Skip to main content
Top
Published in: Journal of Materials Science 16/2014

01-08-2014 | Review

Metal ion biosorption on chitosan for the synthesis of advanced materials

Authors: Eric Guibal, Thierry Vincent, Ricardo Navarro

Published in: Journal of Materials Science | Issue 16/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chitosan is an aminopolysaccharide that binds metal ions through different mechanisms such as ion exchange, chelation or formation of ternary complex. The sorption performance depends on the characteristics of the solution (pH, presence of ligands, metal speciation) and the properties of the biopolymer (crystallinity, degree of deacetylation, molecular weight). Sorption performance is also controlled by the accessibility and availability of reactive groups (diffusion properties). These interactions chitosan/metal ions can be used for environmental applications (recovery of toxic or valuable metals) but also for the synthesis of new materials. Hybrid materials (chitosan/metal ion composites) can thus be used for manufacturing new sorbents with improved functionalities, supported catalysts, antimicrobial supports and sensors. The physical versatility of the biopolymer is an important criterion for designing these new materials: The conditioning of the material under the form of hydrogel beads, membranes, fibers and hollow fibers, foams and sponges enhances sorption performance and allows developing new applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Volesky B (2003) Sorption & Biosorption. BV Sorbex Inc, Montréal (Canada) Volesky B (2003) Sorption & Biosorption. BV Sorbex Inc, Montréal (Canada)
2.
go back to reference Roberts GAF (1992) Chitin chemistry. The Macmillan Press Limited, London Roberts GAF (1992) Chitin chemistry. The Macmillan Press Limited, London
3.
go back to reference Varma AJ, Deshpande SV, Kennedy JF (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55:77–93CrossRef Varma AJ, Deshpande SV, Kennedy JF (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55:77–93CrossRef
4.
go back to reference Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74CrossRef Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74CrossRef
5.
go back to reference Varum KM, Anthonsen MW, Grasdalen H, Smidsrod O (1991) High-field NMR-spectroscopy of partially N-deacetylated chitins (chitosans). 3. C-13-NMR studies of the acetylation sequences in partially N-deacetylated chitins (chitosans). Carbohydr Res 217:19–27CrossRef Varum KM, Anthonsen MW, Grasdalen H, Smidsrod O (1991) High-field NMR-spectroscopy of partially N-deacetylated chitins (chitosans). 3. C-13-NMR studies of the acetylation sequences in partially N-deacetylated chitins (chitosans). Carbohydr Res 217:19–27CrossRef
6.
go back to reference Jung J, Zhao Y (2011) Characteristics of deacetylation and depolymerization of beta-chitin from jumbo squid (Dosidicus gigas) pens. Carbohydr Res 346:1876–1884CrossRef Jung J, Zhao Y (2011) Characteristics of deacetylation and depolymerization of beta-chitin from jumbo squid (Dosidicus gigas) pens. Carbohydr Res 346:1876–1884CrossRef
7.
go back to reference Pacheco N, Garnica-Gonzalez M, Gimeno M, Barzana E, Trombotto S, David L, Shirai K (2011) Structural characterization of chitin and chitosan obtained by biological and chemical methods. Biomacromolecules 12:3285–3290 Pacheco N, Garnica-Gonzalez M, Gimeno M, Barzana E, Trombotto S, David L, Shirai K (2011) Structural characterization of chitin and chitosan obtained by biological and chemical methods. Biomacromolecules 12:3285–3290
8.
go back to reference Jaworska M, Sakurai K, Gaudon P, Guibal E (2003) Influence of chitosan characteristics on polymer properties. I: crystallographic properties. Polym Int 52:198–205 Jaworska M, Sakurai K, Gaudon P, Guibal E (2003) Influence of chitosan characteristics on polymer properties. I: crystallographic properties. Polym Int 52:198–205
9.
go back to reference Qun G, Ajun W, Yong Z (2007) Effect of reacetylation and degradation on the chemical and crystal structures of chitosan. J Appl Polym Sci 104:2720–2728CrossRef Qun G, Ajun W, Yong Z (2007) Effect of reacetylation and degradation on the chemical and crystal structures of chitosan. J Appl Polym Sci 104:2720–2728CrossRef
10.
go back to reference Notin L, Viton C, David L, Alcouffe P, Rochas C, Domard A (2006) Morphology and mechanical properties of chitosan fibers obtained by gel-spinning: influence of the dry-jet-stretching step and ageing. Acta Biomater 2:387–402CrossRef Notin L, Viton C, David L, Alcouffe P, Rochas C, Domard A (2006) Morphology and mechanical properties of chitosan fibers obtained by gel-spinning: influence of the dry-jet-stretching step and ageing. Acta Biomater 2:387–402CrossRef
11.
go back to reference Sorlier P, Denuziere A, Viton C, Domard A (2001) Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules 2:765–772CrossRef Sorlier P, Denuziere A, Viton C, Domard A (2001) Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules 2:765–772CrossRef
12.
go back to reference Kuncoro EP, Roussy J, Guibal E (2005) Mercury recovery by polymer-enhanced ultrafiltration: comparison of chitosan and poly(ethylenimine) used as macroligand. Sep Sci Technol 40:659–684CrossRef Kuncoro EP, Roussy J, Guibal E (2005) Mercury recovery by polymer-enhanced ultrafiltration: comparison of chitosan and poly(ethylenimine) used as macroligand. Sep Sci Technol 40:659–684CrossRef
13.
go back to reference Guibal E, Milot C, Roussy J (2000) Influence of hydrolysis mechanisms on molybdate sorption isotherms using chitosan. Sep Sci Technol 35:1021–1038CrossRef Guibal E, Milot C, Roussy J (2000) Influence of hydrolysis mechanisms on molybdate sorption isotherms using chitosan. Sep Sci Technol 35:1021–1038CrossRef
14.
go back to reference Milot C, McBrien J, Allen S, Guibal E (1998) Influence of physicochemical and structural characteristics of chitosan flakes on molybdate sorption. J Appl Polym Sci 68:571–580CrossRef Milot C, McBrien J, Allen S, Guibal E (1998) Influence of physicochemical and structural characteristics of chitosan flakes on molybdate sorption. J Appl Polym Sci 68:571–580CrossRef
15.
go back to reference Guibal E, Milot C, Tobin JM (1998) Metal-anion sorption by chitosan beads: equilibrium and kinetic studies. Ind Eng Chem Res 37:1454–1463CrossRef Guibal E, Milot C, Tobin JM (1998) Metal-anion sorption by chitosan beads: equilibrium and kinetic studies. Ind Eng Chem Res 37:1454–1463CrossRef
16.
go back to reference Guzman J, Saucedo I, Navarro R, Revilla J, Guibal E (2002) Vanadium interactions with chitosan: influence of polymer protonation and metal speciation. Langmuir 18:1567–1573CrossRef Guzman J, Saucedo I, Navarro R, Revilla J, Guibal E (2002) Vanadium interactions with chitosan: influence of polymer protonation and metal speciation. Langmuir 18:1567–1573CrossRef
17.
go back to reference Piron E, Accominotti M, Domard A (1997) Interaction between chitosan and uranyl ions. Role of physical and physicochemical parameters on the kinetics of sorption. Langmuir 13:1653–1658CrossRef Piron E, Accominotti M, Domard A (1997) Interaction between chitosan and uranyl ions. Role of physical and physicochemical parameters on the kinetics of sorption. Langmuir 13:1653–1658CrossRef
18.
go back to reference Ruiz M, Sastre A, Guibal E (2002) Pd and Pt recovery using chitosan gel beads. I. Influence of the drying process on diffusion properties. Sep Sci Technol 37:2143–2166CrossRef Ruiz M, Sastre A, Guibal E (2002) Pd and Pt recovery using chitosan gel beads. I. Influence of the drying process on diffusion properties. Sep Sci Technol 37:2143–2166CrossRef
19.
go back to reference Valentin R, Molvinger K, Quignard F, Brunel D (2003) Supercritical CO2 dried chitosan: an efficient intrinsic heterogeneous catalyst in fine chemistry. New J Chem 27:1690–1692CrossRef Valentin R, Molvinger K, Quignard F, Brunel D (2003) Supercritical CO2 dried chitosan: an efficient intrinsic heterogeneous catalyst in fine chemistry. New J Chem 27:1690–1692CrossRef
20.
go back to reference Sicupira D, Campos K, Vincent T, Leao V, Guibal E (2010) Palladium and platinum sorption using chitosan-based hydrogels. Adsorption 16:127–139CrossRef Sicupira D, Campos K, Vincent T, Leao V, Guibal E (2010) Palladium and platinum sorption using chitosan-based hydrogels. Adsorption 16:127–139CrossRef
21.
go back to reference Desorme M, Montembault A, Lucas J-M, Rochas C, Bouet T, David L (2013) Spinning of hydroalcoholic chitosan solutions. Carbohydr Polym 98:50–63CrossRef Desorme M, Montembault A, Lucas J-M, Rochas C, Bouet T, David L (2013) Spinning of hydroalcoholic chitosan solutions. Carbohydr Polym 98:50–63CrossRef
22.
go back to reference Modrzejewska Z, Eckstein W (2004) Chitosan hollow fiber membranes. Biopolymers 73:61–68CrossRef Modrzejewska Z, Eckstein W (2004) Chitosan hollow fiber membranes. Biopolymers 73:61–68CrossRef
23.
go back to reference Kaminski W, Modrzejewska Z (1997) Application of chitosan membranes in separation of heavy metal ions. Sep Sci Technol 32:2659–2668CrossRef Kaminski W, Modrzejewska Z (1997) Application of chitosan membranes in separation of heavy metal ions. Sep Sci Technol 32:2659–2668CrossRef
24.
go back to reference Meneghetti E, Baroni P, Vieira RS, Carlos MG, da Silva MM, Beppu (2010) Dynamic adsorption of chromium ions onto natural and cross linked chitosan membranes for wastewater treatment. Mater Res 13:89–94CrossRef Meneghetti E, Baroni P, Vieira RS, Carlos MG, da Silva MM, Beppu (2010) Dynamic adsorption of chromium ions onto natural and cross linked chitosan membranes for wastewater treatment. Mater Res 13:89–94CrossRef
25.
go back to reference Vieira RS, Beppu MM (2006) Interaction of natural and crosslinked chitosan membranes with Hg(II) ions. Colloids Surf A 279:196–207CrossRef Vieira RS, Beppu MM (2006) Interaction of natural and crosslinked chitosan membranes with Hg(II) ions. Colloids Surf A 279:196–207CrossRef
26.
go back to reference Madihally SV, Matthew HWT (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20:1133–1142CrossRef Madihally SV, Matthew HWT (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20:1133–1142CrossRef
27.
go back to reference Guibal E, Cambe S, Bayle S, Taulemesse J-M, Vincent T (2013) Silver/chitosan/cellulose fibers foam composites: from synthesis to antibacterial properties. J Colloid Interface Sci 393:411–420CrossRef Guibal E, Cambe S, Bayle S, Taulemesse J-M, Vincent T (2013) Silver/chitosan/cellulose fibers foam composites: from synthesis to antibacterial properties. J Colloid Interface Sci 393:411–420CrossRef
28.
go back to reference Ji C, Annabi N, Khademhosseini A, Dehghani F (2011) Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomater 7:1653–1664CrossRef Ji C, Annabi N, Khademhosseini A, Dehghani F (2011) Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomater 7:1653–1664CrossRef
29.
go back to reference Tsioptsias C, Paraskevopoulos MK, Christofilos D, Andrieux R, Panayiotou C (2011) Polymeric hydrogels and supercritical fluids: the mechanism of hydrogel foaming. Polymer 52:2819–2826CrossRef Tsioptsias C, Paraskevopoulos MK, Christofilos D, Andrieux R, Panayiotou C (2011) Polymeric hydrogels and supercritical fluids: the mechanism of hydrogel foaming. Polymer 52:2819–2826CrossRef
30.
go back to reference Vincent T, Guibal E (2000) Non-dispersive liquid extraction of Cr(VI) by TBP/Aliquat 336 using chitosan-made hollow fiber. Solvent Extr Ion Exch 18:1241–1260CrossRef Vincent T, Guibal E (2000) Non-dispersive liquid extraction of Cr(VI) by TBP/Aliquat 336 using chitosan-made hollow fiber. Solvent Extr Ion Exch 18:1241–1260CrossRef
31.
go back to reference Vincent C, Hertz A, Vincent T, Barré Y, Guibal E (2014) Immobilization of inorganic ion-exchanger into biopolymer foams—application to cesium sorption. Chem Eng J 236:202–211CrossRef Vincent C, Hertz A, Vincent T, Barré Y, Guibal E (2014) Immobilization of inorganic ion-exchanger into biopolymer foams—application to cesium sorption. Chem Eng J 236:202–211CrossRef
32.
go back to reference Terreux R, Domard M, Viton C, Domard A (2006) Interactions study between the copper II ion and constitutive elements of chitosan structure by DFT calculation. Biomacromolecules 7:31–37CrossRef Terreux R, Domard M, Viton C, Domard A (2006) Interactions study between the copper II ion and constitutive elements of chitosan structure by DFT calculation. Biomacromolecules 7:31–37CrossRef
33.
go back to reference Webster A, Halling MD, Grant DM (2007) Metal complexation of chitosan and its glutaraldehyde cross-linked derivative. Carbohydr Res 342:1189–1201CrossRef Webster A, Halling MD, Grant DM (2007) Metal complexation of chitosan and its glutaraldehyde cross-linked derivative. Carbohydr Res 342:1189–1201CrossRef
34.
go back to reference Rhazi M, Desbrieres J, Tolaimate A, Rinaudo M, Vottero P, Alagui A, El Meray M (2002) Influence of the nature of the metal ions on the complexation with chitosan. Application to the treatment of liquid waste. Eur Polym J 38:1523–1530 Rhazi M, Desbrieres J, Tolaimate A, Rinaudo M, Vottero P, Alagui A, El Meray M (2002) Influence of the nature of the metal ions on the complexation with chitosan. Application to the treatment of liquid waste. Eur Polym J 38:1523–1530
36.
go back to reference Miretzky P, Fernandez Cirelli A (2009) Hg(II) removal from water by chitosan and chitosan derivatives: a review. J Hazard Mater 167:10–23CrossRef Miretzky P, Fernandez Cirelli A (2009) Hg(II) removal from water by chitosan and chitosan derivatives: a review. J Hazard Mater 167:10–23CrossRef
37.
go back to reference Dzul Erosa MS, Saucedo Medina TI, Navarro Mendoza R, Avila Rodriguez M, Guibal E (2001) Cadmium sorption on chitosan sorbents: kinetic and equilibrium studies. Hydrometallurgy 61:157–167CrossRef Dzul Erosa MS, Saucedo Medina TI, Navarro Mendoza R, Avila Rodriguez M, Guibal E (2001) Cadmium sorption on chitosan sorbents: kinetic and equilibrium studies. Hydrometallurgy 61:157–167CrossRef
38.
go back to reference Piron E, Domard A (1998) Formation of a ternary complex between chitosan and ion pairs of strontium carbonate. Int J Biol Macromol 23:113–120CrossRef Piron E, Domard A (1998) Formation of a ternary complex between chitosan and ion pairs of strontium carbonate. Int J Biol Macromol 23:113–120CrossRef
39.
go back to reference Jaworska M, Kula K, Chassary P, Guibal E (2003) Influence of chitosan characteristics on polymer properties: II. Platinum sorption properties. Polym Int 52:206–212CrossRef Jaworska M, Kula K, Chassary P, Guibal E (2003) Influence of chitosan characteristics on polymer properties: II. Platinum sorption properties. Polym Int 52:206–212CrossRef
40.
go back to reference Quignard F, Di Renzo F, Guibal E (2010) From natural polysaccharides to materials for catalysis, adsorption, and remediation. In: Rauter AP, Vogel P, Queneau Y (eds) Carbohydrates in sustainable development I: renewable resources for chemistry and biotechnology. Topics in current chemistry, vol 294. Springer, Berlin, Heidelberg, pp 165–197 Quignard F, Di Renzo F, Guibal E (2010) From natural polysaccharides to materials for catalysis, adsorption, and remediation. In: Rauter AP, Vogel P, Queneau Y (eds) Carbohydrates in sustainable development I: renewable resources for chemistry and biotechnology. Topics in current chemistry, vol 294. Springer, Berlin, Heidelberg, pp 165–197
41.
go back to reference Wu FC, Tseng RL, Juang RS (1999) Role of pH in metal adsorption from aqueous solutions containing chelating agents on chitosan. Ind Eng Chem Res 38:270–275CrossRef Wu FC, Tseng RL, Juang RS (1999) Role of pH in metal adsorption from aqueous solutions containing chelating agents on chitosan. Ind Eng Chem Res 38:270–275CrossRef
42.
go back to reference Guzman J, Saucedo I, Revilla J, Navarro R, Guibal E (2003) Copper sorption by chitosan in the presence of citrate ions: influence of metal speciation on sorption mechanism and uptake capacities. Int J Biol Macromol 33:57–65CrossRef Guzman J, Saucedo I, Revilla J, Navarro R, Guibal E (2003) Copper sorption by chitosan in the presence of citrate ions: influence of metal speciation on sorption mechanism and uptake capacities. Int J Biol Macromol 33:57–65CrossRef
43.
go back to reference Padala AN, Bhaskarapillai A, Velmurugan S, Narasimhan SV (2011) Sorption behaviour of Co(II) and Cu(II) on chitosan in presence of nitrilotriacetic acid. J Hazard Mater 191:110–117CrossRef Padala AN, Bhaskarapillai A, Velmurugan S, Narasimhan SV (2011) Sorption behaviour of Co(II) and Cu(II) on chitosan in presence of nitrilotriacetic acid. J Hazard Mater 191:110–117CrossRef
44.
go back to reference Dambies L, Vincent T, Guibal E (2002) Treatment of arsenic-containing solutions using chitosan derivatives: uptake mechanism and sorption performances. Water Res 36:3699–3710CrossRef Dambies L, Vincent T, Guibal E (2002) Treatment of arsenic-containing solutions using chitosan derivatives: uptake mechanism and sorption performances. Water Res 36:3699–3710CrossRef
45.
go back to reference Shinde RN, Pandey AK, Acharya R, Guin R, Das SK, Rajurkar NS, Pujari PK (2013) Chitosan-transition metal ions complexes for selective arsenic(V) preconcentration. Water Res 47:3497–3506 Shinde RN, Pandey AK, Acharya R, Guin R, Das SK, Rajurkar NS, Pujari PK (2013) Chitosan-transition metal ions complexes for selective arsenic(V) preconcentration. Water Res 47:3497–3506
46.
go back to reference de Godoi FC, Rodriguez-Castellon E, Guibal E, Beppu MM (2013) An XPS study of chromate and vanadate sorption mechanism by chitosan membrane containing copper nanoparticles. Chem Eng J 234:423–429CrossRef de Godoi FC, Rodriguez-Castellon E, Guibal E, Beppu MM (2013) An XPS study of chromate and vanadate sorption mechanism by chitosan membrane containing copper nanoparticles. Chem Eng J 234:423–429CrossRef
47.
go back to reference Yoshizuka K, Lou ZR, Inoue K (2000) Silver-complexed chitosan microparticles for pesticide removal. React Funct Polym 44:47–54CrossRef Yoshizuka K, Lou ZR, Inoue K (2000) Silver-complexed chitosan microparticles for pesticide removal. React Funct Polym 44:47–54CrossRef
48.
go back to reference Wu J, Luan M, Zhao J (2006) Trypsin immobilization by direct adsorption on metal ion chelated macroporous chitosan-silica gel beads. Int J Biol Macromol 39:185–191CrossRef Wu J, Luan M, Zhao J (2006) Trypsin immobilization by direct adsorption on metal ion chelated macroporous chitosan-silica gel beads. Int J Biol Macromol 39:185–191CrossRef
49.
go back to reference Ahmed SR, Kelly AB, Barbari TA (2006) Controlling the orientation of immobilized proteins on an affinity membrane through chelation of a histidine tag to a chitosan-Ni++ surface. J Membr Sci 280:553–559CrossRef Ahmed SR, Kelly AB, Barbari TA (2006) Controlling the orientation of immobilized proteins on an affinity membrane through chelation of a histidine tag to a chitosan-Ni++ surface. J Membr Sci 280:553–559CrossRef
50.
go back to reference Sun J, Rao S, Su Y, Xu R, Yang Y (2011) Magnetic carboxymethyl chitosan nanoparticles with immobilized metal ions for lysozyme adsorption. Colloids Surf A 389:97–103CrossRef Sun J, Rao S, Su Y, Xu R, Yang Y (2011) Magnetic carboxymethyl chitosan nanoparticles with immobilized metal ions for lysozyme adsorption. Colloids Surf A 389:97–103CrossRef
51.
go back to reference Macquarrie DJ, Hardy JJE (2005) Applications of functionalized chitosan in catalysis. Ind Eng Chem Res 44:8499–8520CrossRef Macquarrie DJ, Hardy JJE (2005) Applications of functionalized chitosan in catalysis. Ind Eng Chem Res 44:8499–8520CrossRef
52.
go back to reference Guibal E (2005) Heterogeneous catalysis on chitosan-based materials: a review. Prog Polym Sci 30:71–109CrossRef Guibal E (2005) Heterogeneous catalysis on chitosan-based materials: a review. Prog Polym Sci 30:71–109CrossRef
53.
go back to reference Adlim M, Abu Bakar M, Liew KY, Ismail J (2004) Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity. J Mol Catal A 212:141–149CrossRef Adlim M, Abu Bakar M, Liew KY, Ismail J (2004) Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity. J Mol Catal A 212:141–149CrossRef
54.
go back to reference Vincent T, Guibal E (2004) Chitosan-supported palladium catalyst. 5. Nitrophenol degradation using palladium supported on hollow chitosan fibers. Environ Sci Technol 38:4233–4240CrossRef Vincent T, Guibal E (2004) Chitosan-supported palladium catalyst. 5. Nitrophenol degradation using palladium supported on hollow chitosan fibers. Environ Sci Technol 38:4233–4240CrossRef
55.
go back to reference Schuessler S, Blaubach N, Stolle A, Cravotto G, Ondruschka B (2012) Application of a cross-linked Pd–chitosan catalyst in liquid-phase-hydrogenation using molecular hydrogen. Appl Catal A 445:231–238CrossRef Schuessler S, Blaubach N, Stolle A, Cravotto G, Ondruschka B (2012) Application of a cross-linked Pd–chitosan catalyst in liquid-phase-hydrogenation using molecular hydrogen. Appl Catal A 445:231–238CrossRef
56.
go back to reference Mekhaev AV, Pestov AV, Molochnikov LS, Kovaleva EG, Pervova MG, Yaltuk YG, Grigor'ev IA, Kirilyuk IA (2011) Structure and characteristics of chitosan cobalt-containing hybrid systems, the catalysts of olefine oxidation. Russ J Phys Chem A 85:1155–1161 Mekhaev AV, Pestov AV, Molochnikov LS, Kovaleva EG, Pervova MG, Yaltuk YG, Grigor'ev IA, Kirilyuk IA (2011) Structure and characteristics of chitosan cobalt-containing hybrid systems, the catalysts of olefine oxidation. Russ J Phys Chem A 85:1155–1161
57.
go back to reference Kramareva NV, Stakheev AY, Tkachenko OP, Klementiev KV, Grunert W, Finashina ED, Kustov LM (2004) Heterogenized palladium chitosan complexes as potential catalysts in oxidation reactions: study of the structure. J Mol Catal A 209:97–106 Kramareva NV, Stakheev AY, Tkachenko OP, Klementiev KV, Grunert W, Finashina ED, Kustov LM (2004) Heterogenized palladium chitosan complexes as potential catalysts in oxidation reactions: study of the structure. J Mol Catal A 209:97–106
58.
go back to reference Leonhardt SES, Stolle A, Ondruschka B, Cravotto G, De Leo C, Jandt KD, Keller TF (2010) Chitosan as a support for heterogeneous Pd catalysts in liquid phase catalysis. Appl Catal A 379:30–37 Leonhardt SES, Stolle A, Ondruschka B, Cravotto G, De Leo C, Jandt KD, Keller TF (2010) Chitosan as a support for heterogeneous Pd catalysts in liquid phase catalysis. Appl Catal A 379:30–37
59.
go back to reference Martina K, Leonhardt SES, Ondruschka B, Curini M, Binello A, Cravotto G (2011) In situ cross-linked chitosan Cu(I) or Pd(II) complexes as a versatile, eco-friendly recyclable solid catalyst. J Mol Catal A 334:60–64CrossRef Martina K, Leonhardt SES, Ondruschka B, Curini M, Binello A, Cravotto G (2011) In situ cross-linked chitosan Cu(I) or Pd(II) complexes as a versatile, eco-friendly recyclable solid catalyst. J Mol Catal A 334:60–64CrossRef
60.
go back to reference Corma A, Concepcion P, Dominguez I, Fornes V, Sabater MJ (2007) Gold supported on a biopolymer (chitosan) catalyzes the regioselective hydroamination of alkynes. J Catal 251:39–47CrossRef Corma A, Concepcion P, Dominguez I, Fornes V, Sabater MJ (2007) Gold supported on a biopolymer (chitosan) catalyzes the regioselective hydroamination of alkynes. J Catal 251:39–47CrossRef
61.
go back to reference Vincent T, Guibal E (2002) Chitosan-supported palladium catalyst. 1. Synthesis procedure. Ind Eng Chem Res 41:5158–5164CrossRef Vincent T, Guibal E (2002) Chitosan-supported palladium catalyst. 1. Synthesis procedure. Ind Eng Chem Res 41:5158–5164CrossRef
62.
go back to reference Guibal E, Vincent T, Spinelli S (2005) Environmental application of chitosan-supported catalysts: catalytic hollow fibers for the degradation of phenolic derivatives. Sep Sci Technol 40:633–657CrossRef Guibal E, Vincent T, Spinelli S (2005) Environmental application of chitosan-supported catalysts: catalytic hollow fibers for the degradation of phenolic derivatives. Sep Sci Technol 40:633–657CrossRef
63.
go back to reference Peirano F, Vincent T, Quignard F, Robitzer M, Guibal E (2009) Palladium supported on chitosan hollow fiber for nitrotoluene hydrogenation. J Membr Sci 329:30–45CrossRef Peirano F, Vincent T, Quignard F, Robitzer M, Guibal E (2009) Palladium supported on chitosan hollow fiber for nitrotoluene hydrogenation. J Membr Sci 329:30–45CrossRef
64.
go back to reference Behar S, Gonzalez P, Agulhon P, Quignard F, Swierczynski D (2012) New synthesis of nanosized Cu–Mn spinels as efficient oxidation catalysts. Catal Today 189:35–41CrossRef Behar S, Gonzalez P, Agulhon P, Quignard F, Swierczynski D (2012) New synthesis of nanosized Cu–Mn spinels as efficient oxidation catalysts. Catal Today 189:35–41CrossRef
65.
go back to reference Wang XH, Du YM, Fan LH, Liu H, Hu Y (2005) Chitosan-metal complexes as antimicrobial agent: synthesis, characterization and structure-activity study. Polym Bull 55:105–113CrossRef Wang XH, Du YM, Fan LH, Liu H, Hu Y (2005) Chitosan-metal complexes as antimicrobial agent: synthesis, characterization and structure-activity study. Polym Bull 55:105–113CrossRef
66.
go back to reference Du W-L, Niu S–S, Xu Y-L, Xu Z-R, Fan C-L (2009) Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr Polym 75:385–389CrossRef Du W-L, Niu S–S, Xu Y-L, Xu Z-R, Fan C-L (2009) Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr Polym 75:385–389CrossRef
67.
go back to reference Adewuyi S, Kareem KT, Atayese AO, Amolegbe SA, Aldnremi CA (2011) Chitosan-cobalt(II) and nickel(II) chelates as antibacterial agents. Int J Biol Macromol 48:301–303CrossRef Adewuyi S, Kareem KT, Atayese AO, Amolegbe SA, Aldnremi CA (2011) Chitosan-cobalt(II) and nickel(II) chelates as antibacterial agents. Int J Biol Macromol 48:301–303CrossRef
68.
go back to reference Wang X, Du YM, Liu H (2004) Preparation, characterization and antimicrobial activity of chitosan–Zn complex. Carbohydr Polym 56:21–26CrossRef Wang X, Du YM, Liu H (2004) Preparation, characterization and antimicrobial activity of chitosan–Zn complex. Carbohydr Polym 56:21–26CrossRef
69.
go back to reference Vimala K, Mohan YM, Sivudu KS, Varaprasad K, Ravindra S, Reddy NN, Padma Y, Sreedhar B, MohanaRaju K (2010) Fabrication of porous chitosan films impregnated with silver nanoparticles: a facile approach for superior antibacterial application. Colloids Surf B 76:248–258 Vimala K, Mohan YM, Sivudu KS, Varaprasad K, Ravindra S, Reddy NN, Padma Y, Sreedhar B, MohanaRaju K (2010) Fabrication of porous chitosan films impregnated with silver nanoparticles: a facile approach for superior antibacterial application. Colloids Surf B 76:248–258
70.
go back to reference Ben-Shalom N, Fallik E (2003) Further suppression of Botrytis cinerea disease in cucumber seedlings by chitosan–copper complex as compared with chitosan alone. Phytoparasitica 31:99–102CrossRef Ben-Shalom N, Fallik E (2003) Further suppression of Botrytis cinerea disease in cucumber seedlings by chitosan–copper complex as compared with chitosan alone. Phytoparasitica 31:99–102CrossRef
71.
go back to reference Wu LQ, Lee K, Wang X, English DS, Losert W, Payne GF (2005) Chitosan-mediated and spatially selective electrodeposition of nanoscale particles. Langmuir 21:3641–3646CrossRef Wu LQ, Lee K, Wang X, English DS, Losert W, Payne GF (2005) Chitosan-mediated and spatially selective electrodeposition of nanoscale particles. Langmuir 21:3641–3646CrossRef
72.
go back to reference Sugunan A, Thanachayanont C, Dutta J, Hilborn JG (2005) Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Technol Adv Mater 6:335–340CrossRef Sugunan A, Thanachayanont C, Dutta J, Hilborn JG (2005) Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Technol Adv Mater 6:335–340CrossRef
73.
go back to reference Mathew M, Sureshkumar S, Sandhyarani N (2012) Synthesis and characterization of gold-chitosan nanocomposite and application of resultant nanocomposite in sensors. Colloids Surf B 93:143–147CrossRef Mathew M, Sureshkumar S, Sandhyarani N (2012) Synthesis and characterization of gold-chitosan nanocomposite and application of resultant nanocomposite in sensors. Colloids Surf B 93:143–147CrossRef
74.
go back to reference Liu B, Deng Y, Hu X, Gao Z, Sun C (2012) Electrochemical sensing of trichloroacetic acid based on silver nanoparticles doped chitosan hydrogel film prepared with controllable electrodeposition. Electrochim Acta 76:410–415CrossRef Liu B, Deng Y, Hu X, Gao Z, Sun C (2012) Electrochemical sensing of trichloroacetic acid based on silver nanoparticles doped chitosan hydrogel film prepared with controllable electrodeposition. Electrochim Acta 76:410–415CrossRef
75.
go back to reference Tian L, Feng Y, Qi Y, Wang B, Chen Y, Fu X (2012) Non-enzymatic amperometric sensor for hydrogen peroxide based on a biocomposite made from chitosan, hemoglobin, and silver nanoparticles. Microchim Acta 177:39–45CrossRef Tian L, Feng Y, Qi Y, Wang B, Chen Y, Fu X (2012) Non-enzymatic amperometric sensor for hydrogen peroxide based on a biocomposite made from chitosan, hemoglobin, and silver nanoparticles. Microchim Acta 177:39–45CrossRef
Metadata
Title
Metal ion biosorption on chitosan for the synthesis of advanced materials
Authors
Eric Guibal
Thierry Vincent
Ricardo Navarro
Publication date
01-08-2014
Publisher
Springer US
Published in
Journal of Materials Science / Issue 16/2014
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8301-5

Other articles of this Issue 16/2014

Journal of Materials Science 16/2014 Go to the issue

Premium Partners