., Askerka, M., et al.: Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat. Commun. 9, 3541 (2018)CrossRef
67.
go back to reference Vashishtha, P., Ng, M., Shivarudraiah, S.B., et al.: High efficiency blue and green light-emitting diodes using Ruddlesden-Popper inorganic mixed halide perovskites with butylammonium interlayers. Chem. Mater. 31, 83–89 (2018)CrossRef Vashishtha, P., Ng, M., Shivarudraiah, S.B., et al.: High efficiency blue and green light-emitting diodes using Ruddlesden-Popper inorganic mixed halide perovskites with butylammonium interlayers. Chem. Mater. 31, 83–89 (2018)CrossRef
68.
go back to reference Tsai, H., Nie, W., Blancon, J.C., et al.: High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 536, 312–316 (2016)CrossRef Tsai, H., Nie, W., Blancon, J.C., et al.: High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 536, 312–316 (2016)CrossRef
69.
go back to reference Fang, T., Zhang, F., Yuan, S., et al.: Recent advances and prospects toward blue perovskite materials and light-emitting diodes. InfoMat. 1, 211–233 (2019)CrossRef Fang, T., Zhang, F., Yuan, S., et al.: Recent advances and prospects toward blue perovskite materials and light-emitting diodes. InfoMat. 1, 211–233 (2019)CrossRef
70.
go back to reference Chen, Y., Liu, Y., Hong, M.: Cation-doping matters in caesium lead halide perovskite nanocrystals: from physicochemical fundamentals to optoelectronic applications. Nanoscale 12, 12228–12248 (2020)CrossRef Chen, Y., Liu, Y., Hong, M.: Cation-doping matters in caesium lead halide perovskite nanocrystals: from physicochemical fundamentals to optoelectronic applications. Nanoscale 12, 12228–12248 (2020)CrossRef
71.
go back to reference Amat, A., Mosconi, E., Ronca, E., et al.: Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Lett. 14, 3608–3616 (2014)CrossRef Amat, A., Mosconi, E., Ronca, E., et al.: Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Lett. 14, 3608–3616 (2014)CrossRef
72.
go back to reference Pellet, N., Gao, P., Gregori, G., et al.: Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53, 3151–3157 (2014)CrossRef Pellet, N., Gao, P., Gregori, G., et al.: Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53, 3151–3157 (2014)CrossRef
73.
go back to reference Dou, L., Wong, A.B., Yu, Y., et al.: Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015)CrossRef Dou, L., Wong, A.B., Yu, Y., et al.: Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015)CrossRef
74.
go back to reference Song, J., Xu, L., Li, J., et al.: Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 28, 4861–4869 (2016)CrossRef Song, J., Xu, L., Li, J., et al.: Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 28, 4861–4869 (2016)CrossRef
75.
go back to reference Li, X., Wu, Y., Zhang, S., et al.: CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 26, 2435–2445 (2016)CrossRef Li, X., Wu, Y., Zhang, S., et al.: CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 26, 2435–2445 (2016)CrossRef
76.
go back to reference Baek, S., Kim, S., Noh, J.Y., et al.: Development of mixed-cation CsxRb1−xPbX3 perovskite quantum dots and their full-color film with high stability and wide color gamut. Adv. Opt. Mater. 6, 1800295 (2018)CrossRef Baek, S., Kim, S., Noh, J.Y., et al.: Development of mixed-cation CsxRb1−xPbX3 perovskite quantum dots and their full-color film with high stability and wide color gamut. Adv. Opt. Mater. 6, 1800295 (2018)CrossRef
77.
go back to reference Cao, Z., Li, J., Wang, L., et al.: Enhancing luminescence of intrinsic and Mn doped CsPbCl3 perovskite nanocrystals through Co2+ doping. Mater. Res. Bull. 121, 110608 (2020) Cao, Z., Li, J., Wang, L., et al.: Enhancing luminescence of intrinsic and Mn doped CsPbCl3 perovskite nanocrystals through Co2+ doping. Mater. Res. Bull. 121, 110608 (2020)
78.
go back to reference Cai, T., Yang, H., Hills-Kimball, K., et al.: Synthesis of all-inorganic Cd-doped CsPbCl3 perovskite nanocrystals with dual-wavelength emission. J. Phys. Chem. Lett. 9, 7079–7084 (2018)CrossRef Cai, T., Yang, H., Hills-Kimball, K., et al.: Synthesis of all-inorganic Cd-doped CsPbCl3 perovskite nanocrystals with dual-wavelength emission. J. Phys. Chem. Lett. 9, 7079–7084 (2018)CrossRef
79.
go back to reference Nayak, P.K., Sendner, M., Wenger, B., et al.: Impact of Bi3+ heterovalent doping in organic-inorganic metal halide perovskite crystals. J. Am. Chem. Soc. 140, 574–577 (2018)CrossRef Nayak, P.K., Sendner, M., Wenger, B., et al.: Impact of Bi3+ heterovalent doping in organic-inorganic metal halide perovskite crystals. J. Am. Chem. Soc. 140, 574–577 (2018)CrossRef
80.
go back to reference Liu, M., Zhong, G., Yin, Y., et al.: Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv. Sci. 4, 1700335 (2017)CrossRef Liu, M., Zhong, G., Yin, Y., et al.: Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv. Sci. 4, 1700335 (2017)CrossRef
81.
go back to reference Yong, Z.J., Guo, S.Q., Ma, J.P., et al.: Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield. J. Am. Chem. Soc. 140, 9942–9951 (2018)CrossRef Yong, Z.J., Guo, S.Q., Ma, J.P., et al.: Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield. J. Am. Chem. Soc. 140, 9942–9951 (2018)CrossRef
82.
go back to reference De, A., Mondal, N., Samanta, A.: Luminescence tuning and exciton dynamics of Mn-doped CsPbCl3 nanocrystals. Nanoscale 9, 16722–16727 (2017)CrossRef De, A., Mondal, N., Samanta, A.: Luminescence tuning and exciton dynamics of Mn-doped CsPbCl3 nanocrystals. Nanoscale 9, 16722–16727 (2017)CrossRef
83.
go back to reference Hou, S., Gangishetty, M.K., Quan, Q., et al.: Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule 2, 2421–2433 (2018)CrossRef Hou, S., Gangishetty, M.K., Quan, Q., et al.: Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule 2, 2421–2433 (2018)CrossRef
84.
go back to reference Khan, U., Zhinong, Y., Khan, A.A., et al.: High-performance CsPbI2Br perovskite solar cells with zinc and manganese doping. Nanoscale Res. Lett. 14, 116 (2019)CrossRef Khan, U., Zhinong, Y., Khan, A.A., et al.: High-performance CsPbI2Br perovskite solar cells with zinc and manganese doping. Nanoscale Res. Lett. 14, 116 (2019)CrossRef
85.
go back to reference Li, F., Xia, Z., Pan, C., et al.: High Br− content CsPb(ClyBr1-y)3 perovskite nanocrystals with strong Mn2+ emission through diverse cation/anion exchange engineering. ACS Appl. Mater. Interfaces 10, 11739–11746 (2018)CrossRef Li, F., Xia, Z., Pan, C., et al.: High Br content CsPb(ClyBr1-y)3 perovskite nanocrystals with strong Mn2+ emission through diverse cation/anion exchange engineering. ACS Appl. Mater. Interfaces 10, 11739–11746 (2018)CrossRef
86.
go back to reference Liu, W., Lin, Q., Li, H., et al.: Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J. Am. Chem. Soc. 138, 14954–14961 (2016)CrossRef Liu, W., Lin, Q., Li, H., et al.: Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J. Am. Chem. Soc. 138, 14954–14961 (2016)CrossRef
87.
go back to reference Wei, Q., Li, M., Zhang, Z., et al.: Efficient recycling of trapped energies for dual-emission in Mn-doped perovskite nanocrystals. Nano Energy 51, 704–710 (2018)CrossRef Wei, Q., Li, M., Zhang, Z., et al.: Efficient recycling of trapped energies for dual-emission in Mn-doped perovskite nanocrystals. Nano Energy 51, 704–710 (2018)CrossRef
88.
go back to reference Wang, H., Zhao, X., Zhang, B., et al.: Blue perovskite light-emitting diodes based on RbX-doped polycrystalline CsPbBr3 perovskite films. J. Mater. Chem. C 7, 5596–5603 (2019)CrossRef Wang, H., Zhao, X., Zhang, B., et al.: Blue perovskite light-emitting diodes based on RbX-doped polycrystalline CsPbBr3 perovskite films. J. Mater. Chem. C 7, 5596–5603 (2019)CrossRef
89.
go back to reference Xu, L., Yuan, S., Zeng, H., et al.: A comprehensive review of doping in perovskite nanocrystals/quantum dots: evolution of structure, electronics, optics, and light-emitting diodes. Mater. Today Nano 6, 100036 (2019) Xu, L., Yuan, S., Zeng, H., et al.: A comprehensive review of doping in perovskite nanocrystals/quantum dots: evolution of structure, electronics, optics, and light-emitting diodes. Mater. Today Nano 6, 100036 (2019)
90.
go back to reference Luo, B., Li, F., Xu, K., et al.: B-site doped lead halide perovskites: synthesis, band engineering, photophysics, and light emission applications. J. Mater. Chem. C 7, 2781–2808 (2019)CrossRef Luo, B., Li, F., Xu, K., et al.: B-site doped lead halide perovskites: synthesis, band engineering, photophysics, and light emission applications. J. Mater. Chem. C 7, 2781–2808 (2019)CrossRef
91.
go back to reference Gebhardt, J., Rappe, A.M.: Mix and match: organic and inorganic ions in the perovskite lattice. Adv. Mater. 31, 1802697 (2019)CrossRef Gebhardt, J., Rappe, A.M.: Mix and match: organic and inorganic ions in the perovskite lattice. Adv. Mater. 31, 1802697 (2019)CrossRef
92.
go back to reference Liu, H., Wu, Z., Shao, J., et al.: CsPbxMn1−xCl3 perovskite quantum dots with high mn substitution ratio. ACS Nano 11, 2239–2247 (2017)CrossRef Liu, H., Wu, Z., Shao, J., et al.: CsPbxMn1−xCl3 perovskite quantum dots with high mn substitution ratio. ACS Nano 11, 2239–2247 (2017)CrossRef
93.
go back to reference Lu, M., Zhang, X., Bai, X., et al.: Spontaneous silver doping and surface passivation of CsPbI3 perovskite active layer enable light-emitting devices with an external quantum efficiency of 11.2. ACS Energy Lett. 3, 1571–1577 (2018)CrossRef Lu, M., Zhang, X., Bai, X., et al.: Spontaneous silver doping and surface passivation of CsPbI3 perovskite active layer enable light-emitting devices with an external quantum efficiency of 11.2. ACS Energy Lett. 3, 1571–1577 (2018)CrossRef
94.
go back to reference Abdi-Jalebi, M., Dar, M.I., Sadhanala, A., et al.: Impact of monovalent cation halide additives on the structural and optoelectronic properties of CH3NH3PbI3 perovskite. Adv. Energy Mater. 6, 1502472 (2016)CrossRef Abdi-Jalebi, M., Dar, M.I., Sadhanala, A., et al.: Impact of monovalent cation halide additives on the structural and optoelectronic properties of CH3NH3PbI3 perovskite. Adv. Energy Mater. 6, 1502472 (2016)CrossRef
95.
go back to reference Swarnkar, A., Marshall, A.R., Sanehira, E.M., et al.: Quantum dot–induced phase stabilization of a-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016)CrossRef Swarnkar, A., Marshall, A.R., Sanehira, E.M., et al.: Quantum dot–induced phase stabilization of a-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016)CrossRef
96.
go back to reference Ishii, A., Miyasaka, T.: Sensitized Yb3+ luminescence in CsPbCl3 film for highly efficient near-infrared light-emitting diodes. Adv. Sci. 7, 1903142 (2020)CrossRef Ishii, A., Miyasaka, T.: Sensitized Yb3+ luminescence in CsPbCl3 film for highly efficient near-infrared light-emitting diodes. Adv. Sci. 7, 1903142 (2020)CrossRef
97.
go back to reference Gao, M., Zhang, C., Lian, L., et al.: Controlled synthesis and photostability of blue emitting Cs3Bi2Br9 perovskite nanocrystals by employing weak polar solvents at room temperature. J. Mater. Chem. C 7, 3688–3695 (2019)CrossRef Gao, M., Zhang, C., Lian, L., et al.: Controlled synthesis and photostability of blue emitting Cs3Bi2Br9 perovskite nanocrystals by employing weak polar solvents at room temperature. J. Mater. Chem. C 7, 3688–3695 (2019)CrossRef
98.
go back to reference Leng, M., Yang, Y., Chen, Z., et al.: Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission. Nano Lett. 18, 6076–6083 (2018)CrossRef Leng, M., Yang, Y., Chen, Z., et al.: Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission. Nano Lett. 18, 6076–6083 (2018)CrossRef
99.
go back to reference Shen, Y., Yin, J., Cai, B., et al.: Lead-free, stable, high-efficiency (52%) blue luminescent FA3Bi2Br9 perovskite quantum dots. Nanoscale Horiz. 5, 580–585 (2020)CrossRef Shen, Y., Yin, J., Cai, B., et al.: Lead-free, stable, high-efficiency (52%) blue luminescent FA3Bi2Br9 perovskite quantum dots. Nanoscale Horiz. 5, 580–585 (2020)CrossRef
100.
go back to reference Xie, J.L., Huang, Z.Q., Wang, B., et al.: New lead-free perovskite Rb7Bi3Cl16 nanocrystals with blue luminescence and excellent moisture-stability. Nanoscale 11, 6719–6726 (2019)CrossRef Xie, J.L., Huang, Z.Q., Wang, B., et al.: New lead-free perovskite Rb7Bi3Cl16 nanocrystals with blue luminescence and excellent moisture-stability. Nanoscale 11, 6719–6726 (2019)CrossRef
101.
go back to reference Leng, M., Chen, Z., Yang, Y., et al.: Lead-free, blue emitting bismuth halide perovskite quantum dots. Angew. Chem. Int. Ed. 55, 15012–15016 (2016)CrossRef Leng, M., Chen, Z., Yang, Y., et al.: Lead-free, blue emitting bismuth halide perovskite quantum dots. Angew. Chem. Int. Ed. 55, 15012–15016 (2016)CrossRef
102.
go back to reference Locardi, F., Cirignano, M., Baranov, D., et al.: Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals. J. Am. Chem. Soc. 140, 12989–12995 (2018)CrossRef Locardi, F., Cirignano, M., Baranov, D., et al.: Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals. J. Am. Chem. Soc. 140, 12989–12995 (2018)CrossRef
103.
go back to reference Luo, J., Li, S., Wu, H., et al.: Cs2AgInCl6 double perovskite single crystals: parity forbidden transitions and their application for sensitive and fast UV photodetectors. ACS Photonics 5, 398–405 (2017)CrossRef Luo, J., Li, S., Wu, H., et al.: Cs2AgInCl6 double perovskite single crystals: parity forbidden transitions and their application for sensitive and fast UV photodetectors. ACS Photonics 5, 398–405 (2017)CrossRef
104.
go back to reference Volonakis, G., Haghighirad, A.A., Milot, R.L., et al.: Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett. 8, 772–778 (2017)CrossRef Volonakis, G., Haghighirad, A.A., Milot, R.L., et al.: Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett. 8, 772–778 (2017)CrossRef
105.
go back to reference Zhou, J., Xia, Z., Molokeev, M.S., et al.: Composition design, optical gap and stability investigations of lead-free halide double perovskite Cs2AgInCl6. J Mater. Chem. A 5, 15031–15037 (2017)CrossRef Zhou, J., Xia, Z., Molokeev, M.S., et al.: Composition design, optical gap and stability investigations of lead-free halide double perovskite Cs2AgInCl6. J Mater. Chem. A 5, 15031–15037 (2017)CrossRef
106.
go back to reference Noculak, A., Morad, V., McCall, K.M., et al.: Bright blue and green luminescence of Sb(III) in double perovskite Cs2MInCl6 (M = Na, K) matrices. Chem. Mater. 32, 5118–5124 (2020)CrossRef Noculak, A., Morad, V., McCall, K.M., et al.: Bright blue and green luminescence of Sb(III) in double perovskite Cs2MInCl6 (M = Na, K) matrices. Chem. Mater. 32, 5118–5124 (2020)CrossRef
107.
go back to reference Xie, L.L., Chen, B.K., Zhang, F., et al.: Highly luminescent and stable lead-free cesium copper halide perovskite powders for UV-pumped phosphor-converted light-emitting diodes. Photonics Res. 8, 768–775 (2020)CrossRef Xie, L.L., Chen, B.K., Zhang, F., et al.: Highly luminescent and stable lead-free cesium copper halide perovskite powders for UV-pumped phosphor-converted light-emitting diodes. Photonics Res. 8, 768–775 (2020)CrossRef
108.
go back to reference Yang, P., Liu, G., Liu, B., et al.: All-inorganic Cs2CuX4 (X = Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence. Chem. Comm. 54, 11638–11641 (2018)CrossRef Yang, P., Liu, G., Liu, B., et al.: All-inorganic Cs2CuX4 (X = Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence. Chem. Comm. 54, 11638–11641 (2018)CrossRef
109.
go back to reference Zeng, R., Zhang, L., Xue, Y., et al.: Highly efficient blue emission from self-trapped excitons in stable Sb3+-doped Cs2NaInCl6 double perovskites. J. Phys. Chem. Lett. 11, 2053–2061 (2020)CrossRef Zeng, R., Zhang, L., Xue, Y., et al.: Highly efficient blue emission from self-trapped excitons in stable Sb3+-doped Cs2NaInCl6 double perovskites. J. Phys. Chem. Lett. 11, 2053–2061 (2020)CrossRef
110.
go back to reference Jun, T., Sim, K., Iimura, S., et al.: Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv. Mater. 30, 1804547 (2018)CrossRef Jun, T., Sim, K., Iimura, S., et al.: Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv. Mater. 30, 1804547 (2018)CrossRef
111.
go back to reference Roccanova, R., Yangui, A., Nhalil, H., et al.: Near-unity photoluminescence quantum yield in blue-emitting Cs3Cu2Br5–xIx (0 ≤ x ≤ 5). ACS Appl. Electron. Mater. 1, 269–274 (2019)CrossRef Roccanova, R., Yangui, A., Nhalil, H., et al.: Near-unity photoluminescence quantum yield in blue-emitting Cs3Cu2Br5–xIx (0 ≤ x ≤ 5). ACS Appl. Electron. Mater. 1, 269–274 (2019)CrossRef
112.
go back to reference Ma, Z., Shi, Z., Yang, D., et al.: Electrically-driven violet light-emitting devices based on highly stable lead-free perovskite Cs3Sb2Br9 quantum dots. ACS Energy Lett. 5, 385–394 (2019)CrossRef Ma, Z., Shi, Z., Yang, D., et al.: Electrically-driven violet light-emitting devices based on highly stable lead-free perovskite Cs3Sb2Br9 quantum dots. ACS Energy Lett. 5, 385–394 (2019)CrossRef
113.
go back to reference Zhang, J., Yang, Y., Deng, H., et al.: High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano 11, 9294–9302 (2017)CrossRef Zhang, J., Yang, Y., Deng, H., et al.: High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano 11, 9294–9302 (2017)CrossRef
114.
go back to reference Tan, Z.F., Li, J.H., Zhang, C., et al.: Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Adv. Funct. Mater. 28, 1801131 (2018)CrossRef Tan, Z.F., Li, J.H., Zhang, C., et al.: Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Adv. Funct. Mater. 28, 1801131 (2018)CrossRef
115.
go back to reference Park, B.-W., Philippe, B., Zhang, X., et al.: Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv. Mater. 27, 6806–6813 (2015)CrossRef Park, B.-W., Philippe, B., Zhang, X., et al.: Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv. Mater. 27, 6806–6813 (2015)CrossRef
116.
go back to reference Zhao, X.G., Yang, J.H., Fu, Y., et al.: Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 139, 2630–2638 (2017)CrossRef Zhao, X.G., Yang, J.H., Fu, Y., et al.: Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 139, 2630–2638 (2017)CrossRef
117.
go back to reference Zhao, X.G., Yang, D., Sun, Y., et al.: Cu-In halide perovskite solar absorbers. J. Am. Chem. Soc. 139, 6718–6725 (2017)CrossRef Zhao, X.G., Yang, D., Sun, Y., et al.: Cu-In halide perovskite solar absorbers. J. Am. Chem. Soc. 139, 6718–6725 (2017)CrossRef
118.
go back to reference Igbari, F., Wang, Z.K., Liao, L.S.: Progress of lead-free halide double perovskites. Adv. Energy Mater. 9, 1803150 (2019)CrossRef Igbari, F., Wang, Z.K., Liao, L.S.: Progress of lead-free halide double perovskites. Adv. Energy Mater. 9, 1803150 (2019)CrossRef
119.
go back to reference Slavney, A.H., Hu, T., Lindenberg, A.M., et al.: A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138, 2138–2141 (2016)CrossRef Slavney, A.H., Hu, T., Lindenberg, A.M., et al.: A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138, 2138–2141 (2016)CrossRef
120.
go back to reference Zhou, L., Xu, Y.F., Chen, B.X., et al.: Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals. Small 14, 1703762 (2018)CrossRef Zhou, L., Xu, Y.F., Chen, B.X., et al.: Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals. Small 14, 1703762 (2018)CrossRef
121.
go back to reference Creutz, S.E., Crites, E.N., De Siena, M.C., et al.: Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: synthesis and anion exchange to access new materials. Nano Lett. 18, 1118–1123 (2018)CrossRef Creutz, S.E., Crites, E.N., De Siena, M.C., et al.: Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: synthesis and anion exchange to access new materials. Nano Lett. 18, 1118–1123 (2018)CrossRef
122.
go back to reference Cheng, P., Wu, T., Li, Y., et al.: Combining theory and experiment in the design of a lead-free ((CH3NH3)2AgBiI6) double perovskite. New J. Chem. 41, 9598–9601 (2017)CrossRef Cheng, P., Wu, T., Li, Y., et al.: Combining theory and experiment in the design of a lead-free ((CH3NH3)2AgBiI6) double perovskite. New J. Chem. 41, 9598–9601 (2017)CrossRef
123.
go back to reference Zhou, J., Rong, X., Molokeev, M.S., et al.: Exploring the transposition effects on the electronic and optical properties of Cs2AgSbCl6 via a combined computational-experimental approach. J. Mater. Chem. A 6, 2346–2352 (2018)CrossRef Zhou, J., Rong, X., Molokeev, M.S., et al.: Exploring the transposition effects on the electronic and optical properties of Cs2AgSbCl6 via a combined computational-experimental approach. J. Mater. Chem. A 6, 2346–2352 (2018)CrossRef
124.
go back to reference Li, G., Tian, Y., Zhao, Y., et al.: Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs. Chem. Soc. Rev. 44, 8688–8713 (2015)CrossRef Li, G., Tian, Y., Zhao, Y., et al.: Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs. Chem. Soc. Rev. 44, 8688–8713 (2015)CrossRef
125.
go back to reference Jing, Y.Y., Liu, Y., Jiang, X.X., et al.: Sb3+ dopant and halogen substitution triggered highly efficient and tunable emission in lead-free metal halide single crystals. Chem. Mater. 32, 5327–5334 (2020)CrossRef Jing, Y.Y., Liu, Y., Jiang, X.X., et al.: Sb3+ dopant and halogen substitution triggered highly efficient and tunable emission in lead-free metal halide single crystals. Chem. Mater. 32, 5327–5334 (2020)CrossRef
126.
go back to reference Liu, X., Xu, X., Li, B., et al.: Tunable dual-emission in monodispersed Sb3+/Mn2+ codoped Cs2NaInCl6 perovskite nanocrystals through an energy transfer process. Small 16, 2002547 (2020)CrossRef Liu, X., Xu, X., Li, B., et al.: Tunable dual-emission in monodispersed Sb3+/Mn2+ codoped Cs2NaInCl6 perovskite nanocrystals through an energy transfer process. Small 16, 2002547 (2020)CrossRef
127.
go back to reference Jiang, J.T., Wang, D.Y., Wu, M.F., et al.: Ultrasonication-assisted trace amount solvent synthesis of Cs4PbBr6 crystal with ultra-bright green light emission. APL Mater. 8, 071115 (2020) Jiang, J.T., Wang, D.Y., Wu, M.F., et al.: Ultrasonication-assisted trace amount solvent synthesis of Cs4PbBr6 crystal with ultra-bright green light emission. APL Mater. 8, 071115 (2020)
128.
go back to reference Krieg, F., Ochsenbein, S.T., Yakunin, S., et al.: Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability. ACS Energy Lett. 3, 641–646 (2018)CrossRef Krieg, F., Ochsenbein, S.T., Yakunin, S., et al.: Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability. ACS Energy Lett. 3, 641–646 (2018)CrossRef
129.
go back to reference Li, C., Zang, Z., Chen, W., et al.: Highly pure green light emission of perovskite CsPbBr3 quantum dots and their application for green light-emitting diodes. Opt. Express 24, 15071–15078 (2016)CrossRef Li, C., Zang, Z., Chen, W., et al.: Highly pure green light emission of perovskite CsPbBr3 quantum dots and their application for green light-emitting diodes. Opt. Express 24, 15071–15078 (2016)CrossRef
130.
go back to reference Kumar, S., Jagielski, J., Kallikounis, N., et al.: Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: achieving recommendation 2020 color coordinates. Nano Lett. 17, 5277–5284 (2017)CrossRef Kumar, S., Jagielski, J., Kallikounis, N., et al.: Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: achieving recommendation 2020 color coordinates. Nano Lett. 17, 5277–5284 (2017)CrossRef
131.
go back to reference Liu, Y., Shi, B.F., Liu, Q., et al.: Large-scale synthesis of layered double hydroxide nanosheet-stabilized CsPbBr3 perovskite quantum dots for WLEDs. J. Alloys Compd. 843, 155819 (2020) Liu, Y., Shi, B.F., Liu, Q., et al.: Large-scale synthesis of layered double hydroxide nanosheet-stabilized CsPbBr3 perovskite quantum dots for WLEDs. J. Alloys Compd. 843, 155819 (2020)
132.
go back to reference Dou, Y., Wang, S., Zhang, C., et al.: Ten-gram-scale synthesis of FAPbX3 perovskite nanocrystals by a high-power room-temperature ultrasonic-assisted strategy and their electroluminescence. Adv. Mater. Technol. 5, 1901089 (2020)CrossRef Dou, Y., Wang, S., Zhang, C., et al.: Ten-gram-scale synthesis of FAPbX3 perovskite nanocrystals by a high-power room-temperature ultrasonic-assisted strategy and their electroluminescence. Adv. Mater. Technol. 5, 1901089 (2020)CrossRef
133.
go back to reference Lan, S., Li, W., Wang, S., et al.: Vapor-phase growth of CsPbBr3 microstructures for highly efficient pure green light emission. Adv. Opt. Mater. 7, 1801336 (2019)CrossRef Lan, S., Li, W., Wang, S., et al.: Vapor-phase growth of CsPbBr3 microstructures for highly efficient pure green light emission. Adv. Opt. Mater. 7, 1801336 (2019)CrossRef
134.
go back to reference Song, J., Li, J., Xu, L., et al.: Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Adv. Mater. 30, 1800764 (2018) Song, J., Li, J., Xu, L., et al.: Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Adv. Mater. 30, 1800764 (2018)
135.
go back to reference Song, J., Fang, T., Li, J., et al.: Organic-inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48. Adv. Mater. 30, 1805409 (2018) Song, J., Fang, T., Li, J., et al.: Organic-inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48. Adv. Mater. 30, 1805409 (2018)
136.
go back to reference Shan, Q., Song, J., Zou, Y., et al.: High performance metal halide perovskite light-emitting diode: from material design to device optimization. Small 13, 1701770 (2017)CrossRef Shan, Q., Song, J., Zou, Y., et al.: High performance metal halide perovskite light-emitting diode: from material design to device optimization. Small 13, 1701770 (2017)CrossRef
137.
go back to reference Chen, M., Zou, Y., Wu, L., et al.: Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire. Adv. Funct. Mater. 27, 1701121 (2017)CrossRef Chen, M., Zou, Y., Wu, L., et al.: Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire. Adv. Funct. Mater. 27, 1701121 (2017)CrossRef
138.
go back to reference Yassitepe, E., Yang, Z., Voznyy, O., et al.: Amine-free synthesis of cesium lead halide perovskite quantum dots for efficient light-emitting diodes. Adv. Funct. Mater. 26, 8757–8763 (2016)CrossRef Yassitepe, E., Yang, Z., Voznyy, O., et al.: Amine-free synthesis of cesium lead halide perovskite quantum dots for efficient light-emitting diodes. Adv. Funct. Mater. 26, 8757–8763 (2016)CrossRef
139.
go back to reference Zhu, Z.Y., Yang, Q.Q., Gao, L.F., et al.: Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots. J. Phys. Chem. Lett. 8, 1610–1614 (2017)CrossRef Zhu, Z.Y., Yang, Q.Q., Gao, L.F., et al.: Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots. J. Phys. Chem. Lett. 8, 1610–1614 (2017)CrossRef
140.
go back to reference Pan, Q., Hu, H., Zou, Y., et al.: Microwave-assisted synthesis of high-quality “all-inorganic” CsPbX3 (X = Cl, Br, I) perovskite nanocrystals and their application in light emitting diodes. J. Mater. Chem. C 5, 10947–10954 (2017)CrossRef Pan, Q., Hu, H., Zou, Y., et al.: Microwave-assisted synthesis of high-quality “all-inorganic” CsPbX3 (X = Cl, Br, I) perovskite nanocrystals and their application in light emitting diodes. J. Mater. Chem. C 5, 10947–10954 (2017)CrossRef
141.
go back to reference Fu, Y.P., Zhu, H.M., Chen, J., et al.: Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 4, 169–188 (2019)CrossRef Fu, Y.P., Zhu, H.M., Chen, J., et al.: Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 4, 169–188 (2019)CrossRef
142.
go back to reference Wang, K., Xing, G., Song, Q., et al.: Micro- and nanostructured lead halide perovskites: from materials to integrations and devices. Adv. Mater. 2000306 (2020) Wang, K., Xing, G., Song, Q., et al.: Micro- and nanostructured lead halide perovskites: from materials to integrations and devices. Adv. Mater. 2000306 (2020)
143.
go back to reference Wei, Y., Cheng, Z., Lin, J.: An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 48, 310–350 (2019)CrossRef Wei, Y., Cheng, Z., Lin, J.: An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 48, 310–350 (2019)CrossRef
144.
go back to reference Goetz, K.P., Taylor, A.D., Paulus, F., et al.: Shining light on the photoluminescence properties of metal halide perovskites. Adv. Funct. Mater. 30, 1910004 (2020)CrossRef Goetz, K.P., Taylor, A.D., Paulus, F., et al.: Shining light on the photoluminescence properties of metal halide perovskites. Adv. Funct. Mater. 30, 1910004 (2020)CrossRef
145.
go back to reference Beal, R.E., Slotcavage, D.J., Leijtens, T., et al.: Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 7, 746–751 (2016)CrossRef Beal, R.E., Slotcavage, D.J., Leijtens, T., et al.: Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 7, 746–751 (2016)CrossRef
146.
go back to reference Stoumpos, C.C., Malliakas, C.D., Peters, J.A., et al.: Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013)CrossRef Stoumpos, C.C., Malliakas, C.D., Peters, J.A., et al.: Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013)CrossRef
147.
go back to reference Kulbak, M., Cahen, D., Hodes, G.: How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 6, 2452–2456 (2015)CrossRef Kulbak, M., Cahen, D., Hodes, G.: How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 6, 2452–2456 (2015)CrossRef
148.
go back to reference Ling, Y., Tian, Y., Wang, X., et al.: Enhanced optical and electrical properties of polymer-assisted all-inorganic perovskites for light-emitting diodes. Adv. Mater. 28, 8983–8989 (2016)CrossRef Ling, Y., Tian, Y., Wang, X., et al.: Enhanced optical and electrical properties of polymer-assisted all-inorganic perovskites for light-emitting diodes. Adv. Mater. 28, 8983–8989 (2016)CrossRef
149.
go back to reference De Roo, J., Ibanez, M., Geiregat, P., et al.: Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10, 2071–2081 (2016)CrossRef De Roo, J., Ibanez, M., Geiregat, P., et al.: Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10, 2071–2081 (2016)CrossRef
150.
go back to reference Pan, A., He, B., Fan, X., et al.: Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors. ACS Nano 10, 7943–7954 (2016)CrossRef Pan, A., He, B., Fan, X., et al.: Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors. ACS Nano 10, 7943–7954 (2016)CrossRef
151.
go back to reference Sun, S., Yuan, D., Xu, Y., et al.: Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 10, 3648–3657 (2016)CrossRef Sun, S., Yuan, D., Xu, Y., et al.: Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 10, 3648–3657 (2016)CrossRef
152.
go back to reference Liang, Z., Zhao, S., Xu, Z., et al.: Shape-controlled synthesis of all-inorganic CsPbBr3 perovskite nanocrystals with bright blue emission. ACS Appl. Mater. Interfaces 8, 28824–28830 (2016)CrossRef Liang, Z., Zhao, S., Xu, Z., et al.: Shape-controlled synthesis of all-inorganic CsPbBr3 perovskite nanocrystals with bright blue emission. ACS Appl. Mater. Interfaces 8, 28824–28830 (2016)CrossRef
153.
go back to reference Tan, Y., Zou, Y., Wu, L., et al.: Highly luminescent and stable perovskite nanocrystals with octylphosphonic acid as a ligand for efficient light-emitting diodes. ACS Appl. Mater. Interfaces 10, 3784–3792 (2018)CrossRef Tan, Y., Zou, Y., Wu, L., et al.: Highly luminescent and stable perovskite nanocrystals with octylphosphonic acid as a ligand for efficient light-emitting diodes. ACS Appl. Mater. Interfaces 10, 3784–3792 (2018)CrossRef
154.
go back to reference Han, D., Imran, M., Zhang, M., et al.: Efficient light-emitting diodes based on in situ fabricated FAPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process. ACS Nano 12, 8808–8816 (2018)CrossRef Han, D., Imran, M., Zhang, M., et al.: Efficient light-emitting diodes based on in situ fabricated FAPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process. ACS Nano 12, 8808–8816 (2018)CrossRef
155.
go back to reference van der Stam, W., Geuchies, J.J., Altantzis, T., et al.: Highly emissive divalent-ion-doped colloidal CsPb1−xMxBr3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 139, 4087–4097 (2017)CrossRef van der Stam, W., Geuchies, J.J., Altantzis, T., et al.: Highly emissive divalent-ion-doped colloidal CsPb1−xMxBr3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 139, 4087–4097 (2017)CrossRef
156.
go back to reference Bi, C., Wang, S., Li, Q., et al.: Thermally stable copper(ii)-doped cesium lead halide perovskite quantum dots with strong blue emission. J. Phys. Chem. Lett. 10, 943–952 (2019)CrossRef Bi, C., Wang, S., Li, Q., et al.: Thermally stable copper(ii)-doped cesium lead halide perovskite quantum dots with strong blue emission. J. Phys. Chem. Lett. 10, 943–952 (2019)CrossRef
157.
go back to reference Yao, J.S., Ge, J., Han, B.N., et al.: Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes. J. Am. Chem. Soc. 140, 3626–3634 (2018)CrossRef Yao, J.S., Ge, J., Han, B.N., et al.: Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes. J. Am. Chem. Soc. 140, 3626–3634 (2018)CrossRef
158.
go back to reference Ding, H., Liu, W., Zheng, Y., et al.: Transition metal halide-doped, highly stable all-inorganic perovskite nanocrystals for fabrication of white light-emitting diodes. J. Mater. Chem. C 7, 1690–1695 (2019)CrossRef Ding, H., Liu, W., Zheng, Y., et al.: Transition metal halide-doped, highly stable all-inorganic perovskite nanocrystals for fabrication of white light-emitting diodes. J. Mater. Chem. C 7, 1690–1695 (2019)CrossRef
159.
go back to reference Wang, H.C., Wang, W., Tang, A.C., et al.: High-performance CsPb1−xSnxBr3 perovskite quantum dots for light-emitting diodes. Angew. Chem. Int. Ed. 56, 13650–13654 (2017)CrossRef Wang, H.C., Wang, W., Tang, A.C., et al.: High-performance CsPb1−xSnxBr3 perovskite quantum dots for light-emitting diodes. Angew. Chem. Int. Ed. 56, 13650–13654 (2017)CrossRef
160.
go back to reference Su, B., Song, G., Molokeev, M.S., et al.: Synthesis, crystal structure and green luminescence in zero-dimensional tin halide (C8H14N2)2SnBr6. Inorg. Chem. 59, 9962–9968 (2020)CrossRef Su, B., Song, G., Molokeev, M.S., et al.: Synthesis, crystal structure and green luminescence in zero-dimensional tin halide (C8H14N2)2SnBr6. Inorg. Chem. 59, 9962–9968 (2020)CrossRef
161.
go back to reference Deng, Y., Dong, X., Yang, M., et al.: Two low-dimensional metal halides: ionothermal synthesis, photoluminescence, and nonlinear optical properties. Dalton Trans. 48, 17451–17455 (2019)CrossRef Deng, Y., Dong, X., Yang, M., et al.: Two low-dimensional metal halides: ionothermal synthesis, photoluminescence, and nonlinear optical properties. Dalton Trans. 48, 17451–17455 (2019)CrossRef
162.
go back to reference Li, M., Zhou, J., Molokeev, M.S., et al.: Lead-free hybrid metal halides with a green-emissive [MnBr4] unit as a selective turn-on fluorescent sensor for acetone. Inorg. Chem. 58, 13464–13470 (2019)CrossRef Li, M., Zhou, J., Molokeev, M.S., et al.: Lead-free hybrid metal halides with a green-emissive [MnBr4] unit as a selective turn-on fluorescent sensor for acetone. Inorg. Chem. 58, 13464–13470 (2019)CrossRef
163.
go back to reference Zhou, G., Liu, Z., Huang, J., et al.: Unraveling the near-unity narrow-band green emission in zero-dimensional Mn2+-based metal halides: a case study of (C10H16N)2Zn1−xMnxBr4 solid solutions. J. Phys. Chem. Lett. 11, 5956–5962 (2020)CrossRef Zhou, G., Liu, Z., Huang, J., et al.: Unraveling the near-unity narrow-band green emission in zero-dimensional Mn2+-based metal halides: a case study of (C10H16N)2Zn1−xMnxBr4 solid solutions. J. Phys. Chem. Lett. 11, 5956–5962 (2020)CrossRef
164.
go back to reference Zhang, R., Mao, X., Zheng, D., et al.: A lead-free all-inorganic metal halide with near-unity green luminescence. Laser Photonics Rev. 14, 2000027 (2020)CrossRef Zhang, R., Mao, X., Zheng, D., et al.: A lead-free all-inorganic metal halide with near-unity green luminescence. Laser Photonics Rev. 14, 2000027 (2020)CrossRef
165.
go back to reference Lu, M., Guo, J., Sun, S., et al.: Surface ligand engineering-assisted CsPbI3 quantum dots enable bright and efficient red light-emitting diodes with a top-emitting structure. Chem. Eng. J. 404, 126563 (2021) Lu, M., Guo, J., Sun, S., et al.: Surface ligand engineering-assisted CsPbI3 quantum dots enable bright and efficient red light-emitting diodes with a top-emitting structure. Chem. Eng. J. 404, 126563 (2021)
166.
go back to reference Protesescu, L., Yakunin, S., Kumar, S., et al.: Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium-cesium lead iodide nanocrystals. ACS Nano 11, 3119–3134 (2017)CrossRef Protesescu, L., Yakunin, S., Kumar, S., et al.: Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium-cesium lead iodide nanocrystals. ACS Nano 11, 3119–3134 (2017)CrossRef
167.
go back to reference Li, B., Zhang, Y., Fu, L., et al.: Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat Commun. 9, 1076 (2018)CrossRef Li, B., Zhang, Y., Fu, L., et al.: Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat Commun. 9, 1076 (2018)CrossRef
168.
go back to reference Han, B., Cai, B., Shan, Q., et al.: Stable, efficient red perovskite light-emitting diodes by (α, δ)-CsPbI3 phase engineering. Adv. Funct. Mater. 28, 1804285 (2018)CrossRef Han, B., Cai, B., Shan, Q., et al.: Stable, efficient red perovskite light-emitting diodes by (α, δ)-CsPbI3 phase engineering. Adv. Funct. Mater. 28, 1804285 (2018)CrossRef
169.
go back to reference Xu, W.D., Hu, Q., Bai, S., et al.: Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 13, 418–424 (2019)CrossRef Xu, W.D., Hu, Q., Bai, S., et al.: Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 13, 418–424 (2019)CrossRef
170.
go back to reference Zhu, Y., Zhao, J., Yang, G., et al.: Ammonium acetate passivated CsPbI3 perovskite nanocrystals for efficient red light-emitting diodes. Nanoscale 12, 7712–7719 (2020)CrossRef Zhu, Y., Zhao, J., Yang, G., et al.: Ammonium acetate passivated CsPbI3 perovskite nanocrystals for efficient red light-emitting diodes. Nanoscale 12, 7712–7719 (2020)CrossRef
171.
go back to reference Fu, Y., Zhu, H., Schrader, A.W., et al.: Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 16, 1000–1008 (2016)CrossRef Fu, Y., Zhu, H., Schrader, A.W., et al.: Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 16, 1000–1008 (2016)CrossRef
172.
go back to reference Wang, C., Chesman, A.S., Jasieniak, J.J.: Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid. Chem. Comm. 53, 232–235 (2016)CrossRef Wang, C., Chesman, A.S., Jasieniak, J.J.: Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid. Chem. Comm. 53, 232–235 (2016)CrossRef
173.
go back to reference Li, G.P., Huang, J.S., Zhu, H.W., et al.: Surface ligand engineering for near-unity quantum yield inorganic halide perovskite QDs and high-performance QLEDs. Chem. Mater. 30, 6099–6107 (2018)CrossRef Li, G.P., Huang, J.S., Zhu, H.W., et al.: Surface ligand engineering for near-unity quantum yield inorganic halide perovskite QDs and high-performance QLEDs. Chem. Mater. 30, 6099–6107 (2018)CrossRef
174.
go back to reference Abdi-Jalebi, M., Andaji-Garmaroudi, Z., Cacovich, S., et al.: Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018)CrossRef Abdi-Jalebi, M., Andaji-Garmaroudi, Z., Cacovich, S., et al.: Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018)CrossRef
175.
go back to reference Yang, J.N., Song, Y., Yao, J.S., et al.: Potassium bromide surface passivation on CsPbI3−xBrx nanocrystals for efficient and stable pure red perovskite light-emitting diodes. J. Am. Chem. Soc. 142, 2956–2967 (2020)CrossRef Yang, J.N., Song, Y., Yao, J.S., et al.: Potassium bromide surface passivation on CsPbI3−xBrx nanocrystals for efficient and stable pure red perovskite light-emitting diodes. J. Am. Chem. Soc. 142, 2956–2967 (2020)CrossRef
176.
go back to reference Behera, R.K., Dutta, A., Ghosh, D., et al.: Doping the smallest shannon radii transition metal ion Ni(II) for stabilizing alpha-CsPbI3 perovskite nanocrystals. J. Phys. Chem. Lett. 10, 7916–7921 (2019)CrossRef Behera, R.K., Dutta, A., Ghosh, D., et al.: Doping the smallest shannon radii transition metal ion Ni(II) for stabilizing alpha-CsPbI3 perovskite nanocrystals. J. Phys. Chem. Lett. 10, 7916–7921 (2019)CrossRef
177.
go back to reference Zhang, J., Zhang, L., Cai, P., et al.: Enhancing stability of red perovskite nanocrystals through copper substitution for efficient light-emitting diodes. Nano Energy 62, 434–441 (2019)CrossRef Zhang, J., Zhang, L., Cai, P., et al.: Enhancing stability of red perovskite nanocrystals through copper substitution for efficient light-emitting diodes. Nano Energy 62, 434–441 (2019)CrossRef
178.
go back to reference Yao, J.S., Ge, J., Wang, K.H., et al.: Few-nanometer-sized alpha-CsPbI3 quantum dots enabled by strontium substitution and iodide passivation for efficient red-light emitting diodes. J. Am. Chem. Soc. 141, 2069–2079 (2019)CrossRef Yao, J.S., Ge, J., Wang, K.H., et al.: Few-nanometer-sized alpha-CsPbI3 quantum dots enabled by strontium substitution and iodide passivation for efficient red-light emitting diodes. J. Am. Chem. Soc. 141, 2069–2079 (2019)CrossRef
179.
go back to reference Zhang, Z.L., Shen, L.L., Zhang, H.L., et al.: Novel red-emitting CsPb1−xTixI3 perovskite QDs@glasses with ambient stability for high efficiency white LEDs and plant growth LEDs. Chem. Eng. J. 378, 122125 (2019) Zhang, Z.L., Shen, L.L., Zhang, H.L., et al.: Novel red-emitting CsPb1−xTixI3 perovskite QDs@glasses with ambient stability for high efficiency white LEDs and plant growth LEDs. Chem. Eng. J. 378, 122125 (2019)
180.
go back to reference Yang, W.F., Igbari, F., Lou, Y.H., et al.: Tin halide perovskites: progress and challenges. Adv. Energy Mater. 10, 1902584 (2020)CrossRef Yang, W.F., Igbari, F., Lou, Y.H., et al.: Tin halide perovskites: progress and challenges. Adv. Energy Mater. 10, 1902584 (2020)CrossRef
181.
go back to reference Lanzetta, L., Marin-Beloqui, J.M., Sanchez-Molina, I., et al.: Two-dimensional organic tin halide perovskites with tunable visible emission and their use in light-emitting devices. ACS Energy Lett. 2, 1662–1668 (2017)CrossRef Lanzetta, L., Marin-Beloqui, J.M., Sanchez-Molina, I., et al.: Two-dimensional organic tin halide perovskites with tunable visible emission and their use in light-emitting devices. ACS Energy Lett. 2, 1662–1668 (2017)CrossRef
182.
go back to reference Zhou, C., Lin, H., Shi, H., et al.: A zero-dimensional organic seesaw-shaped tin bromide with highly efficient strongly stokes-shifted deep-red emission. Angew. Chem. Int. Ed. 57, 1021–1024 (2018)CrossRef Zhou, C., Lin, H., Shi, H., et al.: A zero-dimensional organic seesaw-shaped tin bromide with highly efficient strongly stokes-shifted deep-red emission. Angew. Chem. Int. Ed. 57, 1021–1024 (2018)CrossRef
183.
go back to reference Zhou, L., Liao, J.F., Huang, Z.G., et al.: A highly red-emissive lead-free indium-based perovskite single crystal for sensitive water detection. Angew. Chem. Int. Ed. 58, 5277–5281 (2019)CrossRef Zhou, L., Liao, J.F., Huang, Z.G., et al.: A highly red-emissive lead-free indium-based perovskite single crystal for sensitive water detection. Angew. Chem. Int. Ed. 58, 5277–5281 (2019)CrossRef
184.
go back to reference Wang, C., Liu, Y., Guo, Y.R., et al.: Lead-free sodium bismuth halide Cs2NaBiX6 double perovskite nanocrystals with highly efficient photoluminesence. Chem. Eng. J. 397, 125367 (2020) Wang, C., Liu, Y., Guo, Y.R., et al.: Lead-free sodium bismuth halide Cs2NaBiX6 double perovskite nanocrystals with highly efficient photoluminesence. Chem. Eng. J. 397, 125367 (2020)
185.
go back to reference Lamba, R.S., Basera, P., Bhattacharya, S., et al.: Band gap engineering in Cs2(NaxAg1−x)BiCl6 double perovskite nanocrystals. J. Phys. Chem. Lett. 10, 5173–5181 (2019)CrossRef Lamba, R.S., Basera, P., Bhattacharya, S., et al.: Band gap engineering in Cs2(NaxAg1−x)BiCl6 double perovskite nanocrystals. J. Phys. Chem. Lett. 10, 5173–5181 (2019)CrossRef
186.
go back to reference Deng, T.T., Song, E.H., Zhou, Y.Y., et al.: Tailoring photoluminescence stability in double perovskite red phosphors A2BAlF6:Mn4+ (A = Rb, Cs; B = K, Rb) via neighboring-cation modulation. J. Mater. Chem. C 5, 12422–12429 (2017)CrossRef Deng, T.T., Song, E.H., Zhou, Y.Y., et al.: Tailoring photoluminescence stability in double perovskite red phosphors A2BAlF6:Mn4+ (A = Rb, Cs; B = K, Rb) via neighboring-cation modulation. J. Mater. Chem. C 5, 12422–12429 (2017)CrossRef
187.
go back to reference Wang, H.C., Bao, Z., Tsai, H.Y., et al.: Perovskite quantum dots and their application in light-emitting diodes. Small 14, 1702433 (2018)CrossRef Wang, H.C., Bao, Z., Tsai, H.Y., et al.: Perovskite quantum dots and their application in light-emitting diodes. Small 14, 1702433 (2018)CrossRef
188.
go back to reference Smith, M.D., Karunadasa, H.I.: White-light emission from layered halide perovskites. Acc. Chem. Res. 51, 619–627 (2018)CrossRef Smith, M.D., Karunadasa, H.I.: White-light emission from layered halide perovskites. Acc. Chem. Res. 51, 619–627 (2018)CrossRef
189.
go back to reference Dohner, E.R., Hoke, E.T., Karunadasa, H.I.: Self-assembly of broadband white-light emitters. J. Am. Chem. Soc. 136, 1718–1721 (2014)CrossRef Dohner, E.R., Hoke, E.T., Karunadasa, H.I.: Self-assembly of broadband white-light emitters. J. Am. Chem. Soc. 136, 1718–1721 (2014)CrossRef
190.
go back to reference Arunkumar, P., Gil, K.H., Won, S., et al.: Colloidal organolead halide perovskite with a high mn solubility limit: a step toward pb-free luminescent quantum dots. J. Phys. Chem. Lett. 8, 4161–4166 (2017)CrossRef Arunkumar, P., Gil, K.H., Won, S., et al.: Colloidal organolead halide perovskite with a high mn solubility limit: a step toward pb-free luminescent quantum dots. J. Phys. Chem. Lett. 8, 4161–4166 (2017)CrossRef
191.
go back to reference Wu, H., Xu, S., Shao, H., et al.: Single component Mn-doped perovskite-related CsPb2ClxBr5–x nanoplatelets with a record white light quantum yield of 49%: a new single layer color conversion material for light-emitting diodes. Nanoscale 9, 16858–16863 (2017)CrossRef Wu, H., Xu, S., Shao, H., et al.: Single component Mn-doped perovskite-related CsPb2ClxBr5–x nanoplatelets with a record white light quantum yield of 49%: a new single layer color conversion material for light-emitting diodes. Nanoscale 9, 16858–16863 (2017)CrossRef
192.
go back to reference Manna, D., Das, T.K., Yella, A.: Tunable and stable white light emission in Bi3+-alloyed Cs2AgInCl6 double perovskite nanocrystals. Chem. Mater. 31, 10063–10070 (2019)CrossRef Manna, D., Das, T.K., Yella, A.: Tunable and stable white light emission in Bi3+-alloyed Cs2AgInCl6 double perovskite nanocrystals. Chem. Mater. 31, 10063–10070 (2019)CrossRef
193.
go back to reference Hu, Q., Niu, G., Zheng, Z., et al.: Tunable color temperatures and efficient white emission from Cs2Ag1−xNaxIn1−y BiyCl6 double perovskite nanocrystals. Small 15, 1903496 (2019)CrossRef Hu, Q., Niu, G., Zheng, Z., et al.: Tunable color temperatures and efficient white emission from Cs2Ag1−xNaxIn1−y BiyCl6 double perovskite nanocrystals. Small 15, 1903496 (2019)CrossRef
194.
go back to reference Vashishtha, P., Nutan, G.V., Griffith, B.E., et al.: Cesium copper iodide tailored nanoplates and nanorods for blue, yellow, and white emission. Chem. Mater. 31, 9003–9011 (2019)CrossRef Vashishtha, P., Nutan, G.V., Griffith, B.E., et al.: Cesium copper iodide tailored nanoplates and nanorods for blue, yellow, and white emission. Chem. Mater. 31, 9003–9011 (2019)CrossRef
195.
go back to reference Ma, Z., Shi, Z., Qin, C., et al.: Stable yellow light-emitting devices based on ternary copper halides with broadband emissive self-trapped excitons. ACS Nano 14, 4475–4486 (2020)CrossRef Ma, Z., Shi, Z., Qin, C., et al.: Stable yellow light-emitting devices based on ternary copper halides with broadband emissive self-trapped excitons. ACS Nano 14, 4475–4486 (2020)CrossRef
196.
go back to reference Lin, H.R., Zhou, C.K., Neu, J., et al.: Bulk assembly of corrugated 1D metal halides with broadband yellow emission. Adv. Opt. Mater. 7, 1801474 (2019)CrossRef Lin, H.R., Zhou, C.K., Neu, J., et al.: Bulk assembly of corrugated 1D metal halides with broadband yellow emission. Adv. Opt. Mater. 7, 1801474 (2019)CrossRef
197.
go back to reference Zhou, J., Li, M.Z., Molokeev, M.S., et al.: Tunable photoluminescence in Sb3+-doped zero-dimensional hybrid metal halides with intrinsic and extrinsic self-trapped excitons. J. Mater. Chem. C 8, 5058–5063 (2020)CrossRef Zhou, J., Li, M.Z., Molokeev, M.S., et al.: Tunable photoluminescence in Sb3+-doped zero-dimensional hybrid metal halides with intrinsic and extrinsic self-trapped excitons. J. Mater. Chem. C 8, 5058–5063 (2020)CrossRef
198.
go back to reference Tan, Z.F., Hu, M.C., Niu, G.D., et al.: Inorganic antimony halide hybrids with broad yellow emissions. Sci. Bull. 64, 904–909 (2019)CrossRef Tan, Z.F., Hu, M.C., Niu, G.D., et al.: Inorganic antimony halide hybrids with broad yellow emissions. Sci. Bull. 64, 904–909 (2019)CrossRef
199.
go back to reference Lin, F., Wang, H., Liu, W., et al.: Zero-dimensional ionic antimony halide inorganic–organic hybrid with strong greenish yellow emission. J. Mater. Chem. C 8, 7300–7303 (2020)CrossRef Lin, F., Wang, H., Liu, W., et al.: Zero-dimensional ionic antimony halide inorganic–organic hybrid with strong greenish yellow emission. J. Mater. Chem. C 8, 7300–7303 (2020)CrossRef
200.
go back to reference Chen, D., Hao, S., Zhou, G., et al.: Lead-free broadband orange-emitting zero-dimensional hybrid (PMA)3InBr6 with direct band gap. Inorg. Chem. 58, 15602–15609 (2019)CrossRef Chen, D., Hao, S., Zhou, G., et al.: Lead-free broadband orange-emitting zero-dimensional hybrid (PMA)3InBr6 with direct band gap. Inorg. Chem. 58, 15602–15609 (2019)CrossRef
201.
go back to reference Han, P., Mao, X., Yang, S., et al.: Lead-free sodium-indium double perovskite nanocrystals through doping silver cations for bright yellow emission. Angew. Chem. Int. Ed. 58, 17231–17235 (2019)CrossRef Han, P., Mao, X., Yang, S., et al.: Lead-free sodium-indium double perovskite nanocrystals through doping silver cations for bright yellow emission. Angew. Chem. Int. Ed. 58, 17231–17235 (2019)CrossRef
202.
go back to reference Wang, A., Guo, Y., Zhou, Z., et al.: Aqueous acid-based synthesis of lead-free tin halide perovskites with near-unity photoluminescence quantum efficiency. Chem. Sci. 10, 4573–4579 (2019)CrossRef Wang, A., Guo, Y., Zhou, Z., et al.: Aqueous acid-based synthesis of lead-free tin halide perovskites with near-unity photoluminescence quantum efficiency. Chem. Sci. 10, 4573–4579 (2019)CrossRef
203.
go back to reference Zhu, J., Yang, X., Zhu, Y., et al.: Room-temperature synthesis of Mn-doped cesium lead halide quantum dots with high Mn substitution ratio. J. Phys. Chem. Lett. 8, 4167–4171 (2017)CrossRef Zhu, J., Yang, X., Zhu, Y., et al.: Room-temperature synthesis of Mn-doped cesium lead halide quantum dots with high Mn substitution ratio. J. Phys. Chem. Lett. 8, 4167–4171 (2017)CrossRef
204.
go back to reference Parobek, D., Roman, B.J., Dong, Y., et al.: Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals. Nano Lett. 16, 7376–7380 (2016)CrossRef Parobek, D., Roman, B.J., Dong, Y., et al.: Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals. Nano Lett. 16, 7376–7380 (2016)CrossRef
205.
go back to reference Li, F., Xia, Z.G., Gong, Y., et al.: Optical properties of Mn2+ doped cesium lead halide perovskite nanocrystals via a cation-anion co-substitution exchange reaction. J. Mater. Chem. C 5, 9281–9287 (2017)CrossRef Li, F., Xia, Z.G., Gong, Y., et al.: Optical properties of Mn2+ doped cesium lead halide perovskite nanocrystals via a cation-anion co-substitution exchange reaction. J. Mater. Chem. C 5, 9281–9287 (2017)CrossRef
206.
go back to reference Majher, J.D., Gray, M.B., Strom, T.A., et al.: Cs2NaBiCl6:Mn2+—a new orange-red halide double perovskite phosphor. Chem. Mater. 31, 1738–1744 (2019)CrossRef Majher, J.D., Gray, M.B., Strom, T.A., et al.: Cs2NaBiCl6:Mn2+—a new orange-red halide double perovskite phosphor. Chem. Mater. 31, 1738–1744 (2019)CrossRef
207.
go back to reference Liu, Y., Rong, X., Li, M., et al.: Incorporating rare-earth terbium(iii) ions into Cs2AgInCl6: Bi nanocrystals toward tunable photoluminescence. Angew. Chem. Int. Ed. 59, 11634–11640 (2020)CrossRef Liu, Y., Rong, X., Li, M., et al.: Incorporating rare-earth terbium(iii) ions into Cs2AgInCl6: Bi nanocrystals toward tunable photoluminescence. Angew. Chem. Int. Ed. 59, 11634–11640 (2020)CrossRef
208.
go back to reference Li, Z.Y., Li, Y., Liang, P., et al.: Dual-band luminescent lead-free antimony chloride halides with near-unity photoluminescence quantum efficiency. Chem. Mater. 31, 9363–9371 (2019)CrossRef Li, Z.Y., Li, Y., Liang, P., et al.: Dual-band luminescent lead-free antimony chloride halides with near-unity photoluminescence quantum efficiency. Chem. Mater. 31, 9363–9371 (2019)CrossRef
209.
go back to reference Li, J., Tan, Z., Hu, M., et al.: Antimony doped Cs2SnCl6 with bright and stable emission. Front. Optoelectron. 12, 352–364 (2019)CrossRef Li, J., Tan, Z., Hu, M., et al.: Antimony doped Cs2SnCl6 with bright and stable emission. Front. Optoelectron. 12, 352–364 (2019)CrossRef
210.
go back to reference Yan, A.P., Li, K., Zhou, Y., et al.: Tuning the optical properties of Cs2SnCl6:Bi and Cs2SnCl6:Sb lead-free perovskites via post-annealing for white LEDs. J. Alloys Compd. 822, 153528 (2020) Yan, A.P., Li, K., Zhou, Y., et al.: Tuning the optical properties of Cs2SnCl6:Bi and Cs2SnCl6:Sb lead-free perovskites via post-annealing for white LEDs. J. Alloys Compd. 822, 153528 (2020)
211.
go back to reference Zhang, X., Wang, C., Zhang, Y., et al.: Bright orange electroluminescence from lead-free two-dimensional perovskites. ACS Energy Lett. 4, 242–248 (2018)CrossRef Zhang, X., Wang, C., Zhang, Y., et al.: Bright orange electroluminescence from lead-free two-dimensional perovskites. ACS Energy Lett. 4, 242–248 (2018)CrossRef
212.
go back to reference Wu, Y., Wei, C.T., Li, X.M., et al.: In situ passivation of PbBr64- octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield. ACS Energy Lett. 3, 2030–2037 (2018)CrossRef Wu, Y., Wei, C.T., Li, X.M., et al.: In situ passivation of PbBr64- octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield. ACS Energy Lett. 3, 2030–2037 (2018)CrossRef
213.
go back to reference Wang, Q., Ren, J., Peng, X.F., et al.: Efficient sky-blue perovskite light-emitting devices based on ethylammonium bromide induced layered perovskites. ACS Appl. Mater. Interfaces 9, 29901–29906 (2017)CrossRef Wang, Q., Ren, J., Peng, X.F., et al.: Efficient sky-blue perovskite light-emitting devices based on ethylammonium bromide induced layered perovskites. ACS Appl. Mater. Interfaces 9, 29901–29906 (2017)CrossRef
214.
go back to reference Li, Z., Chen, Z., Yang, Y., et al.: Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5. Nat. Commun. 10, 1027 (2019)CrossRef Li, Z., Chen, Z., Yang, Y., et al.: Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5. Nat. Commun. 10, 1027 (2019)CrossRef
215.
go back to reference Zou, Y., Xu, H., Li, S., et al.: Spectral-stable blue emission from moisture-treated low-dimensional lead bromide-based perovskite films. ACS Photonics 6, 1728–1735 (2019)CrossRef Zou, Y., Xu, H., Li, S., et al.: Spectral-stable blue emission from moisture-treated low-dimensional lead bromide-based perovskite films. ACS Photonics 6, 1728–1735 (2019)CrossRef
216.
go back to reference Wang, L., Shi, Z., Ma, Z., et al.: Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 h. Nano Lett. 20, 3568–3576 (2020)CrossRef Wang, L., Shi, Z., Ma, Z., et al.: Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 h. Nano Lett. 20, 3568–3576 (2020)CrossRef
217.
go back to reference Huang, H., Zhao, F., Liu, L., et al.: Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: an alternative route toward efficient light-emitting diodes. ACS Appl. Mater. Interfaces 7, 28128–28133 (2015)CrossRef Huang, H., Zhao, F., Liu, L., et al.: Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: an alternative route toward efficient light-emitting diodes. ACS Appl. Mater. Interfaces 7, 28128–28133 (2015)CrossRef
218.
go back to reference Zhang, F., Shi, Z., Li, S., et al.: Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting. ACS Appl. Mater. Interfaces 11, 28013–28022 (2019)CrossRef Zhang, F., Shi, Z., Li, S., et al.: Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting. ACS Appl. Mater. Interfaces 11, 28013–28022 (2019)CrossRef
219.
go back to reference Li, S., Shi, Z.F., Zhang, F., et al.: Sodium doping-enhanced emission efficiency and stability of CsPbBr3 nanocrystals for white light-emitting devices. Chem. Mater. 31, 3917–3928 (2019)CrossRef Li, S., Shi, Z.F., Zhang, F., et al.: Sodium doping-enhanced emission efficiency and stability of CsPbBr3 nanocrystals for white light-emitting devices. Chem. Mater. 31, 3917–3928 (2019)CrossRef
220.
go back to reference Zhou, S., Ma, Y., Zhou, G., et al.: Ag-doped halide perovskite nanocrystals for tunable band structure and efficient charge transport. ACS Energy Lett. 4, 534–541 (2019)CrossRef Zhou, S., Ma, Y., Zhou, G., et al.: Ag-doped halide perovskite nanocrystals for tunable band structure and efficient charge transport. ACS Energy Lett. 4, 534–541 (2019)CrossRef
221.
go back to reference Li, J., Xu, L., Wang, T., et al.: 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 29, 1603885 (2017) Li, J., Xu, L., Wang, T., et al.: 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 29, 1603885 (2017)
222.
go back to reference Chen, Z., Zhang, C., Jiang, X.F., et al.: High-performance color-tunable perovskite light emitting devices through structural modulation from bulk to layered film. Adv. Mater. 29, 1603157 (2017)CrossRef Chen, Z., Zhang, C., Jiang, X.F., et al.: High-performance color-tunable perovskite light emitting devices through structural modulation from bulk to layered film. Adv. Mater. 29, 1603157 (2017)CrossRef
223.
go back to reference Yuan, S., Chen, D., Li, X., et al.: In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing. ACS Appl. Mater. Interfaces 10, 18918–18926 (2018)CrossRef Yuan, S., Chen, D., Li, X., et al.: In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing. ACS Appl. Mater. Interfaces 10, 18918–18926 (2018)CrossRef
224.
go back to reference Zhang, X.L., Xu, B., Zhang, J.B., et al.: All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CsPbBr3-CsPb2Br5 composites. Adv. Funct. Mater. 26, 4595–4600 (2016)CrossRef Zhang, X.L., Xu, B., Zhang, J.B., et al.: All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CsPbBr3-CsPb2Br5 composites. Adv. Funct. Mater. 26, 4595–4600 (2016)CrossRef
225.
go back to reference Tan, Y., Li, R., Xu, H., et al.: Ultrastable and reversible fluorescent perovskite films used for flexible instantaneous display. Adv. Funct. Mater. 29, 1900730 (2019)CrossRef Tan, Y., Li, R., Xu, H., et al.: Ultrastable and reversible fluorescent perovskite films used for flexible instantaneous display. Adv. Funct. Mater. 29, 1900730 (2019)CrossRef
226.
go back to reference Shin, M., Nam, S.-W., Sadhanala, A., et al.: Understanding the origin of ultrasharp sub-bandgap luminescence from zero-dimensional inorganic perovskite Cs4PbBr6. ACS Appl. Energy Mater. 3, 192–199 (2019)CrossRef Shin, M., Nam, S.-W., Sadhanala, A., et al.: Understanding the origin of ultrasharp sub-bandgap luminescence from zero-dimensional inorganic perovskite Cs4PbBr6. ACS Appl. Energy Mater. 3, 192–199 (2019)CrossRef
227.
go back to reference Pan, J., Shang, Y., Yin, J., et al.: Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 140, 562–565 (2018)CrossRef Pan, J., Shang, Y., Yin, J., et al.: Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 140, 562–565 (2018)CrossRef
228.
go back to reference Li, G., Rivarola, F.W., Davis, N.J., et al.: Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv. Mater. 28, 3528–3534 (2016)CrossRef Li, G., Rivarola, F.W., Davis, N.J., et al.: Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv. Mater. 28, 3528–3534 (2016)CrossRef
229.
go back to reference Shen, X., Zhang, Y., Kershaw, S.V., et al.: Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices. Nano Lett. 19, 1552–1559 (2019)CrossRef Shen, X., Zhang, Y., Kershaw, S.V., et al.: Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices. Nano Lett. 19, 1552–1559 (2019)CrossRef
230.
go back to reference Zou, S., Liu, Y., Li, J., et al.: Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. J. Am. Chem. Soc. 139, 11443–11450 (2017)CrossRef Zou, S., Liu, Y., Li, J., et al.: Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. J. Am. Chem. Soc. 139, 11443–11450 (2017)CrossRef
231.
go back to reference Wang, A.F., Guo, Y.Y., Muhammad, F., et al.: Controlled synthesis of lead-free cesium tin halide perovskite cubic nanocages with high stability. Chem. Mater. 29, 6493–6501 (2017)CrossRef Wang, A.F., Guo, Y.Y., Muhammad, F., et al.: Controlled synthesis of lead-free cesium tin halide perovskite cubic nanocages with high stability. Chem. Mater. 29, 6493–6501 (2017)CrossRef
232.
go back to reference Zhou, C., Tian, Y., Yuan, Z., et al.: Highly efficient broadband yellow phosphor based on zero-dimensional tin mixed-halide perovskite. ACS Appl. Mater. Interfaces 9, 44579–44583 (2017)CrossRef Zhou, C., Tian, Y., Yuan, Z., et al.: Highly efficient broadband yellow phosphor based on zero-dimensional tin mixed-halide perovskite. ACS Appl. Mater. Interfaces 9, 44579–44583 (2017)CrossRef
233.
go back to reference Rana, P.J.S., Swetha, T., Mandal, H., et al.: Energy transfer dynamics of highly stable Fe3+ doped CsPbCl3 perovskite nanocrystals with dual-color emission. J. Phys. Chem. C 123, 17026–17034 (2019)CrossRef Rana, P.J.S., Swetha, T., Mandal, H., et al.: Energy transfer dynamics of highly stable Fe3+ doped CsPbCl3 perovskite nanocrystals with dual-color emission. J. Phys. Chem. C 123, 17026–17034 (2019)CrossRef
234.
go back to reference Das Adhikari, S., Dutta, S.K., Dutta, A., et al.: Chemically tailoring the dopant emission in manganese-doped CsPbCl3 perovskite nanocrystals. Angew. Chem. Int. Ed. 56, 8746–8750 (2017)CrossRef Das Adhikari, S., Dutta, S.K., Dutta, A., et al.: Chemically tailoring the dopant emission in manganese-doped CsPbCl3 perovskite nanocrystals. Angew. Chem. Int. Ed. 56, 8746–8750 (2017)CrossRef
235.
go back to reference Li, C.H., Li, Y., Zhou, T.L., et al.: Ultrasonic synthesis of Mn-doped CsPbCl3 quantum dots (QDs) with enhanced photoluminescence. Opt. Mater. 94, 41–46 (2019)CrossRef Li, C.H., Li, Y., Zhou, T.L., et al.: Ultrasonic synthesis of Mn-doped CsPbCl3 quantum dots (QDs) with enhanced photoluminescence. Opt. Mater. 94, 41–46 (2019)CrossRef
236.
go back to reference Das Adhikari, S., Dutta, A., Dutta, S.K., et al.: Layered perovskites L2(Pb1–xMnx)Cl4 to Mn-doped CsPbCl3 perovskite platelets. ACS Energy Lett. 3, 1247–1253 (2018)CrossRef Das Adhikari, S., Dutta, A., Dutta, S.K., et al.: Layered perovskites L2(Pb1–xMnx)Cl4 to Mn-doped CsPbCl3 perovskite platelets. ACS Energy Lett. 3, 1247–1253 (2018)CrossRef
237.
go back to reference He, M.L., Cheng, Y.Z., Yuan, R.R., et al.: Mn-doped cesium lead halide perovskite nanocrystals with dual-color emission for WLED. Dyes Pigm. 152, 146–154 (2018)CrossRef He, M.L., Cheng, Y.Z., Yuan, R.R., et al.: Mn-doped cesium lead halide perovskite nanocrystals with dual-color emission for WLED. Dyes Pigm. 152, 146–154 (2018)CrossRef
238.
go back to reference De Siena, M.C., Sommer, D.E., Creutz, S.E., et al.: Spinodal decomposition during anion exchange in colloidal Mn2+-doped CsPbX3 (X = Cl, Br) perovskite nanocrystals. Chem. Mater. 31, 7711–7722 (2019)CrossRef De Siena, M.C., Sommer, D.E., Creutz, S.E., et al.: Spinodal decomposition during anion exchange in colloidal Mn2+-doped CsPbX3 (X = Cl, Br) perovskite nanocrystals. Chem. Mater. 31, 7711–7722 (2019)CrossRef
239.
go back to reference Zhou, C., Lin, H., Tian, Y., et al.: Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chem. Sci. 9, 586–593 (2018)CrossRef Zhou, C., Lin, H., Tian, Y., et al.: Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chem. Sci. 9, 586–593 (2018)CrossRef
240.
go back to reference Lin, R., Guo, Q., Zhu, Q., et al.: All-Inorganic CsCu2I3 single crystal with high-PLQY (approximately 15.7%) intrinsic white-light emission via strongly localized 1D excitonic recombination. Adv. Mater. 31, 1905079 (2019) Lin, R., Guo, Q., Zhu, Q., et al.: All-Inorganic CsCu2I3 single crystal with high-PLQY (approximately 15.7%) intrinsic white-light emission via strongly localized 1D excitonic recombination. Adv. Mater. 31, 1905079 (2019)
241.
go back to reference Yang, B., Chen, J., Yang, S., et al.: Lead-free silver-bismuth halide double perovskite nanocrystals. Angew. Chem. Int. Ed. 57, 5359–5363 (2018)CrossRef Yang, B., Chen, J., Yang, S., et al.: Lead-free silver-bismuth halide double perovskite nanocrystals. Angew. Chem. Int. Ed. 57, 5359–5363 (2018)CrossRef
242.
go back to reference Jellicoe, T.C., Richter, J.M., Glass, H.F., et al.: Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 138, 2941–2944 (2016)CrossRef Jellicoe, T.C., Richter, J.M., Glass, H.F., et al.: Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 138, 2941–2944 (2016)CrossRef
243.
go back to reference Guhrenz, C., Benad, A., Ziegler, C., et al.: Solid-state anion exchange reactions for color tuning of CsPbX3 perovskite nanocrystals. Chem. Mater. 28, 9033–9040 (2016)CrossRef Guhrenz, C., Benad, A., Ziegler, C., et al.: Solid-state anion exchange reactions for color tuning of CsPbX3 perovskite nanocrystals. Chem. Mater. 28, 9033–9040 (2016)CrossRef
244.
go back to reference Jiang, J., Shao, G., Zhang, Z., et al.: Ultrastability and color-tunability of CsPb(Br/I)3 nanocrystals in P-Si-Zn glass for white LEDs. Chem. Comm. 54, 12302–12305 (2018)CrossRef Jiang, J., Shao, G., Zhang, Z., et al.: Ultrastability and color-tunability of CsPb(Br/I)3 nanocrystals in P-Si-Zn glass for white LEDs. Chem. Comm. 54, 12302–12305 (2018)CrossRef
245.
go back to reference Righetto, M., Meggiolaro, D., Rizzo, A., et al.: Coupling halide perovskites with different materials: From doping to nanocomposites, beyond photovoltaics. Prog. Mater. Sci. 110, 100639 (2020) Righetto, M., Meggiolaro, D., Rizzo, A., et al.: Coupling halide perovskites with different materials: From doping to nanocomposites, beyond photovoltaics. Prog. Mater. Sci. 110, 100639 (2020)
246.
go back to reference Cao, M.H., Damji, Y., Zhang, C.Y., et al.: Low-dimensional-networked cesium lead halide perovskites: properties, fabrication, and applications. Small Methods 2000303 (2020) Cao, M.H., Damji, Y., Zhang, C.Y., et al.: Low-dimensional-networked cesium lead halide perovskites: properties, fabrication, and applications. Small Methods 2000303 (2020)
247.
go back to reference Wang, H.C., Lin, S.Y., Tang, A.C., et al.: Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew. Chem. Int. Ed. 55, 7924–7929 (2016)CrossRef Wang, H.C., Lin, S.Y., Tang, A.C., et al.: Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew. Chem. Int. Ed. 55, 7924–7929 (2016)CrossRef
248.
go back to reference He, M.L., Cheng, Y.Z., Shen, L.L., et al.: Mn-doped CsPbCl3 perovskite quantum dots (PQDs) incorporated into silica/alumina particles used for WLEDs. Appl. Surf. Sci. 448, 400–406 (2018)CrossRef He, M.L., Cheng, Y.Z., Shen, L.L., et al.: Mn-doped CsPbCl3 perovskite quantum dots (PQDs) incorporated into silica/alumina particles used for WLEDs. Appl. Surf. Sci. 448, 400–406 (2018)CrossRef
249.
go back to reference Yoon, H.C., Lee, S., Song, J.K., et al.: Efficient and stable CsPbBr3 quantum-dot powders passivated and encapsulated with a mixed silicon nitride and silicon oxide inorganic polymer matrix. ACS Appl. Mater. Interfaces 10, 11756–11767 (2018)CrossRef Yoon, H.C., Lee, S., Song, J.K., et al.: Efficient and stable CsPbBr3 quantum-dot powders passivated and encapsulated with a mixed silicon nitride and silicon oxide inorganic polymer matrix. ACS Appl. Mater. Interfaces 10, 11756–11767 (2018)CrossRef
250.
go back to reference Liu, Y., Li, F., Liu, Q., et al.: Synergetic effect of postsynthetic water treatment on the enhanced photoluminescence and stability of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. Chem. Mater. 30, 6922–6929 (2018)CrossRef Liu, Y., Li, F., Liu, Q., et al.: Synergetic effect of postsynthetic water treatment on the enhanced photoluminescence and stability of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. Chem. Mater. 30, 6922–6929 (2018)CrossRef
251.
go back to reference Yu, Y., Hou, J., Zhang, L., et al.: Ultrastable laurionite spontaneously encapsulates reduced-dimensional lead halide perovskites. Nano Lett. 20, 2316–2325 (2020)CrossRef Yu, Y., Hou, J., Zhang, L., et al.: Ultrastable laurionite spontaneously encapsulates reduced-dimensional lead halide perovskites. Nano Lett. 20, 2316–2325 (2020)CrossRef
252.
go back to reference Zhang, J.B., Liu, X.F., Jiang, P.F., et al.: Red-emitting CsPbBrI2/PbSe heterojunction nanocrystals with high luminescent efficiency and stability for bright light-emitting diodes. Nano Energy. 66, 104142 (2019) Zhang, J.B., Liu, X.F., Jiang, P.F., et al.: Red-emitting CsPbBrI2/PbSe heterojunction nanocrystals with high luminescent efficiency and stability for bright light-emitting diodes. Nano Energy. 66, 104142 (2019)
253.
go back to reference Juan, F.Y., Xu, F., Wang, M., et al.: Photoluminescence enhancement of perovskite CsPbBr3 quantum dots by plasmonic Au nanorods. Chem. Phys. 530, 5 (2020)CrossRef Juan, F.Y., Xu, F., Wang, M., et al.: Photoluminescence enhancement of perovskite CsPbBr3 quantum dots by plasmonic Au nanorods. Chem. Phys. 530, 5 (2020)CrossRef
254.
go back to reference Ye, Y., Zhang, W.C., Zhao, Z.Y., et al.: Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications. Adv. Opt. Mater. 7, 1801663 (2019)CrossRef Ye, Y., Zhang, W.C., Zhao, Z.Y., et al.: Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications. Adv. Opt. Mater. 7, 1801663 (2019)CrossRef
255.
go back to reference Chen, D., Yuan, S., Chen, J., et al.: Robust CsPbX3 (X = Cl, Br, and I) perovskite quantum dot embedded glasses: nanocrystallization, improved stability and visible full-spectral tunable emissions. J. Phys. Chem. C 6, 12864–12870 (2018) Chen, D., Yuan, S., Chen, J., et al.: Robust CsPbX3 (X = Cl, Br, and I) perovskite quantum dot embedded glasses: nanocrystallization, improved stability and visible full-spectral tunable emissions. J. Phys. Chem. C 6, 12864–12870 (2018)
256.
go back to reference Lv, W., Li, L., Li, M., et al.: Self-assembly of completely inorganic perovskite nanocrystals with improved stability by anchoring on kaolinite lamellae. Adv. Opt. Mater. 8, 1901485 (2020)CrossRef Lv, W., Li, L., Li, M., et al.: Self-assembly of completely inorganic perovskite nanocrystals with improved stability by anchoring on kaolinite lamellae. Adv. Opt. Mater. 8, 1901485 (2020)CrossRef
257.
go back to reference Yang, W., Gao, F., Qiu, Y., et al.: CsPbBr3‐quantum‐dots/polystyrene@silica hybrid microsphere structures with significantly improved stability for white leds. Adv. Opt. Mater. (2019) Yang, W., Gao, F., Qiu, Y., et al.: CsPbBr3‐quantum‐dots/polystyrene@silica hybrid microsphere structures with significantly improved stability for white leds. Adv. Opt. Mater. (2019)
258.
go back to reference Masi, S., Rizzo, A., Aiello, F., et al.: Multiscale morphology design of hybrid halide perovskites through a polymeric template. Nanoscale 7, 18956–18963 (2015)CrossRef Masi, S., Rizzo, A., Aiello, F., et al.: Multiscale morphology design of hybrid halide perovskites through a polymeric template. Nanoscale 7, 18956–18963 (2015)CrossRef
259.
go back to reference Xin, Y., Zhao, H., Zhang, J.: Highly stable and luminescent perovskite-polymer composites from a convenient and universal strategy. ACS Appl. Mater. Interfaces 10, 4971–4980 (2018)CrossRef Xin, Y., Zhao, H., Zhang, J.: Highly stable and luminescent perovskite-polymer composites from a convenient and universal strategy. ACS Appl. Mater. Interfaces 10, 4971–4980 (2018)CrossRef
260.
go back to reference Pan, A., Jurow, M.J., Qiu, F., et al.: Nanorod suprastructures from a ternary graphene oxide-polymer-CsPbX3 perovskite nanocrystal composite that display high environmental stability. Nano Lett. 17, 6759–6765 (2017)CrossRef Pan, A., Jurow, M.J., Qiu, F., et al.: Nanorod suprastructures from a ternary graphene oxide-polymer-CsPbX3 perovskite nanocrystal composite that display high environmental stability. Nano Lett. 17, 6759–6765 (2017)CrossRef
261.
go back to reference Wei, Y., Deng, X.R., Xie, Z.X., et al.: Enhancing the stability of perovskite quantum dots by encapsulation in crosslinked polystyrene beads via a swelling-shrinking strategy toward superior water resistance. Adv. Funct. Mater. 27, 1703535 (2017)CrossRef Wei, Y., Deng, X.R., Xie, Z.X., et al.: Enhancing the stability of perovskite quantum dots by encapsulation in crosslinked polystyrene beads via a swelling-shrinking strategy toward superior water resistance. Adv. Funct. Mater. 27, 1703535 (2017)CrossRef
262.
go back to reference Raja, S.N., Bekenstein, Y., Koc, M.A., et al.: Encapsulation of perovskite nanocrystals into macroscale polymer matrices: enhanced stability and polarization. ACS Appl. Mater. Interfaces 8, 35523–35533 (2016)CrossRef Raja, S.N., Bekenstein, Y., Koc, M.A., et al.: Encapsulation of perovskite nanocrystals into macroscale polymer matrices: enhanced stability and polarization. ACS Appl. Mater. Interfaces 8, 35523–35533 (2016)CrossRef
263.
go back to reference Hai, J., Li, H., Zhao, Y., et al.: Designing of blue, green, and red CsPbX3 perovskite-codoped flexible films with water resistant property and elimination of anion-exchange for tunable white light emission. Chem. Comm. 53, 5400–5403 (2017)CrossRef Hai, J., Li, H., Zhao, Y., et al.: Designing of blue, green, and red CsPbX3 perovskite-codoped flexible films with water resistant property and elimination of anion-exchange for tunable white light emission. Chem. Comm. 53, 5400–5403 (2017)CrossRef
264.
go back to reference Wang, Y., Varadi, L., Trinchi, A., et al.: Spray-assisted coil-globule transition for scalable preparation of water-resistant CsPbBr3@PMMA perovskite nanospheres with application in live cell imaging. Small 14, 1803156 (2018)CrossRef Wang, Y., Varadi, L., Trinchi, A., et al.: Spray-assisted coil-globule transition for scalable preparation of water-resistant CsPbBr3@PMMA perovskite nanospheres with application in live cell imaging. Small 14, 1803156 (2018)CrossRef
265.
go back to reference Park, S.M., Abtahi, A., Boehm, A.M., et al.: Surface ligands for methylammonium lead iodide films: surface coverage, energetics, and photovoltaic performance. ACS Energy Lett. 5, 799–806 (2020)CrossRef Park, S.M., Abtahi, A., Boehm, A.M., et al.: Surface ligands for methylammonium lead iodide films: surface coverage, energetics, and photovoltaic performance. ACS Energy Lett. 5, 799–806 (2020)CrossRef
266.
go back to reference Xu, L., Li, J., Cai, B., et al.: A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat. Commun. 11, 3902 (2020)CrossRef Xu, L., Li, J., Cai, B., et al.: A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat. Commun. 11, 3902 (2020)CrossRef
267.
go back to reference Zhu, B.S., Li, H.Z., Ge, J., et al.: Room temperature precipitated dual phase CsPbBr3-CsPb2Br5 nanocrystals for stable perovskite light emitting diodes. Nanoscale 10, 19262–19271 (2018)CrossRef Zhu, B.S., Li, H.Z., Ge, J., et al.: Room temperature precipitated dual phase CsPbBr3-CsPb2Br5 nanocrystals for stable perovskite light emitting diodes. Nanoscale 10, 19262–19271 (2018)CrossRef
268.
go back to reference Xu, L., Li, J., Fang, T., et al.: Synthesis of stable and phase-adjustable CsPbBr3@Cs4PbBr6 nanocrystals via novel anion–cation reactions. Nanoscale Adv. 1, 980–988 (2019)CrossRef Xu, L., Li, J., Fang, T., et al.: Synthesis of stable and phase-adjustable CsPbBr3@Cs4PbBr6 nanocrystals via novel anion–cation reactions. Nanoscale Adv. 1, 980–988 (2019)CrossRef
269.
go back to reference Su, Y., Zeng, Q.H., Chen, X.J., et al.: Highly efficient CsPbBr3 perovskite nanocrystals induced by structure transformation between CsPbBr3 and Cs4PbBr6 phases. J. Mater. Chem. C 7, 7548–7553 (2019)CrossRef Su, Y., Zeng, Q.H., Chen, X.J., et al.: Highly efficient CsPbBr3 perovskite nanocrystals induced by structure transformation between CsPbBr3 and Cs4PbBr6 phases. J. Mater. Chem. C 7, 7548–7553 (2019)CrossRef
270.
go back to reference Quan, L.N., Quintero-Bermudez, R., Voznyy, O., et al.: Highly emissive green perovskite nanocrystals in a solid state crystalline matrix. Adv. Mater. 29, 1605945 (2017)CrossRef Quan, L.N., Quintero-Bermudez, R., Voznyy, O., et al.: Highly emissive green perovskite nanocrystals in a solid state crystalline matrix. Adv. Mater. 29, 1605945 (2017)CrossRef
271.
go back to reference Xu, J., Huang, W., Li, P., et al.: Imbedded nanocrystals of CsPbBr3 in Cs4PbBr6: kinetics, enhanced oscillator strength, and application in light-emitting diodes. Adv. Mater. 29, 1703703 (2017)CrossRef Xu, J., Huang, W., Li, P., et al.: Imbedded nanocrystals of CsPbBr3 in Cs4PbBr6: kinetics, enhanced oscillator strength, and application in light-emitting diodes. Adv. Mater. 29, 1703703 (2017)CrossRef
272.
go back to reference Shang, Y., Li, G., Liu, W., et al.: Quasi-2D inorganic CsPbBr3 perovskite for efficient and stable light-emitting diodes. Adv. Funct. Mater. 28, 1801193 (2018)CrossRef Shang, Y., Li, G., Liu, W., et al.: Quasi-2D inorganic CsPbBr3 perovskite for efficient and stable light-emitting diodes. Adv. Funct. Mater. 28, 1801193 (2018)CrossRef
273.
go back to reference Li, G., Wang, H., Zhang, T., et al.: Solvent-polarity-engineered controllable synthesis of highly fluorescent cesium lead halide perovskite quantum dots and their use in white light-emitting diodes. Adv. Funct. Mater. 26, 8478–8486 (2016)CrossRef Li, G., Wang, H., Zhang, T., et al.: Solvent-polarity-engineered controllable synthesis of highly fluorescent cesium lead halide perovskite quantum dots and their use in white light-emitting diodes. Adv. Funct. Mater. 26, 8478–8486 (2016)CrossRef
274.
go back to reference Zhang, Y.-W., Wu, G., Dang, H., et al.: Multicolored mixed-organic-cation perovskite quantum dots (FAxMA1–xPbX3, X = Br and I) for white light-emitting diodes. Ind. Eng. Chem. Res. 56, 10053–10059 (2017)CrossRef Zhang, Y.-W., Wu, G., Dang, H., et al.: Multicolored mixed-organic-cation perovskite quantum dots (FAxMA1–xPbX3, X = Br and I) for white light-emitting diodes. Ind. Eng. Chem. Res. 56, 10053–10059 (2017)CrossRef
275.
go back to reference Coe-Sullivan, S., Liu, W.H., Allen, P., et al.: Quantum dots for LED downconversion in display applications. ECS J. Solid State Sci. Technol. 2, 3026–3030 (2013)CrossRef Coe-Sullivan, S., Liu, W.H., Allen, P., et al.: Quantum dots for LED downconversion in display applications. ECS J. Solid State Sci. Technol. 2, 3026–3030 (2013)CrossRef
276.
go back to reference Zhenfu, Z., Liang, J., Zhihai, W., et al.: Perovskite quantum dots as fluorescent materials for multi-colored lighting. J. Mater. Sci. 53, 15430–15441 (2018)CrossRef Zhenfu, Z., Liang, J., Zhihai, W., et al.: Perovskite quantum dots as fluorescent materials for multi-colored lighting. J. Mater. Sci. 53, 15430–15441 (2018)CrossRef
277.
go back to reference Luo, B., Guo, Y., Li, X., et al.: Efficient trap-mediated Mn2+ dopant emission in two dimensional single-layered perovskite (CH3CH2NH3)2PbBr4. J. Phys. Chem. C 123, 14239–14245 (2019)CrossRef Luo, B., Guo, Y., Li, X., et al.: Efficient trap-mediated Mn2+ dopant emission in two dimensional single-layered perovskite (CH3CH2NH3)2PbBr4. J. Phys. Chem. C 123, 14239–14245 (2019)CrossRef
278.
go back to reference Liu, Y., Jing, Y.Y., Zhao, J., et al.: Design optimization of lead-free perovskite Cs2AgInCl6: Bi nanocrystals with 11.4% photoluminescence quantum yield. Chem. Mater. 31, 3333–3339 (2019)CrossRef Liu, Y., Jing, Y.Y., Zhao, J., et al.: Design optimization of lead-free perovskite Cs2AgInCl6: Bi nanocrystals with 11.4% photoluminescence quantum yield. Chem. Mater. 31, 3333–3339 (2019)CrossRef
Metadata
Title
Metal Halide Perovskite-Based Phosphors and Their Applications in LEDs
Authors
Jizhong Song
Leimeng Xu
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-90506-4_1

Premium Partners