Skip to main content
Top

2019 | OriginalPaper | Chapter

5. Metal Matrix Composites

Authors : Hossam A. Kishawy, Ali Hosseini

Published in: Machining Difficult-to-Cut Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Composite materials, or in their short-form composites, are a specific category of materials in which two or more materials, as constituents or ingredients, with considerably dissimilar physical or chemical properties are combined together to achieve unique characteristics that might be quite different from those of individual components. In composite materials, the constituent materials remain distinct within the final structure. One of the constituents acts as the main body, which forms the bulk of composite. The main body surrounds and supports the other constituent that usually acts as the strengthening or reinforcing element. Between the two elements, the former is called matrix while the latter is named reinforcement. If the matrix is made of a metallic material, the resultant composite is called metal matrix composite or in short MMC. The reinforcement can be of any metal or other types of materials such as ceramics or organic compounds. Composite materials usually have distinguished physical properties that cannot be found combined in traditional materials. The current chapter explores the composite materials, especially MMCs with the main focus on the challenges that might be encountered during machining of these advanced materials. It presents a brief review of composites’ history of evolution, their unique characteristics, and their mechanical properties. Cutting characteristics, appropriate tool materials, modes of tool wear, and other influential factors that must be taken into consideration when machining composite materials will also be presented in this chapter. The chapter ends with an overview of the challenges associated with machining reinforced fiber composites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chawla KK. Composite materials: science and engineering. Springer Science & Business Media (2012) Chawla KK. Composite materials: science and engineering. Springer Science & Business Media (2012)
2.
go back to reference Hocheng H. Machining technology for composite materials. In: Hocheng H, editor. Cambridge, UK: Woodhead Publishing; 2012. Hocheng H. Machining technology for composite materials. In: Hocheng H, editor. Cambridge, UK: Woodhead Publishing; 2012.
3.
go back to reference Kelly A, Zweben CH. Comprehensive composite materials. Amsterdam: Elsevier; 2000. Kelly A, Zweben CH. Comprehensive composite materials. Amsterdam: Elsevier; 2000.
4.
5.
go back to reference Mortensen A, Llorca J. Metal matrix composites. Annu Rev Mater Res. 2010;40:243–70.CrossRef Mortensen A, Llorca J. Metal matrix composites. Annu Rev Mater Res. 2010;40:243–70.CrossRef
6.
go back to reference Manna A, Bhattacharyya B. Investigation for optimal parametric combination for achieving better surface finish during turning of Al/Sic-Mmc. Int J Adv Manuf Technol. 2004;23(9–10):658–65.CrossRef Manna A, Bhattacharyya B. Investigation for optimal parametric combination for achieving better surface finish during turning of Al/Sic-Mmc. Int J Adv Manuf Technol. 2004;23(9–10):658–65.CrossRef
7.
go back to reference Durante S, Rutelli G, Rabezzana F. Aluminum-based MMC machining with diamond-coated cutting tools. Surf Coat Technol. 1997;94:632–40.CrossRef Durante S, Rutelli G, Rabezzana F. Aluminum-based MMC machining with diamond-coated cutting tools. Surf Coat Technol. 1997;94:632–40.CrossRef
8.
go back to reference Chawla KK, Chawla N. Metal‐matrix composites. Wiley Online Library; 2004. Chawla KK, Chawla N. Metal‐matrix composites. Wiley Online Library; 2004.
9.
go back to reference Cyriac AJ. Metal matrix composites: history, status, factors and future. Oklahoma State University; 2011. Cyriac AJ. Metal matrix composites: history, status, factors and future. Oklahoma State University; 2011.
10.
go back to reference Dow NF. Study of stresses near a discontinuity in a filament-reinforced composite metal. DTIC Document; 1963. Dow NF. Study of stresses near a discontinuity in a filament-reinforced composite metal. DTIC Document; 1963.
11.
go back to reference Wadsworth J, Lesuer DR. Ancient and modern laminated composites—from the Great Pyramid of Gizeh to Y2k. Mater Charact. 2000;45(4):289–313.CrossRef Wadsworth J, Lesuer DR. Ancient and modern laminated composites—from the Great Pyramid of Gizeh to Y2k. Mater Charact. 2000;45(4):289–313.CrossRef
12.
go back to reference Jech R, McDanels D, Weeton JW. Metals reinforced with fibers. MET PROG. 1960;78(6):118–21. Jech R, McDanels D, Weeton JW. Metals reinforced with fibers. MET PROG. 1960;78(6):118–21.
13.
go back to reference Peters ST. Handbook of composites. US: Springer; 2013. Peters ST. Handbook of composites. US: Springer; 2013.
14.
go back to reference Kilickap E, Inan A. A study on machinability of Al Si7 Mg2/SiCp metal matrix composite. Int J Mach Mach Mater. 2006;1(4):463–75. Kilickap E, Inan A. A study on machinability of Al Si7 Mg2/SiCp metal matrix composite. Int J Mach Mach Mater. 2006;1(4):463–75.
15.
go back to reference Chawla N, Chawla KK. Metal matrix composites. Berlin: Springer; 2006. Chawla N, Chawla KK. Metal matrix composites. Berlin: Springer; 2006.
16.
go back to reference El-Gallab M, Sklad M. Machining of Al/Sic particulate metal matrix composites: Part II: workpiece surface integrity. J Mater Process Technol. 1998;83(1):277–85.CrossRef El-Gallab M, Sklad M. Machining of Al/Sic particulate metal matrix composites: Part II: workpiece surface integrity. J Mater Process Technol. 1998;83(1):277–85.CrossRef
17.
go back to reference Monaghan J. The use of a quick-stop test to study the chip formation of a Sic/Al metal matrix composite material and its matrix alloy. Int J Fatigue. 1996;3(18):213. Monaghan J. The use of a quick-stop test to study the chip formation of a Sic/Al metal matrix composite material and its matrix alloy. Int J Fatigue. 1996;3(18):213.
18.
go back to reference Clyne T, Withers P. An introduction to metal matrix composites. Cambridge University Press; 1995. Clyne T, Withers P. An introduction to metal matrix composites. Cambridge University Press; 1995.
19.
go back to reference Mallick PK. Fiber-reinforced composites: materials, manufacturing, and design. CRC press; 2007. Mallick PK. Fiber-reinforced composites: materials, manufacturing, and design. CRC press; 2007.
20.
go back to reference Davim JP. Machining of metal matrix composites. Springer; 2012. Davim JP. Machining of metal matrix composites. Springer; 2012.
21.
go back to reference Rawal SP. Metal-matrix composites for space applications. JOM. 2001;53(4):14–7.CrossRef Rawal SP. Metal-matrix composites for space applications. JOM. 2001;53(4):14–7.CrossRef
22.
go back to reference Natarajan N, Vijayarangan S, Rajendran I. Wear behaviour of A356/25sic P aluminium matrix composites sliding against automobile friction material. Wear. 2006;261(7):812–22.CrossRef Natarajan N, Vijayarangan S, Rajendran I. Wear behaviour of A356/25sic P aluminium matrix composites sliding against automobile friction material. Wear. 2006;261(7):812–22.CrossRef
23.
go back to reference Suresh, S. fundamentals of metal-matrix composites. Elsevier; 2013. Suresh, S. fundamentals of metal-matrix composites. Elsevier; 2013.
24.
go back to reference Deuis R, Subramanian C, Yellup J. Dry sliding wear of aluminium composites—a review. Compos Sci Technol. 1997;57(4):415–35.CrossRef Deuis R, Subramanian C, Yellup J. Dry sliding wear of aluminium composites—a review. Compos Sci Technol. 1997;57(4):415–35.CrossRef
25.
go back to reference Chawla N, Chawla K. Metal-matrix composites in ground transportation. JOM. 2006;58(11):67–70.CrossRef Chawla N, Chawla K. Metal-matrix composites in ground transportation. JOM. 2006;58(11):67–70.CrossRef
26.
go back to reference Teti R. Machining of composite materials. CIRP Ann Manuf Technol. 2002;51(2):611–34.CrossRef Teti R. Machining of composite materials. CIRP Ann Manuf Technol. 2002;51(2):611–34.CrossRef
27.
go back to reference Dandekar CR, Shin YC. Modeling of machining of composite materials: a review. Int J Mach Tools Manuf. 2012;57:102–21.CrossRef Dandekar CR, Shin YC. Modeling of machining of composite materials: a review. Int J Mach Tools Manuf. 2012;57:102–21.CrossRef
28.
go back to reference Pramanik A, Zhang L, Arsecularatne J. An FEM investigation into the behavior of metal matrix composites: tool-particle interaction during orthogonal cutting. Int J Mach Tools Manuf. 2007;47(10):1497–506.CrossRef Pramanik A, Zhang L, Arsecularatne J. An FEM investigation into the behavior of metal matrix composites: tool-particle interaction during orthogonal cutting. Int J Mach Tools Manuf. 2007;47(10):1497–506.CrossRef
29.
go back to reference Sahin Y, Sur G. The effect of Al2O3, Tin and Ti (C, N) based CVD coatings on tool wear in machining metal matrix composites. Surf Coat Technol. 2004;179(2):349–55.CrossRef Sahin Y, Sur G. The effect of Al2O3, Tin and Ti (C, N) based CVD coatings on tool wear in machining metal matrix composites. Surf Coat Technol. 2004;179(2):349–55.CrossRef
30.
go back to reference Li X, Seah W. Tool wear acceleration in relation to workpiece reinforcement percentage in cutting of metal matrix composites. Wear. 2001;247(2):161–71.CrossRef Li X, Seah W. Tool wear acceleration in relation to workpiece reinforcement percentage in cutting of metal matrix composites. Wear. 2001;247(2):161–71.CrossRef
31.
go back to reference Ciftci I, Turker M, Seker U. Evaluation of tool wear when machining Sic P-reinforced Al-2014 alloy matrix composites. Mater Des. 2004;25(3):251–5.CrossRef Ciftci I, Turker M, Seker U. Evaluation of tool wear when machining Sic P-reinforced Al-2014 alloy matrix composites. Mater Des. 2004;25(3):251–5.CrossRef
32.
go back to reference Kishawy H, Kannan S, Balazinski M. Analytical modeling of tool wear progression during turning particulate reinforced metal matrix composites. CIRP Ann Manuf Technol. 2005;54(1):55–8.CrossRef Kishawy H, Kannan S, Balazinski M. Analytical modeling of tool wear progression during turning particulate reinforced metal matrix composites. CIRP Ann Manuf Technol. 2005;54(1):55–8.CrossRef
33.
go back to reference Stephenson DA, Agapiou JS. Metal cutting theory and practice, vol 68. CRC press; 2006. Stephenson DA, Agapiou JS. Metal cutting theory and practice, vol 68. CRC press; 2006.
34.
go back to reference Shaw MC, Cookson J. Metal cutting principles, vol. 2. New York: Oxford University Press; 2005. Shaw MC, Cookson J. Metal cutting principles, vol. 2. New York: Oxford University Press; 2005.
35.
go back to reference Trent EM. Metal cutting. Butterworth-Heinemann Ltd.; 1991. p. 273. Trent EM. Metal cutting. Butterworth-Heinemann Ltd.; 1991. p. 273.
36.
go back to reference Pramanik A, Zhang L, Arsecularatne J. Machining of metal matrix composites: effect of ceramic particles on residual stress, surface roughness and chip formation. Int J Mach Tools Manuf. 2008;48(15):1613–25.CrossRef Pramanik A, Zhang L, Arsecularatne J. Machining of metal matrix composites: effect of ceramic particles on residual stress, surface roughness and chip formation. Int J Mach Tools Manuf. 2008;48(15):1613–25.CrossRef
37.
go back to reference Ng E-G, Aspinwall DK. The effect of workpiece hardness and cutting speed on the machinability of Aisi H13 hot work die steel when using PCBN tooling. J Manuf Sci Eng. 2002;124(3):588–94.CrossRef Ng E-G, Aspinwall DK. The effect of workpiece hardness and cutting speed on the machinability of Aisi H13 hot work die steel when using PCBN tooling. J Manuf Sci Eng. 2002;124(3):588–94.CrossRef
38.
go back to reference Karthikeyan R, Ganesan G, Nagarazan R, Pai B. A critical study on machining of Al/Sic composites. Mater Manuf Processes. 2001;16(1):47–60.CrossRef Karthikeyan R, Ganesan G, Nagarazan R, Pai B. A critical study on machining of Al/Sic composites. Mater Manuf Processes. 2001;16(1):47–60.CrossRef
39.
go back to reference Lin J, Bhattacharyya D, Lane C. Machinability of a silicon carbide reinforced aluminium metal matrix composite. Wear. 1995;181:883–8.CrossRef Lin J, Bhattacharyya D, Lane C. Machinability of a silicon carbide reinforced aluminium metal matrix composite. Wear. 1995;181:883–8.CrossRef
40.
go back to reference Sikder S, Kishawy H. Analytical model for force prediction when machining metal matrix composite. Int J Mech Sci. 2012;59(1):95–103.CrossRef Sikder S, Kishawy H. Analytical model for force prediction when machining metal matrix composite. Int J Mech Sci. 2012;59(1):95–103.CrossRef
41.
go back to reference Colwell LV. Predicting the angle of chip flow for single-point cutting tools. Trans ASME. 1954;76:199. Colwell LV. Predicting the angle of chip flow for single-point cutting tools. Trans ASME. 1954;76:199.
42.
go back to reference Jiang J, Sheng F, Ren F. Modelling of two-body abrasive wear under multiple contact conditions. Wear. 1998;217(1):35–45.CrossRef Jiang J, Sheng F, Ren F. Modelling of two-body abrasive wear under multiple contact conditions. Wear. 1998;217(1):35–45.CrossRef
43.
go back to reference Kishawy H, Kannan S, Balazinski M. An energy based analytical force model for orthogonal cutting of metal matrix composites. CIRP Ann Manuf Technol. 2004;53(1):91–4.CrossRef Kishawy H, Kannan S, Balazinski M. An energy based analytical force model for orthogonal cutting of metal matrix composites. CIRP Ann Manuf Technol. 2004;53(1):91–4.CrossRef
44.
go back to reference Dabade UA, Dapkekar D, Joshi SS. Modeling of chip-tool interface friction to predict cutting forces in machining of Al/SICp composites. Int J Mach Tools Manuf. 2009;49(9):690–700.CrossRef Dabade UA, Dapkekar D, Joshi SS. Modeling of chip-tool interface friction to predict cutting forces in machining of Al/SICp composites. Int J Mach Tools Manuf. 2009;49(9):690–700.CrossRef
45.
go back to reference Venkatachalam S, Liang SY. Effects of ploughing forces and friction coefficient in microscale machining. J Manuf Sci Eng. 2007;129(2):274–80.CrossRef Venkatachalam S, Liang SY. Effects of ploughing forces and friction coefficient in microscale machining. J Manuf Sci Eng. 2007;129(2):274–80.CrossRef
46.
go back to reference Sin H, Saka N, Suh N. Abrasive wear mechanisms and the grit size effect. Wear. 1979;55(1):163–90.CrossRef Sin H, Saka N, Suh N. Abrasive wear mechanisms and the grit size effect. Wear. 1979;55(1):163–90.CrossRef
47.
go back to reference Waldorf DJ. A simplified model for ploughing forces in turning. J Manuf Process. 2006;8(2):76–82.CrossRef Waldorf DJ. A simplified model for ploughing forces in turning. J Manuf Process. 2006;8(2):76–82.CrossRef
48.
go back to reference Lopresto V, Santo L, Caprino G. Mechanisms of chip generation in orthogonal machining of unidirectional fiber reinforced plastics. Lopresto V, Santo L, Caprino G. Mechanisms of chip generation in orthogonal machining of unidirectional fiber reinforced plastics.
49.
go back to reference Pwu H, Hocheng H. Chip formation model of cutting fiber-reinforced plastics perpendicular to fiber axis. J Manuf Sci Eng. 1998;120(1):192–6.CrossRef Pwu H, Hocheng H. Chip formation model of cutting fiber-reinforced plastics perpendicular to fiber axis. J Manuf Sci Eng. 1998;120(1):192–6.CrossRef
50.
go back to reference Ding X, Liew W, Liu X. Evaluation of machining performance of MMC with PCBN and PCD tools. Wear. 2005;259(7):1225–34.CrossRef Ding X, Liew W, Liu X. Evaluation of machining performance of MMC with PCBN and PCD tools. Wear. 2005;259(7):1225–34.CrossRef
51.
go back to reference Hung N, Boey F, Khor K, Oh C, Lee H. Machinability of cast and powder-formed aluminum alloys reinforced with Sic particles. J Mater Process Technol. 1995;48(1–4):291–7.CrossRef Hung N, Boey F, Khor K, Oh C, Lee H. Machinability of cast and powder-formed aluminum alloys reinforced with Sic particles. J Mater Process Technol. 1995;48(1–4):291–7.CrossRef
52.
go back to reference Iuliano L, Settineri L, Gatto A. High-speed turning experiments on metal matrix composites. Compos A Appl Sci Manuf. 1998;29(12):1501–9.CrossRef Iuliano L, Settineri L, Gatto A. High-speed turning experiments on metal matrix composites. Compos A Appl Sci Manuf. 1998;29(12):1501–9.CrossRef
53.
go back to reference Looney L, Monaghan J, O’Reilly P, Taplin D. The turning of an Al/Sic metal-matrix composite. J Mater Process Technol. 1992;33(4):453–68.CrossRef Looney L, Monaghan J, O’Reilly P, Taplin D. The turning of an Al/Sic metal-matrix composite. J Mater Process Technol. 1992;33(4):453–68.CrossRef
54.
go back to reference Chou YK, Liu J. CVD diamond tool performance in metal matrix composite machining. Surf Coat Technol. 2005;200(5):1872–8.CrossRef Chou YK, Liu J. CVD diamond tool performance in metal matrix composite machining. Surf Coat Technol. 2005;200(5):1872–8.CrossRef
55.
go back to reference D’Errico G, Calzavarini R. Turning of metal matrix composites. J Mater Process Technol. 2001;119(1):257–60.CrossRef D’Errico G, Calzavarini R. Turning of metal matrix composites. J Mater Process Technol. 2001;119(1):257–60.CrossRef
56.
go back to reference Andrewes CJ, Feng H-Y, Lau W. Machining of an aluminum/Sic composite using diamond inserts. J Mater Process Technol. 2000;102(1):25–9.CrossRef Andrewes CJ, Feng H-Y, Lau W. Machining of an aluminum/Sic composite using diamond inserts. J Mater Process Technol. 2000;102(1):25–9.CrossRef
57.
go back to reference Hung N, Loh N, Xu Z. Cumulative tool wear in machining metal matrix composites part II: machinability. J Mater Process Technol. 1996;58(1):114–20.CrossRef Hung N, Loh N, Xu Z. Cumulative tool wear in machining metal matrix composites part II: machinability. J Mater Process Technol. 1996;58(1):114–20.CrossRef
58.
go back to reference Weinert K, König W. A consideration of tool wear mechanism when machining metal matrix composites (MMC). CIRP Ann Manuf Technol. 1993;42(1):95–8.CrossRef Weinert K, König W. A consideration of tool wear mechanism when machining metal matrix composites (MMC). CIRP Ann Manuf Technol. 1993;42(1):95–8.CrossRef
59.
go back to reference Hooper R, Henshall J, Klopfer A. The wear of polycrystalline diamond tools used in the cutting of metal matrix composites. Int J Refract Metal Hard Mater. 1999;17(1):103–9.CrossRef Hooper R, Henshall J, Klopfer A. The wear of polycrystalline diamond tools used in the cutting of metal matrix composites. Int J Refract Metal Hard Mater. 1999;17(1):103–9.CrossRef
60.
go back to reference Chambers A. The machinability of light alloy MMCs. Compos A Appl Sci Manuf. 1996;27(2):143–7.CrossRef Chambers A. The machinability of light alloy MMCs. Compos A Appl Sci Manuf. 1996;27(2):143–7.CrossRef
61.
go back to reference Ferreira J, Coppini N, Miranda G. Machining optimisation in carbon fibre reinforced composite materials. J Mater Process Technol. 1999;92:135–40.CrossRef Ferreira J, Coppini N, Miranda G. Machining optimisation in carbon fibre reinforced composite materials. J Mater Process Technol. 1999;92:135–40.CrossRef
62.
go back to reference Neo K, Rahman M, Li X, Khoo H, Sawa M, Maeda Y. Performance evaluation of pure CBN tools for machining of steel. J Mater Process Technol. 2003;140(1):326–31.CrossRef Neo K, Rahman M, Li X, Khoo H, Sawa M, Maeda Y. Performance evaluation of pure CBN tools for machining of steel. J Mater Process Technol. 2003;140(1):326–31.CrossRef
63.
go back to reference Rahman M, San Wong Y, Zareena AR. Machinability of titanium alloys. JSME Int J Ser C Mech Syst Mach Elem Manuf. 2003; 46(1):107–15. Rahman M, San Wong Y, Zareena AR. Machinability of titanium alloys. JSME Int J Ser C Mech Syst Mach Elem Manuf. 2003; 46(1):107–15.
64.
go back to reference Yanming Q, Zehua Z. Tool wear and its mechanism for cutting sic particle-reinforced aluminium matrix composites. J Mater Process Technol. 2000;100(1):194–9.CrossRef Yanming Q, Zehua Z. Tool wear and its mechanism for cutting sic particle-reinforced aluminium matrix composites. J Mater Process Technol. 2000;100(1):194–9.CrossRef
65.
go back to reference Huang Y, Liang SY. Modeling of CBN tool flank wear progression in finish hard turning. Trans. Am. Soc. Mech. Eng. J. Manuf. Sci. Eng. 2004;126(1):98–106. Huang Y, Liang SY. Modeling of CBN tool flank wear progression in finish hard turning. Trans. Am. Soc. Mech. Eng. J. Manuf. Sci. Eng. 2004;126(1):98–106.
66.
go back to reference Zhang Z, Zhang L, Mai Y-W. The running-in wear of a steel/SICp-Al composite system. Wear. 1996;194(1–2):38–43.CrossRef Zhang Z, Zhang L, Mai Y-W. The running-in wear of a steel/SICp-Al composite system. Wear. 1996;194(1–2):38–43.CrossRef
Metadata
Title
Metal Matrix Composites
Authors
Hossam A. Kishawy
Ali Hosseini
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-95966-5_5

Premium Partners