Skip to main content
Top
Published in:

2024 | OriginalPaper | Chapter

Metal Nanoparticles on Molecularly Modified Surfaces and Their Application in Catalysis

Authors : Yuyan Zhang, Alexis Bordet

Published in: Surface Functionalized Metal Catalysts

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The development and understanding of catalytic systems composed of metal nanoparticles (MNPs) on molecularly modified surfaces (MMSs) have attracted tremendous attention in the field of materials chemistry in recent years, especially for applications in catalysis where it opened a conceptually new strategy for the design of multifunctional catalysts (MNPs@MMSs) with tailor-made reactivity. MNPs@MMSs are hybrid materials assembled through judicious associations of supports, molecular modifiers, and MNPs, using a combination of molecular (“homogeneous”) and material (“heterogeneous”) approaches. These complex yet fascinating materials have shown great potential in catalysis, where the synergistic interactions between MNPs@MMSs components provide important benefits including for example enhanced catalytic performance (e.g., activity, selectivity) and improved life-time. Thus, MNPs@MMSs stimulate interdisciplinary research activities involving organometallic chemistry, material science, synthetic organic chemistry, and catalysis. This chapter presents a non-exhaustive overview of the various methods available to prepare and characterize MNPs@MMSs materials, and provides selected examples of the application of MNPs@MMSs to a wide range of catalytic transformations including reduction, oxidation, and coupling reactions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Clark JH, Macquarrie DJ (1998) Catalysis of liquid phase organic reactions using chemically modified mesoporous inorganic solids. Chem Commun:853–860 Clark JH, Macquarrie DJ (1998) Catalysis of liquid phase organic reactions using chemically modified mesoporous inorganic solids. Chem Commun:853–860
2.
go back to reference Notestein JM, Katz A (2006) Enhancing Heterogeneous Catalysis through Cooperative Hybrid Organic–Inorganic Interfaces. Chem A Eur J 12:3954–3965 Notestein JM, Katz A (2006) Enhancing Heterogeneous Catalysis through Cooperative Hybrid Organic–Inorganic Interfaces. Chem A Eur J 12:3954–3965
3.
go back to reference Kickelbick G (2006) Hybrid materials, synthesis characterization, and applications. Wiley-VCH, Weinheim Kickelbick G (2006) Hybrid materials, synthesis characterization, and applications. Wiley-VCH, Weinheim
4.
go back to reference Díaz U, Brunel D, Corma A (2013) Catalysis using multifunctional organosiliceous hybrid materials. Chem Soc Rev 42:4083–4097PubMed Díaz U, Brunel D, Corma A (2013) Catalysis using multifunctional organosiliceous hybrid materials. Chem Soc Rev 42:4083–4097PubMed
5.
go back to reference Ye R, Zhao J, Wickemeyer BB, Toste FD, Somorjai GA (2018) Foundations and strategies of the construction of hybrid catalysts for optimized performances. Nat Catal 1:318–325 Ye R, Zhao J, Wickemeyer BB, Toste FD, Somorjai GA (2018) Foundations and strategies of the construction of hybrid catalysts for optimized performances. Nat Catal 1:318–325
6.
go back to reference Katz A, Davis ME (2000) Molecular imprinting of bulk, microporous silica. Nature 403:286–289PubMed Katz A, Davis ME (2000) Molecular imprinting of bulk, microporous silica. Nature 403:286–289PubMed
7.
go back to reference Haumann M, Wasserscheid P (2014) SILP and SCILL catalysis. Royal Society of Chemistry Haumann M, Wasserscheid P (2014) SILP and SCILL catalysis. Royal Society of Chemistry
8.
go back to reference Bordet A, Leitner W (2021) Metal nanoparticles immobilized on molecularly modified surfaces: versatile catalytic systems for controlled hydrogenation and hydrogenolysis. Acc Chem Res 54:2144PubMedPubMedCentral Bordet A, Leitner W (2021) Metal nanoparticles immobilized on molecularly modified surfaces: versatile catalytic systems for controlled hydrogenation and hydrogenolysis. Acc Chem Res 54:2144PubMedPubMedCentral
9.
go back to reference Migowski P, Luska KL, Leitner W (2016) Prechtl MHG (ed) Nanocatalysis in ionic liquids. Wiley VCH, Weinheim Migowski P, Luska KL, Leitner W (2016) Prechtl MHG (ed) Nanocatalysis in ionic liquids. Wiley VCH, Weinheim
10.
go back to reference Jiang T, Zhou Y, Liang S, Liu H, Han B (2009) Hydrogenolysis of glycerol catalyzed by Ru-cu bimetallic catalysts supported on clay with the aid of ionic liquids. Green Chem 11:1000–1006 Jiang T, Zhou Y, Liang S, Liu H, Han B (2009) Hydrogenolysis of glycerol catalyzed by Ru-cu bimetallic catalysts supported on clay with the aid of ionic liquids. Green Chem 11:1000–1006
11.
go back to reference van den Berg R, Parmentier TE, Elkjaer CF, Gommes CJ, Sehested J, Helveg S, de Jongh PE, de Jong KP (2015) Support functionalization to Retard Ostwald Ripening in copper methanol synthesis catalysts. ACS Catal 5:4439–4448 van den Berg R, Parmentier TE, Elkjaer CF, Gommes CJ, Sehested J, Helveg S, de Jongh PE, de Jong KP (2015) Support functionalization to Retard Ostwald Ripening in copper methanol synthesis catalysts. ACS Catal 5:4439–4448
12.
go back to reference van Deelen TW, Mejìa CH, de Jong KP (2019) Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat Catal 2:955–970 van Deelen TW, Mejìa CH, de Jong KP (2019) Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat Catal 2:955–970
13.
go back to reference Bordet A, Moos G, Welsh C, Licence P, Luska KL, Leitner W (2020) Molecular control of the catalytic properties of rhodium nanoparticles in supported ionic liquid phase (SILP) systems. ACS Catal 10:13904–13912PubMedPubMedCentral Bordet A, Moos G, Welsh C, Licence P, Luska KL, Leitner W (2020) Molecular control of the catalytic properties of rhodium nanoparticles in supported ionic liquid phase (SILP) systems. ACS Catal 10:13904–13912PubMedPubMedCentral
14.
go back to reference Barsbay M, Özgür TC, Sütekin SD, Güven A (2020) Effect of brush length of stabilizing grafted matrix on size and catalytic activity of metal nanoparticles. Eur Polym J 134:109811 Barsbay M, Özgür TC, Sütekin SD, Güven A (2020) Effect of brush length of stabilizing grafted matrix on size and catalytic activity of metal nanoparticles. Eur Polym J 134:109811
15.
go back to reference Barlocco I, Bellomi S, Delgado JJ, Chen X, Prati L, Dimitratos N, Roldan A, Villa A (2021) Enhancing activity, selectivity and stability of palladium catalysts in formic acid decomposition: effect of support functionalization. Catal Today 382:61–70 Barlocco I, Bellomi S, Delgado JJ, Chen X, Prati L, Dimitratos N, Roldan A, Villa A (2021) Enhancing activity, selectivity and stability of palladium catalysts in formic acid decomposition: effect of support functionalization. Catal Today 382:61–70
16.
go back to reference Boniface KJ, Dykeman RR, Cormier A, Wang H-B, Mercer SM, Liu G, Cunningham MF, Jessop PG (2016) CO2-switchable drying agents. Green Chem 18:208–213 Boniface KJ, Dykeman RR, Cormier A, Wang H-B, Mercer SM, Liu G, Cunningham MF, Jessop PG (2016) CO2-switchable drying agents. Green Chem 18:208–213
17.
go back to reference Kacem S, Emondts M, Bordet A, Leitner W (2020) Selective hydrogenation of fluorinated arenes using rhodium nanoparticles on molecularly modified silica. Cat Sci Technol 10:8120–8126 Kacem S, Emondts M, Bordet A, Leitner W (2020) Selective hydrogenation of fluorinated arenes using rhodium nanoparticles on molecularly modified silica. Cat Sci Technol 10:8120–8126
18.
go back to reference Luska KL, Julis J, Stavitski E, Zakharov DN, Adams A, Leitner W (2014) Bifunctional nanoparticle–SILP catalysts (MNPs@SILP) for the selective deoxygenation of biomass substrates. Chem Sci 5:4895–4905 Luska KL, Julis J, Stavitski E, Zakharov DN, Adams A, Leitner W (2014) Bifunctional nanoparticle–SILP catalysts (MNPs@SILP) for the selective deoxygenation of biomass substrates. Chem Sci 5:4895–4905
19.
go back to reference Wang Y, Rong Z, Wang Y, Wang T, Du Q, Wang Y, Qu J (2017) Graphene-based metal/acid bifunctional catalyst for the conversion of levulinic acid to γ-valerolactone. ACS Sustain Chem Eng 5:1538–1548 Wang Y, Rong Z, Wang Y, Wang T, Du Q, Wang Y, Qu J (2017) Graphene-based metal/acid bifunctional catalyst for the conversion of levulinic acid to γ-valerolactone. ACS Sustain Chem Eng 5:1538–1548
20.
go back to reference Coan PD, Griffin MB, Ciesielski PN, Medlin JW (2019) Phosphonic acid modifiers for enhancing selective hydrodeoxygenation over Pt catalysts: the role of the catalyst support. J Catal 372:311–320 Coan PD, Griffin MB, Ciesielski PN, Medlin JW (2019) Phosphonic acid modifiers for enhancing selective hydrodeoxygenation over Pt catalysts: the role of the catalyst support. J Catal 372:311–320
21.
go back to reference Vansant EF, Van Der Voort P, Vrancken KC (1995) Characterization and chemical modification of the silica surface.1st edn. Elsevier, p 93 Vansant EF, Van Der Voort P, Vrancken KC (1995) Characterization and chemical modification of the silica surface.1st edn. Elsevier, p 93
22.
go back to reference Notestein JM, Katz A (2006) Enhancing heterogeneous catalysis through cooperative hybrid organic–inorganic interfaces. Chem A Eur J 12:3954–3965 Notestein JM, Katz A (2006) Enhancing heterogeneous catalysis through cooperative hybrid organic–inorganic interfaces. Chem A Eur J 12:3954–3965
23.
go back to reference Jung H-S, Moon D-S, Lee J-K (2012) Quantitative analysis and efficient surface modification of silica nanoparticles. J Nanomat:593471 Jung H-S, Moon D-S, Lee J-K (2012) Quantitative analysis and efficient surface modification of silica nanoparticles. J Nanomat:593471
24.
go back to reference Kickelbick G, Schubert U (2003) Organic functionalization of metal oxide nanoparticles. In: Baraton MI (ed) Synthesis, functionalization and surface treatment of nanoparticles. Stevenson Ranch, p 91 Kickelbick G, Schubert U (2003) Organic functionalization of metal oxide nanoparticles. In: Baraton MI (ed) Synthesis, functionalization and surface treatment of nanoparticles. Stevenson Ranch, p 91
25.
go back to reference Neouze M-A, Schubert U (2008) Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatsh Chem 139:183–195 Neouze M-A, Schubert U (2008) Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatsh Chem 139:183–195
26.
go back to reference Pujari SP, Scheres L, Marcelis ATM, Zuilhof H (2014) Covalent surface modification of oxide surfaces. Angew Chem Int Ed 53:6322–6356 Pujari SP, Scheres L, Marcelis ATM, Zuilhof H (2014) Covalent surface modification of oxide surfaces. Angew Chem Int Ed 53:6322–6356
27.
go back to reference Martinez C, Corma A (2011) Inorganic molecular sieves: preparation, modification and industrial application in catalytic processes. Coord Chem Rev 255:1558–1580 Martinez C, Corma A (2011) Inorganic molecular sieves: preparation, modification and industrial application in catalytic processes. Coord Chem Rev 255:1558–1580
28.
go back to reference de Gennaro B (2019) Surface modification of zeolites for environmental applications. In: Modified clay and zeolite nanocomposite materials. Elsevier, pp 57–85 de Gennaro B (2019) Surface modification of zeolites for environmental applications. In: Modified clay and zeolite nanocomposite materials. Elsevier, pp 57–85
29.
go back to reference Bahmanzadegan F, Ghaemi A (2024) Modification and functionalization of zeolites to improve the efficiency of CO2 adsorption: a review. Case Studies in Chemical and Environmental Engineering 9:100564 Bahmanzadegan F, Ghaemi A (2024) Modification and functionalization of zeolites to improve the efficiency of CO2 adsorption: a review. Case Studies in Chemical and Environmental Engineering 9:100564
30.
go back to reference Fang W, Zhang Y, Kang L, DeBeer S, Leitner W, Bordet A, Riisager A. Molecularly modified aluminum phosphates as support materials for Ru nanoparticles in selective hydrogenation. Under review Fang W, Zhang Y, Kang L, DeBeer S, Leitner W, Bordet A, Riisager A. Molecularly modified aluminum phosphates as support materials for Ru nanoparticles in selective hydrogenation. Under review
31.
go back to reference Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136PubMed Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136PubMed
32.
go back to reference Yu W, Sisi L, Haiyan Y, Jie L (2020) Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv 10:15328–15345PubMedPubMedCentral Yu W, Sisi L, Haiyan Y, Jie L (2020) Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv 10:15328–15345PubMedPubMedCentral
33.
go back to reference Rathinavel S, Priyadharshini K, Panda D (2021) A review on carbon nanotube: an overview of synthesis, properties, functionalization, characterization, and the application. Mater Sci Eng B 268:115095 Rathinavel S, Priyadharshini K, Panda D (2021) A review on carbon nanotube: an overview of synthesis, properties, functionalization, characterization, and the application. Mater Sci Eng B 268:115095
34.
go back to reference Wang S, Morris W, Liu Y, McGuirk CM, Zhou Y, Hupp JT, Farha OK, Mirkin CA (2015) Surface-specific functionalization of nanoscale metal–organic frameworks. Angew Chem Int Ed 54:14738–14742 Wang S, Morris W, Liu Y, McGuirk CM, Zhou Y, Hupp JT, Farha OK, Mirkin CA (2015) Surface-specific functionalization of nanoscale metal–organic frameworks. Angew Chem Int Ed 54:14738–14742
35.
go back to reference Forgan RS (2019) The surface chemistry of metal–organic frameworks and their applications. Dalton Trans 48:9037–9042PubMed Forgan RS (2019) The surface chemistry of metal–organic frameworks and their applications. Dalton Trans 48:9037–9042PubMed
36.
go back to reference Zhang W, Yang G, Deng F, Liang J, Huang Q, Dou J, Liu M, Cao Q-Y, Zhang Y, Wei Y (2022) Direct grafting of cellulose nanocrystals with poly(ionic liquids) via gamma-ray irradiation and their utilization for adsorptive removal of CR. Int J Biol Macromol 194:1029–1037PubMed Zhang W, Yang G, Deng F, Liang J, Huang Q, Dou J, Liu M, Cao Q-Y, Zhang Y, Wei Y (2022) Direct grafting of cellulose nanocrystals with poly(ionic liquids) via gamma-ray irradiation and their utilization for adsorptive removal of CR. Int J Biol Macromol 194:1029–1037PubMed
37.
go back to reference Singh A, Singh N, Kaur N, Jang DO (2022) Gold nanoparticles supported on ionic-liquid-functionalized cellulose (au@CIL): a heterogeneous catalyst for the selective reduction of aromatic nitro compounds. Appl Organomet Chem 36:e6855 Singh A, Singh N, Kaur N, Jang DO (2022) Gold nanoparticles supported on ionic-liquid-functionalized cellulose (au@CIL): a heterogeneous catalyst for the selective reduction of aromatic nitro compounds. Appl Organomet Chem 36:e6855
38.
go back to reference Ikram M, Haider A, Imran M, Haider J, Naz S, Ul-Hamid A, Shahzadi A, Moeen S, Nazir G, Nabgan W, Bashir A, Ali S (2023) Cellulose grafted poly acrylic acid doped manganese oxide nanorods as novel platform for catalytic, antibacterial activity and molecular docking analysis. Surf Interfaces 37:102710 Ikram M, Haider A, Imran M, Haider J, Naz S, Ul-Hamid A, Shahzadi A, Moeen S, Nazir G, Nabgan W, Bashir A, Ali S (2023) Cellulose grafted poly acrylic acid doped manganese oxide nanorods as novel platform for catalytic, antibacterial activity and molecular docking analysis. Surf Interfaces 37:102710
39.
go back to reference Hetemi D, Pinson J (2017) Surface functionalization of polymers. Chem Soc Rev 46:5701–5713PubMed Hetemi D, Pinson J (2017) Surface functionalization of polymers. Chem Soc Rev 46:5701–5713PubMed
40.
go back to reference Yadav R, Baskaran T, Kaiprathu A, Ahmed M, Bhosale SV, Joseph S, Al-Muhtaseb AH, Singh G, Sakthivel A, Vinu A (2020) Recent advances in the preparation and applications of organo-functionalized porous materials. Chem Asian J 15:2588–2621PubMed Yadav R, Baskaran T, Kaiprathu A, Ahmed M, Bhosale SV, Joseph S, Al-Muhtaseb AH, Singh G, Sakthivel A, Vinu A (2020) Recent advances in the preparation and applications of organo-functionalized porous materials. Chem Asian J 15:2588–2621PubMed
41.
go back to reference Xin B, Hao J (2014) Imidazolium-based ionic liquids grafted on solid surfaces. Chem Soc Rev 43:7171–7187PubMed Xin B, Hao J (2014) Imidazolium-based ionic liquids grafted on solid surfaces. Chem Soc Rev 43:7171–7187PubMed
42.
go back to reference Mévellec V, Roussel S, Tessier L, Chancolon J, M. Mayne-L’Hermite, G. Deniau, P. Viel, S. Palacin. (2007) Grafting polymers on surfaces: a new powerful and versatile diazonium salt-based one-step process in aqueous media. Chem Mater 19:6323–6330 Mévellec V, Roussel S, Tessier L, Chancolon J, M. Mayne-L’Hermite, G. Deniau, P. Viel, S. Palacin. (2007) Grafting polymers on surfaces: a new powerful and versatile diazonium salt-based one-step process in aqueous media. Chem Mater 19:6323–6330
43.
go back to reference Blacha A, Krukiewicz K, Zak J (2011) The covalent grafting of polymers to the solid surface. Chemik 65:11–19 Blacha A, Krukiewicz K, Zak J (2011) The covalent grafting of polymers to the solid surface. Chemik 65:11–19
44.
go back to reference Coperet C, Comas-Vives A, Conley MP, Estes DP, Fedorov A, Mougel V, Nagae H, Núnez-Zanur F, Zhizhko PA (2016) Surface organometallic and coordination chemistry toward single-site heterogeneous catalysts: strategies, methods, structures, and activities. Chem Rev 116:323–421PubMed Coperet C, Comas-Vives A, Conley MP, Estes DP, Fedorov A, Mougel V, Nagae H, Núnez-Zanur F, Zhizhko PA (2016) Surface organometallic and coordination chemistry toward single-site heterogeneous catalysts: strategies, methods, structures, and activities. Chem Rev 116:323–421PubMed
45.
go back to reference Samantaray MK, Pump E, Bendjeriou-Sedjerari A, D’Elia V, Pelletier JDA, Guidotti M, Psaro R, Basset J-M (2018) Surface organometallic chemistry in heterogeneous catalysis. Chem Soc Rev 47:8403–8437PubMed Samantaray MK, Pump E, Bendjeriou-Sedjerari A, D’Elia V, Pelletier JDA, Guidotti M, Psaro R, Basset J-M (2018) Surface organometallic chemistry in heterogeneous catalysis. Chem Soc Rev 47:8403–8437PubMed
46.
go back to reference Sanchez C, Ribot F, Lebeau B (1999) Molecular design of hybrid organic–inorganic nanocomposites synthesized via sol–gel chemistry. J Mater Chem 9:35–44 Sanchez C, Ribot F, Lebeau B (1999) Molecular design of hybrid organic–inorganic nanocomposites synthesized via sol–gel chemistry. J Mater Chem 9:35–44
47.
go back to reference Hutchings GJ, Védrine JC (2003) Heterogeneous catalyst preparation. In: Basic principles in applies catalysis. Springer, Berlin. GmbH Hutchings GJ, Védrine JC (2003) Heterogeneous catalyst preparation. In: Basic principles in applies catalysis. Springer, Berlin. GmbH
48.
go back to reference de Jong KP (2009) Synthesis of solid catalysts. Wiley-VCH, Weinheim de Jong KP (2009) Synthesis of solid catalysts. Wiley-VCH, Weinheim
49.
go back to reference Bénard J, Berthier Y, Delarnare F, Hondros E, Huber M, Marcus P, Masson A, Oudar J, Rhead GE (1983) Equilibrium adsorption and surface segregation. Stud Surf Sci Catal 13:44–99 Bénard J, Berthier Y, Delarnare F, Hondros E, Huber M, Marcus P, Masson A, Oudar J, Rhead GE (1983) Equilibrium adsorption and surface segregation. Stud Surf Sci Catal 13:44–99
50.
go back to reference Cremer T, Killian M, Gottfried JM, Paape N, Wasserscheid P, Maier F, Steinrück H-P (2008) Physical vapor deposition of [EMIM][Tf2N]: a new approach to the modification of surface properties with ultrathin ionic liquid films. ChemPhysChem 9:2185–2190PubMed Cremer T, Killian M, Gottfried JM, Paape N, Wasserscheid P, Maier F, Steinrück H-P (2008) Physical vapor deposition of [EMIM][Tf2N]: a new approach to the modification of surface properties with ultrathin ionic liquid films. ChemPhysChem 9:2185–2190PubMed
51.
go back to reference Sobota M, Schmid M, Happel M, Amende M, Maier F, Steinruck HP, Paape N, Wasserscheid P, Laurin M, Gottfried JM, Libuda J (2010) Ionic liquid based model catalysis: interaction of [BMIM][Tf2N] with Pd nanoparticles supported on an ordered alumina film. Phys Chem Chem Phys 12:10610–10621PubMed Sobota M, Schmid M, Happel M, Amende M, Maier F, Steinruck HP, Paape N, Wasserscheid P, Laurin M, Gottfried JM, Libuda J (2010) Ionic liquid based model catalysis: interaction of [BMIM][Tf2N] with Pd nanoparticles supported on an ordered alumina film. Phys Chem Chem Phys 12:10610–10621PubMed
52.
go back to reference Obst M, Arnauts G, Cruz AJ, Gonzalez MC, Marcoen K, Hauffman T, Ameloot R (2021) Chemical vapor deposition of ionic liquids for the fabrication of Ionogel films and patterns. Angew Chem Int Ed 60:25668–25673 Obst M, Arnauts G, Cruz AJ, Gonzalez MC, Marcoen K, Hauffman T, Ameloot R (2021) Chemical vapor deposition of ionic liquids for the fabrication of Ionogel films and patterns. Angew Chem Int Ed 60:25668–25673
53.
go back to reference Gaspard JP (1982) Physisorption and chemisorption. In: Mutaftschiev B (ed) Interfacial aspects of phase transformations. NATO advanced study institutes series, vol 87. Springer, Dordrecht Gaspard JP (1982) Physisorption and chemisorption. In: Mutaftschiev B (ed) Interfacial aspects of phase transformations. NATO advanced study institutes series, vol 87. Springer, Dordrecht
54.
go back to reference Bellmann C (2008) Surface modification by adsorption of polymers and surfactants. In: Stamm M (ed) Polymer surfaces and interfaces. Springer, Berlin Bellmann C (2008) Surface modification by adsorption of polymers and surfactants. In: Stamm M (ed) Polymer surfaces and interfaces. Springer, Berlin
55.
go back to reference Brzoska JB, Azouz IB, Rondelez F (1994) Silanization of solid substrates: a step toward reproducibility. Langmuir 10:4367–4373 Brzoska JB, Azouz IB, Rondelez F (1994) Silanization of solid substrates: a step toward reproducibility. Langmuir 10:4367–4373
56.
go back to reference Velasco-Santos C, Martínez-Hernández AL, Castano VM (2010) Silanization of carbon nanotubes: surface modification and polymer nanocomposites. IntechOpen Velasco-Santos C, Martínez-Hernández AL, Castano VM (2010) Silanization of carbon nanotubes: surface modification and polymer nanocomposites. IntechOpen
57.
go back to reference Speranza G (2019) The role of functionalization in the applications of carbon materials: an overview. J Carbon Res 5:84 Speranza G (2019) The role of functionalization in the applications of carbon materials: an overview. J Carbon Res 5:84
58.
go back to reference Ranjan R, Brittain WJ (2011) Combination of living radical polymerization and click chemistry for surface modification. J Mater Chem 21:16717–16734 Ranjan R, Brittain WJ (2011) Combination of living radical polymerization and click chemistry for surface modification. J Mater Chem 21:16717–16734
59.
go back to reference Panzarasa G, Aghion S, Marra G, Wagner A, Liedke MO, Elsayed M, Krause-Rehberg R, Ferragut R, Consolati G (2017) Probing the impact of the initiator layer on grafted-from polymer brushes: a positron annihilation spectroscopy study. Macromolecules 50:5574–5581 Panzarasa G, Aghion S, Marra G, Wagner A, Liedke MO, Elsayed M, Krause-Rehberg R, Ferragut R, Consolati G (2017) Probing the impact of the initiator layer on grafted-from polymer brushes: a positron annihilation spectroscopy study. Macromolecules 50:5574–5581
60.
go back to reference Wight AP, Davis ME (2002) Design and preparation of organic-inorganic hybrid catalysts. Chem Rev 102:3589–3614PubMed Wight AP, Davis ME (2002) Design and preparation of organic-inorganic hybrid catalysts. Chem Rev 102:3589–3614PubMed
61.
go back to reference Angloher S, Bein T (2005) Organic functionalization of mesoporous silica. Stud Surf Sci Catal 158(Part B):2017–2026 Angloher S, Bein T (2005) Organic functionalization of mesoporous silica. Stud Surf Sci Catal 158(Part B):2017–2026
62.
go back to reference Ban C, George SM (2016) Molecular layer deposition for surface modification of lithium-ion battery electrodes. Adv Mater Interfaces 3:1600762 Ban C, George SM (2016) Molecular layer deposition for surface modification of lithium-ion battery electrodes. Adv Mater Interfaces 3:1600762
63.
go back to reference Allongue P, Delamar M, Desbat B, Fagebaume O, Hitmi R, Pinson J, Savéant J-M (1997) Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. J Am Chem Soc 119:201–207 Allongue P, Delamar M, Desbat B, Fagebaume O, Hitmi R, Pinson J, Savéant J-M (1997) Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. J Am Chem Soc 119:201–207
64.
go back to reference Chehimi MM (2012) Aryl diazonium salts. In: New coupling agents in polymer and surface science. Wiley-VCH, Weinheim Chehimi MM (2012) Aryl diazonium salts. In: New coupling agents in polymer and surface science. Wiley-VCH, Weinheim
65.
go back to reference Dyke CA, Tour JM (2003) Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano Lett 3:1215–1218 Dyke CA, Tour JM (2003) Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano Lett 3:1215–1218
66.
go back to reference Busson M, Berisha A, Combellas C, Kanoufi F, Pinson J (2011) Photochemical grafting of diazonium salts on metals. Chem Commun 47:12631 Busson M, Berisha A, Combellas C, Kanoufi F, Pinson J (2011) Photochemical grafting of diazonium salts on metals. Chem Commun 47:12631
67.
go back to reference Delgado JL, de la Cruz P, Langa F, Urbina A, Casado J, López Navarrete JT (2004) Microwave-assisted sidewall functionalization of single-sall carbon nanotubes by Diels–Alder cycloaddition. Chem Commun:1734–1735 Delgado JL, de la Cruz P, Langa F, Urbina A, Casado J, López Navarrete JT (2004) Microwave-assisted sidewall functionalization of single-sall carbon nanotubes by Diels–Alder cycloaddition. Chem Commun:1734–1735
68.
go back to reference Ismaili H, Geng D, Sun AX, Kantzas TT, Workentin MS (2011) Light-activated covalent formation of gold nanoparticle–graphene and gold nanoparticle–glass composites. Langmuir 27:13261–13268PubMed Ismaili H, Geng D, Sun AX, Kantzas TT, Workentin MS (2011) Light-activated covalent formation of gold nanoparticle–graphene and gold nanoparticle–glass composites. Langmuir 27:13261–13268PubMed
69.
go back to reference Criado A, Melchionna M, Marchesan S, Prato M (2015) The covalent functionalization of graphene on substrates. Angew Chem Int Ed 54:10734–10750 Criado A, Melchionna M, Marchesan S, Prato M (2015) The covalent functionalization of graphene on substrates. Angew Chem Int Ed 54:10734–10750
70.
go back to reference Kalsi D, Loui Anandaraj SJ, Durai M, Weidenthaler C, Emondts M, Nolan SP, Bordet A, Leitner W (2022) One-pot multicomponent synthesis of allyl and alkylamines using a catalytic system composed of ruthenium nanoparticles on copper N-heterocyclic carbene-modified silica. ACS Catal 12:14902–14910 Kalsi D, Loui Anandaraj SJ, Durai M, Weidenthaler C, Emondts M, Nolan SP, Bordet A, Leitner W (2022) One-pot multicomponent synthesis of allyl and alkylamines using a catalytic system composed of ruthenium nanoparticles on copper N-heterocyclic carbene-modified silica. ACS Catal 12:14902–14910
71.
go back to reference Jiang Y, Wang Z, Zhu Z, He M, Zhou P (1800) Effective removal of humic acid by Zr-MOFs with surface modification. Water 2022:14 Jiang Y, Wang Z, Zhu Z, He M, Zhou P (1800) Effective removal of humic acid by Zr-MOFs with surface modification. Water 2022:14
72.
go back to reference Lelli M, Gajan D, Lesage A, Caporini MA, Vitzthum V, Miéville P, Héroguel F, Rascaon F, Roussey A, Thieuleux C, Boualleg M, Veyre L, Bodenhausen G, Coperet C, Emsley L (2011) Fast characterization of functionalized silica materials by silicon-29 surface-enhanced NMR spectroscopy using dynamic nuclear polarization. J Am Chem Soc 133(7):2104–2107PubMed Lelli M, Gajan D, Lesage A, Caporini MA, Vitzthum V, Miéville P, Héroguel F, Rascaon F, Roussey A, Thieuleux C, Boualleg M, Veyre L, Bodenhausen G, Coperet C, Emsley L (2011) Fast characterization of functionalized silica materials by silicon-29 surface-enhanced NMR spectroscopy using dynamic nuclear polarization. J Am Chem Soc 133(7):2104–2107PubMed
73.
go back to reference Macdonald PM, Damha MJ, Ganeshan K, Braich R, Zabarylo SV (1996) Phosphorus 31 solid state NMR characterization of oligonucleotides covalently bound to a solid support. Nucleic Acids Res 24:2868–2876PubMedPubMedCentral Macdonald PM, Damha MJ, Ganeshan K, Braich R, Zabarylo SV (1996) Phosphorus 31 solid state NMR characterization of oligonucleotides covalently bound to a solid support. Nucleic Acids Res 24:2868–2876PubMedPubMedCentral
74.
go back to reference Zhang G, Tsujimoto M, Packwood D, Duong NT, Nishiyama Y, Kadota K, Kitagawa S, Horike S (2018) Construction of a hierarchical architecture of covalent organic frameworks via a postsynthetic approach. J Am Chem Soc 140:2602–2609PubMed Zhang G, Tsujimoto M, Packwood D, Duong NT, Nishiyama Y, Kadota K, Kitagawa S, Horike S (2018) Construction of a hierarchical architecture of covalent organic frameworks via a postsynthetic approach. J Am Chem Soc 140:2602–2609PubMed
75.
go back to reference Tavera-Méndez C-L, Bergen A, Trzeciak S, Heinemann FW, Graf R, Zahn D, Meyer K, Hartmann M, Wisser D (2023) Self-assembled supported ionic liquids. Chem A Eur J:e202303673 Tavera-Méndez C-L, Bergen A, Trzeciak S, Heinemann FW, Graf R, Zahn D, Meyer K, Hartmann M, Wisser D (2023) Self-assembled supported ionic liquids. Chem A Eur J:e202303673
76.
go back to reference Lovelock KRJ, Villar-Garcia IJ, Maier F, Steinrück H-P, Licence P (2010) Photoelectron spectroscopy of ionic liquid-based interfaces. Chem Rev 110:5158–5190PubMed Lovelock KRJ, Villar-Garcia IJ, Maier F, Steinrück H-P, Licence P (2010) Photoelectron spectroscopy of ionic liquid-based interfaces. Chem Rev 110:5158–5190PubMed
77.
go back to reference Steinrück H-P (2012) Recent developments in the study of ionic liquid interfaces using X-ray photoelectron spectroscopy and potential future directions. Phys Chem Chem Phys 14:5010–5029PubMed Steinrück H-P (2012) Recent developments in the study of ionic liquid interfaces using X-ray photoelectron spectroscopy and potential future directions. Phys Chem Chem Phys 14:5010–5029PubMed
78.
go back to reference Yang Y, Guo Y, Yuan J, Xie H, Gao C, Zhao T, Zheng Q (2022) Agile construction of porous organic frameworks pending carboxylic acids and imidazolium-based ionic liquids for the efficient fixation of CO2 to cyclic carbonates. ACS Sustain Chem Eng 10(24):7990–8001 Yang Y, Guo Y, Yuan J, Xie H, Gao C, Zhao T, Zheng Q (2022) Agile construction of porous organic frameworks pending carboxylic acids and imidazolium-based ionic liquids for the efficient fixation of CO2 to cyclic carbonates. ACS Sustain Chem Eng 10(24):7990–8001
79.
go back to reference Jia C-J, Schüth F (2011) Colloidal metal nanoparticles as a component of designed catalyst. Phys Chem Chem Phys 13:2457–2487PubMed Jia C-J, Schüth F (2011) Colloidal metal nanoparticles as a component of designed catalyst. Phys Chem Chem Phys 13:2457–2487PubMed
80.
go back to reference Fiévet F, Ammar-Merah S, Brayner R, Chau F, Giraud M, Mammeri F, Peron J, Piquemal J-Y, Sicard L, Viau G (2018) The polyol process: a unique method for easy access to metal canoparticles with tailored sizes, shapes and compositions. Chem Soc Rev 47:5187–5233PubMed Fiévet F, Ammar-Merah S, Brayner R, Chau F, Giraud M, Mammeri F, Peron J, Piquemal J-Y, Sicard L, Viau G (2018) The polyol process: a unique method for easy access to metal canoparticles with tailored sizes, shapes and compositions. Chem Soc Rev 47:5187–5233PubMed
81.
go back to reference Guan H, Harris C, Sun S (2023) Metal–ligand interactions and their roles in controlling nanoparticle formation and functions. Acc Chem Res 56:1591–1601PubMed Guan H, Harris C, Sun S (2023) Metal–ligand interactions and their roles in controlling nanoparticle formation and functions. Acc Chem Res 56:1591–1601PubMed
82.
go back to reference Amiens C, Chaudret B, Ciuculescu-Pradines D, Collière V, Fajerwerg K, Fau P, Kahn M, Maisonnant A, Soulantica K, Philippot K (2013) Organometallic approach for the synthesis of nanostructures. New J Chem 37:3374–3401 Amiens C, Chaudret B, Ciuculescu-Pradines D, Collière V, Fajerwerg K, Fau P, Kahn M, Maisonnant A, Soulantica K, Philippot K (2013) Organometallic approach for the synthesis of nanostructures. New J Chem 37:3374–3401
83.
go back to reference Rossi LM, Fioro JL, Garcia MAS, Ferraz CP (2018) The role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts. Dalton Trans 47:5889–5915PubMed Rossi LM, Fioro JL, Garcia MAS, Ferraz CP (2018) The role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts. Dalton Trans 47:5889–5915PubMed
84.
go back to reference Khatri OP, Adachi K, Murase K, Okazaki K, Torimoto T, Tanaka N, Kuwabata S, Sugimura H (2008) elf-Assembly of ionic liquid (BMI-PF6)-stabilized gold nanoparticles on a silicon surface: chemical and structural aspects. Langmuir 24:7785–7792PubMed Khatri OP, Adachi K, Murase K, Okazaki K, Torimoto T, Tanaka N, Kuwabata S, Sugimura H (2008) elf-Assembly of ionic liquid (BMI-PF6)-stabilized gold nanoparticles on a silicon surface: chemical and structural aspects. Langmuir 24:7785–7792PubMed
85.
go back to reference Costa NJS, Rossi LM (2012) Synthesis of supported metal nanoparticle catalysts using ligand assisted methods. Nanoscale 4:5826–5834PubMed Costa NJS, Rossi LM (2012) Synthesis of supported metal nanoparticle catalysts using ligand assisted methods. Nanoscale 4:5826–5834PubMed
86.
go back to reference Wasserscheid P, Welton T (2008) Ionic liquids in synthesis. Wiley-VCH Verlag GmbH & Co. KGaA Wasserscheid P, Welton T (2008) Ionic liquids in synthesis. Wiley-VCH Verlag GmbH & Co. KGaA
87.
go back to reference Prechtl MHG, Campbell PS (2013) Metal oxide and bimetallic nanoparticles in ionic liquids: synthesis and application in multiphase catalysis. Nanotechnol Rev 2:577–595 Prechtl MHG, Campbell PS (2013) Metal oxide and bimetallic nanoparticles in ionic liquids: synthesis and application in multiphase catalysis. Nanotechnol Rev 2:577–595
88.
go back to reference Wegner S, Janiak C (2017) Metal nanoparticles in ionic liquids. Top Curr Chem 375:1–32 Wegner S, Janiak C (2017) Metal nanoparticles in ionic liquids. Top Curr Chem 375:1–32
89.
go back to reference Seitkalieva MM, Samoylenko DE, Lotsman KA, Rodygin KS, Ananikov VP (2021) Metal nanoparticles in ionic liquids: synthesis and catalytic applications. Coord Chem Rev 445:213982 Seitkalieva MM, Samoylenko DE, Lotsman KA, Rodygin KS, Ananikov VP (2021) Metal nanoparticles in ionic liquids: synthesis and catalytic applications. Coord Chem Rev 445:213982
90.
go back to reference Jacinto MJ, Kiyohara PK, Masunaga SH, Jardim RF, Rossi LM (2008) Recoverable rhodium nanoparticles: synthesis, characterization and catalytic performance in hydrogenation reactions. Appl Catal A: General 338:52–57 Jacinto MJ, Kiyohara PK, Masunaga SH, Jardim RF, Rossi LM (2008) Recoverable rhodium nanoparticles: synthesis, characterization and catalytic performance in hydrogenation reactions. Appl Catal A: General 338:52–57
91.
go back to reference Jacinto MJ, Landers R, Rossi LM (2009) Preparation of supported Pt(0) nanoparticles as efficient recyclable catalysts for hydrogenation of alkenes and ketones. Catal Commun 10:1971–1974 Jacinto MJ, Landers R, Rossi LM (2009) Preparation of supported Pt(0) nanoparticles as efficient recyclable catalysts for hydrogenation of alkenes and ketones. Catal Commun 10:1971–1974
92.
go back to reference Jacinto MJ, Silva FP, Kiyohara PK, Landers R, Rossi LM (2012) Catalyst recovery and recycling facilitated by magnetic separation: iridium and other metal nanoparticles. ChemCatChem 4:698–703 Jacinto MJ, Silva FP, Kiyohara PK, Landers R, Rossi LM (2012) Catalyst recovery and recycling facilitated by magnetic separation: iridium and other metal nanoparticles. ChemCatChem 4:698–703
93.
go back to reference Mourdikoudis S (2021) Reducing agents in colloidal nanoparticle synthesis. Nanoscience & nanotechnology series. Royal Society of Chemistry Mourdikoudis S (2021) Reducing agents in colloidal nanoparticle synthesis. Nanoscience & nanotechnology series. Royal Society of Chemistry
94.
go back to reference Martinez-Prieto LM, Chaudret B (2018) Organometallic ruthenium nanoparticles: synthesis, surface chemistry, and insights into ligand coordination. Acc Chem Res 51:376–384PubMed Martinez-Prieto LM, Chaudret B (2018) Organometallic ruthenium nanoparticles: synthesis, surface chemistry, and insights into ligand coordination. Acc Chem Res 51:376–384PubMed
95.
go back to reference Luska KL, Migowski P, El Sayed S, Leitner W (2015) Synergistic interaction within bifunctional ruthenium nanoparticle/SILP catalysts for the selective hydrodeoxygenation of phenols. Angew Chem Int Ed 54:15750–15755 Luska KL, Migowski P, El Sayed S, Leitner W (2015) Synergistic interaction within bifunctional ruthenium nanoparticle/SILP catalysts for the selective hydrodeoxygenation of phenols. Angew Chem Int Ed 54:15750–15755
96.
go back to reference Rengshausen S, Etscheidt F, Großkurth J, Luska K, Bordet A, Leitner W (2019) Catalytic hydrogenolysis of substituted diaryl ethers by using ruthenium nanoparticles on an acidic supported ionic liquid phase (Ru@SILP-SO3H). Synlett 30:405–412 Rengshausen S, Etscheidt F, Großkurth J, Luska K, Bordet A, Leitner W (2019) Catalytic hydrogenolysis of substituted diaryl ethers by using ruthenium nanoparticles on an acidic supported ionic liquid phase (Ru@SILP-SO3H). Synlett 30:405–412
97.
go back to reference El Sayed S, Bordet A, Weidenthaler C, Hetaba W, Luska KL, Leitner W (2020) Selective hydrogenation of benzofurans using ruthenium nanoparticles in Lewis acid-modified ruthenium-supported ionic liquid phases. ACS Catal 10:2124–2130 El Sayed S, Bordet A, Weidenthaler C, Hetaba W, Luska KL, Leitner W (2020) Selective hydrogenation of benzofurans using ruthenium nanoparticles in Lewis acid-modified ruthenium-supported ionic liquid phases. ACS Catal 10:2124–2130
98.
go back to reference Moos G, Emondts M, Bordet A, Leitner W (2020) Selective hydrogenation and hydrodeoxygenation of aromatic ketones to cyclohexane derivatives using a Rh@SILP catalyst. Angew Chem Int Ed 59:11977–11983 Moos G, Emondts M, Bordet A, Leitner W (2020) Selective hydrogenation and hydrodeoxygenation of aromatic ketones to cyclohexane derivatives using a Rh@SILP catalyst. Angew Chem Int Ed 59:11977–11983
99.
go back to reference Bordet A, El Sayed S, Sanger M, Boniface KJ, Kalsi D, Luska KL, Jessop PG, Leitner W (2021) Selectivity control in hydrogenation through adaptive catalysis using ruthenium nanoparticles on a CO2-responsive support. Nat Chem 13:916–922PubMedPubMedCentral Bordet A, El Sayed S, Sanger M, Boniface KJ, Kalsi D, Luska KL, Jessop PG, Leitner W (2021) Selectivity control in hydrogenation through adaptive catalysis using ruthenium nanoparticles on a CO2-responsive support. Nat Chem 13:916–922PubMedPubMedCentral
100.
go back to reference Zenner J, Moos G, Luska KL, Bordet A, Leitner W (2021) Rh MNPs immobilized on phosphonium-based supported ionic liquid phases (Rh@SILPs) as hydrogenation catalysts. Chimia 75:724–732PubMed Zenner J, Moos G, Luska KL, Bordet A, Leitner W (2021) Rh MNPs immobilized on phosphonium-based supported ionic liquid phases (Rh@SILPs) as hydrogenation catalysts. Chimia 75:724–732PubMed
101.
go back to reference Kacem S, Qiao Y, Wirtz C, Theyssen N, Bordet A, Leitner W (2022) Supercritical carbon dioxide as reaction medium for selective hydrogenation of fluorinated arenes. Green Chem 24:8671–8676 Kacem S, Qiao Y, Wirtz C, Theyssen N, Bordet A, Leitner W (2022) Supercritical carbon dioxide as reaction medium for selective hydrogenation of fluorinated arenes. Green Chem 24:8671–8676
102.
go back to reference Louis Anandaraj SJ, Kang L, DeBeer S, Bordet A, Leitner W (2023) Catalytic hydrogenation of CO2 to formate using ruthenium nanoparticles immobilized on supported ionic liquid phases. Small:2206806 Louis Anandaraj SJ, Kang L, DeBeer S, Bordet A, Leitner W (2023) Catalytic hydrogenation of CO2 to formate using ruthenium nanoparticles immobilized on supported ionic liquid phases. Small:2206806
103.
go back to reference Zhang Y, El Sayed S, Kang L, Sanger M, Wiegand T, Jessop PG, DeBeer S, Bordet A, Leitner W (2023) Adaptive catalysts for the selective hydrogenation of bicyclic heteroaromatics using ruthenium nanoparticles on a CO2-responsive support. Angew Chem Int Ed 62:e202311427 Zhang Y, El Sayed S, Kang L, Sanger M, Wiegand T, Jessop PG, DeBeer S, Bordet A, Leitner W (2023) Adaptive catalysts for the selective hydrogenation of bicyclic heteroaromatics using ruthenium nanoparticles on a CO2-responsive support. Angew Chem Int Ed 62:e202311427
104.
go back to reference Luska KL, Bordet A, Tricard S, Sinev I, Grünert W, Chaudret B, Leitner W (2016) Enhancing the catalytic properties of ruthenium nanoparticle-SILP catalysts by dilution with iron. ACS Catal 6:3719–3726 Luska KL, Bordet A, Tricard S, Sinev I, Grünert W, Chaudret B, Leitner W (2016) Enhancing the catalytic properties of ruthenium nanoparticle-SILP catalysts by dilution with iron. ACS Catal 6:3719–3726
105.
go back to reference Offner-Marko L, Bordet A, Moos G, Tricard S, Rengshausen S, Chaudret B, Luska KL, Leitner W (2018) Bimetallic nanoparticles in supported ionic liquid phases as multifunctional catalysts for the selective hydrodeoxygenation of aromatic substrates. Angew Chem Int Ed 57:12721–12726 Offner-Marko L, Bordet A, Moos G, Tricard S, Rengshausen S, Chaudret B, Luska KL, Leitner W (2018) Bimetallic nanoparticles in supported ionic liquid phases as multifunctional catalysts for the selective hydrodeoxygenation of aromatic substrates. Angew Chem Int Ed 57:12721–12726
106.
go back to reference Goclik L, Offner-Marko L, Bordet A, Leitner W (2020) Selective hydrodeoxygenation of hydroxyacetophenones to ethyl-substituted phenol derivatives using a FeRu@SILP catalyst. Chem Commun 56:9509–9512 Goclik L, Offner-Marko L, Bordet A, Leitner W (2020) Selective hydrodeoxygenation of hydroxyacetophenones to ethyl-substituted phenol derivatives using a FeRu@SILP catalyst. Chem Commun 56:9509–9512
107.
go back to reference Rengshausen S, Van Stappen C, Levin N, Tricard S, Luska KL, DeBeer S, Chaudret B, Bordet A, Leitner W (2021) Organometallic synthesis of bimetallic cobalt-rhodium nanoparticles in supported ionic liquid phases (CoxRh100−x@SILP) as catalysts for the selective hydrogenation of multifunctional aromatic substrates. Small 17:e2006683PubMed Rengshausen S, Van Stappen C, Levin N, Tricard S, Luska KL, DeBeer S, Chaudret B, Bordet A, Leitner W (2021) Organometallic synthesis of bimetallic cobalt-rhodium nanoparticles in supported ionic liquid phases (CoxRh100−x@SILP) as catalysts for the selective hydrogenation of multifunctional aromatic substrates. Small 17:e2006683PubMed
108.
go back to reference Goclik L, Walschus H, Bordet A, Leitner W (2022) Selective hydrodeoxygenation of acetophenone derivatives using a Fe25Ru75@SILP catalyst: a practical approach to the synthesis of alkyl phenols and anilines. Green Chem 24:2937–2945 Goclik L, Walschus H, Bordet A, Leitner W (2022) Selective hydrodeoxygenation of acetophenone derivatives using a Fe25Ru75@SILP catalyst: a practical approach to the synthesis of alkyl phenols and anilines. Green Chem 24:2937–2945
109.
go back to reference Sisodiya-Amrute S, Van Stappen C, Rengshausen S, Han C, Sodreau A, Weidenthaler C, Tricard S, DeBeer S, Chaudret B, Bordet A, Leitner W (2022) Bimetallic MxRu100-x nanoparticles (M = Fe, Co) on supported ionic liquid phases (MxRu100-x@SILP) as hydrogenation catalysts: influence of M and M:Ru ratio on activity and selectivity. J Catal 407:141–148 Sisodiya-Amrute S, Van Stappen C, Rengshausen S, Han C, Sodreau A, Weidenthaler C, Tricard S, DeBeer S, Chaudret B, Bordet A, Leitner W (2022) Bimetallic MxRu100-x nanoparticles (M = Fe, Co) on supported ionic liquid phases (MxRu100-x@SILP) as hydrogenation catalysts: influence of M and M:Ru ratio on activity and selectivity. J Catal 407:141–148
110.
go back to reference Levin N, Goclik L, Walschus H, Antil N, Bordet A, Leitner W (2023) Decarboxylation and tandem reduction/decarboxylation pathways to substituted phenols from aromatic carboxylic acids using bimetallic nanoparticles on supported ionic liquid phases as multifunctional catalysts. J Am Chem Soc 145:22845–22854PubMedPubMedCentral Levin N, Goclik L, Walschus H, Antil N, Bordet A, Leitner W (2023) Decarboxylation and tandem reduction/decarboxylation pathways to substituted phenols from aromatic carboxylic acids using bimetallic nanoparticles on supported ionic liquid phases as multifunctional catalysts. J Am Chem Soc 145:22845–22854PubMedPubMedCentral
111.
go back to reference Marchenko N, Lacroix L-M, Ratel-Ramon N, Leitner W, Bordet A, Tricard S (2023) Bimetallic FexPt100-x nanoparticles immobilized on supported ionic liquid phases as hydrogenation and hydrodeoxygenation catalysts: influence of the metal content on activity and selectivity. ACS Appl Nano Mater 6:20231–20239 Marchenko N, Lacroix L-M, Ratel-Ramon N, Leitner W, Bordet A, Tricard S (2023) Bimetallic FexPt100-x nanoparticles immobilized on supported ionic liquid phases as hydrogenation and hydrodeoxygenation catalysts: influence of the metal content on activity and selectivity. ACS Appl Nano Mater 6:20231–20239
112.
go back to reference Sodreau A, Zahedi HG, Dervisoglu R, Kang L, Menten J, Zenner J, Terefenko N, DeBeer S, Wiegand T, Bordet A, Leitner W (2023) A simple and versatile approach for the low-temperature synthesis of transition metal phosphide nanoparticles from metal chloride complexes and P(SiMe3)3. Adv Mater 35:2306621 Sodreau A, Zahedi HG, Dervisoglu R, Kang L, Menten J, Zenner J, Terefenko N, DeBeer S, Wiegand T, Bordet A, Leitner W (2023) A simple and versatile approach for the low-temperature synthesis of transition metal phosphide nanoparticles from metal chloride complexes and P(SiMe3)3. Adv Mater 35:2306621
113.
go back to reference Wender H, Migowski P, Feil AF, Teixeira SR, Dupont J (2013) Sputtering deposition of nanoparticles onto liquid substrates: recent advances and future trends. Coord Chem Rev 257:2468–2483 Wender H, Migowski P, Feil AF, Teixeira SR, Dupont J (2013) Sputtering deposition of nanoparticles onto liquid substrates: recent advances and future trends. Coord Chem Rev 257:2468–2483
114.
go back to reference Qadir MI, Castegnaro MV, Selau FF, Baptista DL, Chacon G, Pontes RB, Lisbôa AM, Eberhardt D, Dupont J (2024) Dynamic tuning of naked ruthenium clusters/nanoparticles in ionic liquids cages to boost CO2 hydrogenation to formic acid. Appl Catal B 341:123315 Qadir MI, Castegnaro MV, Selau FF, Baptista DL, Chacon G, Pontes RB, Lisbôa AM, Eberhardt D, Dupont J (2024) Dynamic tuning of naked ruthenium clusters/nanoparticles in ionic liquids cages to boost CO2 hydrogenation to formic acid. Appl Catal B 341:123315
115.
go back to reference Foppa L, Luza L, Gual A, Weibel DE, Eberhardt D, Teixeira SR, Dupont J (2015) Sputtering-deposition of Ru nanoparticles onto Al2O3 modified with imidazolium ionic liquids: synthesis, characterisation and catalysis. Dalton Trans 44:2827–2834PubMed Foppa L, Luza L, Gual A, Weibel DE, Eberhardt D, Teixeira SR, Dupont J (2015) Sputtering-deposition of Ru nanoparticles onto Al2O3 modified with imidazolium ionic liquids: synthesis, characterisation and catalysis. Dalton Trans 44:2827–2834PubMed
116.
go back to reference Luza L, Gual A, Eberhardt D, Teixeira SR, Chiaro SSX, Dupont J (2013) Imprinting catalytically active Pd nanoparticles onto ionic-liquid-modified Al2O3 supports. ChemCatChem 5:2471–2478 Luza L, Gual A, Eberhardt D, Teixeira SR, Chiaro SSX, Dupont J (2013) Imprinting catalytically active Pd nanoparticles onto ionic-liquid-modified Al2O3 supports. ChemCatChem 5:2471–2478
117.
go back to reference Qiu L, Liu F, Zhao L, Yang W, Yao J (2006) Evidence of a unique electron donor − acceptor property for platinum nanoparticles as studied by XPS. Langmuir 22:4480–4482PubMed Qiu L, Liu F, Zhao L, Yang W, Yao J (2006) Evidence of a unique electron donor − acceptor property for platinum nanoparticles as studied by XPS. Langmuir 22:4480–4482PubMed
118.
go back to reference Cerra S, Carlini L, Salamone TA, Hajareh F, Mercurio M, Pennacci B, Sappino C, Battocchio C, Nottola S, Fratoddi I (2023) Noble metal nanoparticles networks stabilized by rod-like organometallic bifunctional thiols. ChemistrySelect 8:e202300874 Cerra S, Carlini L, Salamone TA, Hajareh F, Mercurio M, Pennacci B, Sappino C, Battocchio C, Nottola S, Fratoddi I (2023) Noble metal nanoparticles networks stabilized by rod-like organometallic bifunctional thiols. ChemistrySelect 8:e202300874
119.
go back to reference Thomä SLJ, Krauss SW, Eckardt M, Chater P, Zobel M (2019) Atomic insight into hydration shells around facetted nanoparticles. Nat Commun 10:995PubMedPubMedCentral Thomä SLJ, Krauss SW, Eckardt M, Chater P, Zobel M (2019) Atomic insight into hydration shells around facetted nanoparticles. Nat Commun 10:995PubMedPubMedCentral
120.
go back to reference Doherty S, Knight JG, Backhouse T, Tran TST, Paterson R, Stahl F, Alharbi HY, Chamberlain TW, Bourne RA, Stones R, Griffiths A, White JP, Aslam Z, Hardare C, Daly H, Hart J, Temperton RH, O’Shea JN, Rees NH (2022) Highly efficient and selective aqueous phase hydrogenation of aryl ketones, aldehydes, furfural and levulinic acid and its ethyl Ester catalyzed by phosphine oxide-decorated polymer immobilized ionic liquid-stabilized ruthenium nanoparticles. Cat Sci Technol 12:3549–3567 Doherty S, Knight JG, Backhouse T, Tran TST, Paterson R, Stahl F, Alharbi HY, Chamberlain TW, Bourne RA, Stones R, Griffiths A, White JP, Aslam Z, Hardare C, Daly H, Hart J, Temperton RH, O’Shea JN, Rees NH (2022) Highly efficient and selective aqueous phase hydrogenation of aryl ketones, aldehydes, furfural and levulinic acid and its ethyl Ester catalyzed by phosphine oxide-decorated polymer immobilized ionic liquid-stabilized ruthenium nanoparticles. Cat Sci Technol 12:3549–3567
121.
go back to reference Zhang Y, Levin N, Kang L, Müller F, Zobel M, DeBeer S, Leitner W, Bordet A (2024) Design and understanding of adaptive hydrogenation catalysts triggered by the H2/CO2-formic acid equilibrium. J Am Chem Soc In press Zhang Y, Levin N, Kang L, Müller F, Zobel M, DeBeer S, Leitner W, Bordet A (2024) Design and understanding of adaptive hydrogenation catalysts triggered by the H2/CO2-formic acid equilibrium. J Am Chem Soc In press
122.
go back to reference Mobin R, Rangreez TA, Chisti HTN, Rezakazemi IM (2019) Organic-inorganic hybrid materials and their applications. In: Functional polymers. Springer Mobin R, Rangreez TA, Chisti HTN, Rezakazemi IM (2019) Organic-inorganic hybrid materials and their applications. In: Functional polymers. Springer
123.
go back to reference Zhang L, Zhou M, Wang A, Zhang T (2020) Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem Rev 120:683–733PubMed Zhang L, Zhou M, Wang A, Zhang T (2020) Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem Rev 120:683–733PubMed
124.
go back to reference Cano I, Martínez-Prieto LM, van Leeuwen PWNM (2021) Heterolytic cleavage of dihydrogen (HCD) in metal nanoparticle catalysis. Catal Sci Tech 11:1157–1185 Cano I, Martínez-Prieto LM, van Leeuwen PWNM (2021) Heterolytic cleavage of dihydrogen (HCD) in metal nanoparticle catalysis. Catal Sci Tech 11:1157–1185
125.
go back to reference Wiesenfeldt MP, Nairoukh Z, Li W, Glorius F (2017) Hydrogenation of fluoroarenes: direct access to all-cis-(multi)-fluorinated cycloalkanes. Science 357:908–912PubMed Wiesenfeldt MP, Nairoukh Z, Li W, Glorius F (2017) Hydrogenation of fluoroarenes: direct access to all-cis-(multi)-fluorinated cycloalkanes. Science 357:908–912PubMed
126.
go back to reference Guo M, Wang F, Zhang M, Wang L, Zhang X, Li G (2023) Modulating Pt nanoparticles confined in UiO-66 by linker functional groups for controllable hydrogenation. J Catal 424:221–235 Guo M, Wang F, Zhang M, Wang L, Zhang X, Li G (2023) Modulating Pt nanoparticles confined in UiO-66 by linker functional groups for controllable hydrogenation. J Catal 424:221–235
127.
go back to reference Huang J, Jiang T, Gao HX, Han BX, Liu ZM, Wu WZ, Chang YH, Zhao GY (2004) Pd nanoparticles immobilized on molecular sieves by ionic liquids: heterogeneous catalysts for solvent-free hydrogenation. Angew Chem Int Ed 43:1397–1399 Huang J, Jiang T, Gao HX, Han BX, Liu ZM, Wu WZ, Chang YH, Zhao GY (2004) Pd nanoparticles immobilized on molecular sieves by ionic liquids: heterogeneous catalysts for solvent-free hydrogenation. Angew Chem Int Ed 43:1397–1399
128.
go back to reference Miao SD, Liu ZM, Han BX, Huang J, Sun ZY, Zhang JL, Jiang T (2006) Ru nanoparticles immobilized on montmorillonite by ionic liquids: a highly efficient heterogeneous catalyst for the hydrogenation of benzene. Angew Chem Int Ed 45:266–269 Miao SD, Liu ZM, Han BX, Huang J, Sun ZY, Zhang JL, Jiang T (2006) Ru nanoparticles immobilized on montmorillonite by ionic liquids: a highly efficient heterogeneous catalyst for the hydrogenation of benzene. Angew Chem Int Ed 45:266–269
129.
go back to reference Luza L, Gual A, Rambor CP, Eberhardt D, Teixeira SR, Bernardi F, Baptista DL, Dupont J (2014) Hydrophobic effects on supported ionic liquid phase Pd nanoparticle hydrogenation catalysts. Phys Chem Chem Phys 16:18088–18091PubMed Luza L, Gual A, Rambor CP, Eberhardt D, Teixeira SR, Bernardi F, Baptista DL, Dupont J (2014) Hydrophobic effects on supported ionic liquid phase Pd nanoparticle hydrogenation catalysts. Phys Chem Chem Phys 16:18088–18091PubMed
130.
go back to reference Luza L, Gual A, Fernandes JA, Eberhardt D, Dupont J (2019) Tunneling effects in confined gold nanoparticle hydrogenation catalysts. Phys Chem Chem Phys 21:16615–16622PubMed Luza L, Gual A, Fernandes JA, Eberhardt D, Dupont J (2019) Tunneling effects in confined gold nanoparticle hydrogenation catalysts. Phys Chem Chem Phys 21:16615–16622PubMed
131.
go back to reference Mikkola JPT, Virtanen PP, Kordas K, Karhu H, Salmi TO (2007) SILCA – supported ionic liquid catalysts for fine chemicals. Appl Catal, A 328:68–76 Mikkola JPT, Virtanen PP, Kordas K, Karhu H, Salmi TO (2007) SILCA – supported ionic liquid catalysts for fine chemicals. Appl Catal, A 328:68–76
132.
go back to reference Ruta M, Laurenczy G, Dyson PJ, Kiwi-Minsker L (2008) Pd nanoparticles in a supported ionic liquid phase: highly stable catalysts for selective acetylene hydrogenation under continuous-flow conditions. J Phys Chem C 112:17814–17819 Ruta M, Laurenczy G, Dyson PJ, Kiwi-Minsker L (2008) Pd nanoparticles in a supported ionic liquid phase: highly stable catalysts for selective acetylene hydrogenation under continuous-flow conditions. J Phys Chem C 112:17814–17819
133.
go back to reference Tao R, Miao S, Liu Z, Xie Y, Han B, An G, Ding K (2009) Pd nanoparticles immobilized on Sepiolite by ionic liquids: efficient catalysts for hydrogenation of alkenes and heck reactions. Green Chem 11:96–101 Tao R, Miao S, Liu Z, Xie Y, Han B, An G, Ding K (2009) Pd nanoparticles immobilized on Sepiolite by ionic liquids: efficient catalysts for hydrogenation of alkenes and heck reactions. Green Chem 11:96–101
134.
go back to reference Betsy KJ, Bajpai P, Lazar A, Vanka K, Vinod CP (2023) Pd nanoparticles supported on N-incorporated hybrid Organosilica as an active and selective low-temperature phenol hydrogenation catalyst. ACS Appl Nano Mater 6:11500–11512 Betsy KJ, Bajpai P, Lazar A, Vanka K, Vinod CP (2023) Pd nanoparticles supported on N-incorporated hybrid Organosilica as an active and selective low-temperature phenol hydrogenation catalyst. ACS Appl Nano Mater 6:11500–11512
135.
go back to reference Wu Z-L, Wang J, Wang S, Zhang Y-X, Bai G-Y, Ricardez-Sandoval L, Wang G-C, Zhao B (2020) Controllable chemoselective hydrogenation of furfural by PdAg/C bimetallic catalysts under ambient operating conditions: an Interesting Ag Switch. Green Chem 22:1432–1442 Wu Z-L, Wang J, Wang S, Zhang Y-X, Bai G-Y, Ricardez-Sandoval L, Wang G-C, Zhao B (2020) Controllable chemoselective hydrogenation of furfural by PdAg/C bimetallic catalysts under ambient operating conditions: an Interesting Ag Switch. Green Chem 22:1432–1442
136.
go back to reference Gholinejad M, Iranpanah M, Karimi S, Sansano JM (2024) Cysteine and ionic liquid modified magnetic nanoparticles supported RuCu as a new bimetallic catalyst in reduction reactions. J Mol Struct 1298:137100 Gholinejad M, Iranpanah M, Karimi S, Sansano JM (2024) Cysteine and ionic liquid modified magnetic nanoparticles supported RuCu as a new bimetallic catalyst in reduction reactions. J Mol Struct 1298:137100
137.
go back to reference Rana S, Jonnalagadda SB (2017) A facile synthesis of cu–Ni bimetallic nanoparticle supported organo functionalized graphene oxide as a catalyst for selective hydrogenation of p-nitrophenol and cinnamaldehyde. RSC Adv 7:2869–2879 Rana S, Jonnalagadda SB (2017) A facile synthesis of cu–Ni bimetallic nanoparticle supported organo functionalized graphene oxide as a catalyst for selective hydrogenation of p-nitrophenol and cinnamaldehyde. RSC Adv 7:2869–2879
138.
go back to reference Paterson R, Fahy LE, Arca E, Dixon C, Wills CY, Yan H, Griffiths A, Collins SM, Wu K, Bourne RA, Chamberlain TW, Knight JG, Doherty S (2023) Amine-modified polyionic liquid supports enhance the efficacy of PdNPs for the catalytic hydrogenation of CO2 to formate. Chem Commun 59:13470–13473 Paterson R, Fahy LE, Arca E, Dixon C, Wills CY, Yan H, Griffiths A, Collins SM, Wu K, Bourne RA, Chamberlain TW, Knight JG, Doherty S (2023) Amine-modified polyionic liquid supports enhance the efficacy of PdNPs for the catalytic hydrogenation of CO2 to formate. Chem Commun 59:13470–13473
139.
go back to reference Robinson AM, Hensley JE, Medlin JW (2016) Bifunctional catalysts for upgrading of biomass-derived oxygenates: a review. ACS Catal 6:5026–5043 Robinson AM, Hensley JE, Medlin JW (2016) Bifunctional catalysts for upgrading of biomass-derived oxygenates: a review. ACS Catal 6:5026–5043
140.
go back to reference Fang Z, Smith Jr RL, Li H (2017) Production of biofuels and chemicals with bifunctional catalysts. Springer Fang Z, Smith Jr RL, Li H (2017) Production of biofuels and chemicals with bifunctional catalysts. Springer
141.
go back to reference Luska KL, Migowski P, El Sayed S, Leitner W (2016) Bifunctional ruthenium nanoparticle-SILP catalysts (RuNPs@ SILP) for the hydrodeoxygenation of eucalyptol under batch and continuous flow conditions. ACS Sustain Chem Eng 4:6186–6192 Luska KL, Migowski P, El Sayed S, Leitner W (2016) Bifunctional ruthenium nanoparticle-SILP catalysts (RuNPs@ SILP) for the hydrodeoxygenation of eucalyptol under batch and continuous flow conditions. ACS Sustain Chem Eng 4:6186–6192
142.
go back to reference Zhu W, Yang H, Chen J, Chen C, Guo L, Gan H, Zhao X, Hou Z (2014) Efficient hydrogenolysis of cellulose into sorbitol catalyzed by a bifunctional catalyst. Green Chem 16:1534–1542 Zhu W, Yang H, Chen J, Chen C, Guo L, Gan H, Zhao X, Hou Z (2014) Efficient hydrogenolysis of cellulose into sorbitol catalyzed by a bifunctional catalyst. Green Chem 16:1534–1542
143.
go back to reference Insyani R, Verma D, Kim SM, Kim J (2017) Direct one-pot conversion of monosaccharides into high-yield 2,5-dimethylfuran over a multifunctional Pd/Zr-based metal−organic Framework@Sulfonated graphene oxide catalyst. Green Chem 19:2482–2490 Insyani R, Verma D, Kim SM, Kim J (2017) Direct one-pot conversion of monosaccharides into high-yield 2,5-dimethylfuran over a multifunctional Pd/Zr-based metal−organic Framework@Sulfonated graphene oxide catalyst. Green Chem 19:2482–2490
144.
go back to reference Hutchins RO, Hutchins MK, Fleming I (1991) Comprehensive organic synthesis, vol 8. Elsevier, Oxford, p 327 Hutchins RO, Hutchins MK, Fleming I (1991) Comprehensive organic synthesis, vol 8. Elsevier, Oxford, p 327
145.
go back to reference Yu S, Oh J, Li F, Kwon Y, Cho H, Shin J, Lee SK, Kim S (2017) New scaffold for angiogenesis inhibitors discovered by targeted chemical transformations of Wondonin natural products. ACS Med Chem Lett 8:1066–1071PubMedPubMedCentral Yu S, Oh J, Li F, Kwon Y, Cho H, Shin J, Lee SK, Kim S (2017) New scaffold for angiogenesis inhibitors discovered by targeted chemical transformations of Wondonin natural products. ACS Med Chem Lett 8:1066–1071PubMedPubMedCentral
146.
go back to reference Bhattacharya and V. Kashaw. (2019) Design, synthesis and anticonvulsant potential of (E)-3-(5-(substituted aminomethyl)-1,3,4-thiadiazol-2-yl)-2-substituted styrylquinazolin-4-(3H)-one. J Drug Delivery Ther 9:591 Bhattacharya and V. Kashaw. (2019) Design, synthesis and anticonvulsant potential of (E)-3-(5-(substituted aminomethyl)-1,3,4-thiadiazol-2-yl)-2-substituted styrylquinazolin-4-(3H)-one. J Drug Delivery Ther 9:591
147.
go back to reference Dierks M, Cao Z, Manayil JC, Akilavasan J, Wilson K, Schüth F, Rinaldi R (2018) Impact of hydrophobic organohybrid silicas on the stability of Ni2P catalyst phase in the hydrodeoxygenation of biophenols. ChemCatChem 10:2219–2231 Dierks M, Cao Z, Manayil JC, Akilavasan J, Wilson K, Schüth F, Rinaldi R (2018) Impact of hydrophobic organohybrid silicas on the stability of Ni2P catalyst phase in the hydrodeoxygenation of biophenols. ChemCatChem 10:2219–2231
148.
go back to reference Wang Z, Feng X, Yang S, Xiao L, Wu W (2020) Influence of acidity on the catalytic performance of Ni2P in liquid-phase hydrodeoxygenation of furfural to 2-methylfuran. J Nanopart Res 22:67 Wang Z, Feng X, Yang S, Xiao L, Wu W (2020) Influence of acidity on the catalytic performance of Ni2P in liquid-phase hydrodeoxygenation of furfural to 2-methylfuran. J Nanopart Res 22:67
149.
go back to reference Hou Z, Theyssen N, Leitner W (2007) Palladium nanoparticles stabilised on PEG-modified silica as catalysts for the aerobic alcohol oxidation in supercritical carbon dioxide. Green Chem 9:127–132 Hou Z, Theyssen N, Leitner W (2007) Palladium nanoparticles stabilised on PEG-modified silica as catalysts for the aerobic alcohol oxidation in supercritical carbon dioxide. Green Chem 9:127–132
150.
go back to reference Chen Y, Guo Z, Chen T, Yang Y (2010) Surface-functionalized TUD-1 mesoporous molecular sieve supported palladium for solvent-free aerobic oxidation of benzyl alcohol. J Catal 275:11–24 Chen Y, Guo Z, Chen T, Yang Y (2010) Surface-functionalized TUD-1 mesoporous molecular sieve supported palladium for solvent-free aerobic oxidation of benzyl alcohol. J Catal 275:11–24
151.
go back to reference Weerachawanasak P, Hutchings GJ, Edwards JK, Kondrat SA, Miedziak PJ, Prasertham P, Panpranot J (2015) Surface functionalized TiO2 supported Pd catalysts for solvent-free selective oxidation of benzyl alcohol. Catal Today 250:218–225 Weerachawanasak P, Hutchings GJ, Edwards JK, Kondrat SA, Miedziak PJ, Prasertham P, Panpranot J (2015) Surface functionalized TiO2 supported Pd catalysts for solvent-free selective oxidation of benzyl alcohol. Catal Today 250:218–225
152.
go back to reference Zheng L-X, Peng B, Zhou J-F, Shan B-Q, Xue Q-S, Zhang K (2022) High efficient and stable thiol-modified dendritic mesoporous silica nanospheres supported gold catalysts for gas-phase selective oxidation of benzyl alcohol with ultra-long lifetime. Microporous Mesoporous Mater 342:112140 Zheng L-X, Peng B, Zhou J-F, Shan B-Q, Xue Q-S, Zhang K (2022) High efficient and stable thiol-modified dendritic mesoporous silica nanospheres supported gold catalysts for gas-phase selective oxidation of benzyl alcohol with ultra-long lifetime. Microporous Mesoporous Mater 342:112140
153.
go back to reference Shahriari M, Sedigh MA, Mahdavian Y, Mahdigholizad S, Pirhayati M, Karmakar B, Veisi H (2021) In situ supported Pd NPs on biodegradable chitosan/agarose modified magnetic nanoparticles as an effective catalyst for the ultrasound assisted oxidation of alcohols and activities against human breast cancer. Int J Biol Macromol 172:55–65PubMed Shahriari M, Sedigh MA, Mahdavian Y, Mahdigholizad S, Pirhayati M, Karmakar B, Veisi H (2021) In situ supported Pd NPs on biodegradable chitosan/agarose modified magnetic nanoparticles as an effective catalyst for the ultrasound assisted oxidation of alcohols and activities against human breast cancer. Int J Biol Macromol 172:55–65PubMed
154.
go back to reference Chutimasakul T, Uetake Y, Tantirungrotechai J, Asoh TA, Uyama H (2020) Sakurai size-controlled preparation of gold nanoparticles deposited on surface-fibrillated cellulose obtained by citric acid modification. ACS Omega 5:33206–33213PubMedPubMedCentral Chutimasakul T, Uetake Y, Tantirungrotechai J, Asoh TA, Uyama H (2020) Sakurai size-controlled preparation of gold nanoparticles deposited on surface-fibrillated cellulose obtained by citric acid modification. ACS Omega 5:33206–33213PubMedPubMedCentral
155.
go back to reference Zhang P, Qiao ZA, Jiang X, Veith GM, Dai S (2015) Nanoporous ionic organic networks: stabilizing and supporting gold nanoparticles for catalysis. Nano Lett 15:823–828PubMed Zhang P, Qiao ZA, Jiang X, Veith GM, Dai S (2015) Nanoporous ionic organic networks: stabilizing and supporting gold nanoparticles for catalysis. Nano Lett 15:823–828PubMed
156.
go back to reference Restrepo J, Lozano P, Burguete MI, García-Verdugo E, Luis SV (2015) Gold nanoparticles immobilized onto supported ionic liquid-like phases for microwave phenylethanol oxidation in water. Catal Today 255:97–101 Restrepo J, Lozano P, Burguete MI, García-Verdugo E, Luis SV (2015) Gold nanoparticles immobilized onto supported ionic liquid-like phases for microwave phenylethanol oxidation in water. Catal Today 255:97–101
157.
go back to reference de Vries JG (2006) A unifying mechanism for all high-temperature heck reactions. The role of palladium colloids and anionic species. Dalton Trans 3:421–429 de Vries JG (2006) A unifying mechanism for all high-temperature heck reactions. The role of palladium colloids and anionic species. Dalton Trans 3:421–429
158.
go back to reference Phan NTS, Van Der Sluys M, Jones CW (2006) On the nature of the active species in palladium catalyzed Mizoroki–Heck and Suzuki–Miyaura couplings – homogeneous or heterogeneous catalysis, a critical review. Adv Synth Catal 348:609–679 Phan NTS, Van Der Sluys M, Jones CW (2006) On the nature of the active species in palladium catalyzed Mizoroki–Heck and Suzuki–Miyaura couplings – homogeneous or heterogeneous catalysis, a critical review. Adv Synth Catal 348:609–679
159.
go back to reference Pagliaro M, Pandarus V, Ciriminna R, Béland F, Carà PD (2012) Heterogeneous versus homogeneous palladium catalysts for cross-coupling reactions. ChemCatChem 4:432–445 Pagliaro M, Pandarus V, Ciriminna R, Béland F, Carà PD (2012) Heterogeneous versus homogeneous palladium catalysts for cross-coupling reactions. ChemCatChem 4:432–445
160.
go back to reference Corma A, Garcia H, Leyva A (2005) Catalytic activity of palladium supported on Single Wall carbon nanotubes compared to palladium supported on activated carbon: study of the heck and Suzuki couplings, aerobic alcohol oxidation and selective hydrogenation. J Mol Catal A Chem 230:97–105 Corma A, Garcia H, Leyva A (2005) Catalytic activity of palladium supported on Single Wall carbon nanotubes compared to palladium supported on activated carbon: study of the heck and Suzuki couplings, aerobic alcohol oxidation and selective hydrogenation. J Mol Catal A Chem 230:97–105
161.
go back to reference Li SH, Wang J, Kou Y, Zhang S (2010) Ionic-liquid-grafted rigid poly(p-phenylene) microspheres: efficient heterogeneous media for metal scavenging and catalysis. Chem A Eur J 16:1812–1818 Li SH, Wang J, Kou Y, Zhang S (2010) Ionic-liquid-grafted rigid poly(p-phenylene) microspheres: efficient heterogeneous media for metal scavenging and catalysis. Chem A Eur J 16:1812–1818
162.
go back to reference Gruttadauria M, Liotta LF, Salvo AMP, Giacalone F, La Parola V, Aprile C, Noto R (2011) Multi-layered, covalently supported ionic liquid phase (mlc-SILP) as highly cross-linked support for recyclable palladium catalysts for the Suzuki reaction in aqueous medium. Adv Synth Catal 353:2119–2130 Gruttadauria M, Liotta LF, Salvo AMP, Giacalone F, La Parola V, Aprile C, Noto R (2011) Multi-layered, covalently supported ionic liquid phase (mlc-SILP) as highly cross-linked support for recyclable palladium catalysts for the Suzuki reaction in aqueous medium. Adv Synth Catal 353:2119–2130
163.
go back to reference Pavia C, Ballerini E, Bivona LA, Giacalone F, Aprile C, Vaccaro L, Gruttadauria M (2013) Palladium supported on cross-linked imidazolium network on silica as highly sustainable catalysts for the Suzuki reaction under flow conditions. Adv Synth Catal 355:2007–2018 Pavia C, Ballerini E, Bivona LA, Giacalone F, Aprile C, Vaccaro L, Gruttadauria M (2013) Palladium supported on cross-linked imidazolium network on silica as highly sustainable catalysts for the Suzuki reaction under flow conditions. Adv Synth Catal 355:2007–2018
164.
go back to reference Pavia C, Giacalone F, Bivona LA, Salvo AMP, Petrucci C, Strappaveccia G, Vaccaro L, Aprile C, Gruttadauria M (2014) Evidences of release and catch mechanism in the heck reaction catalyzed by palladium immobilized on highly cross-linked-supported imidazolium salts. J Mol Catal A Chem 387:57–62 Pavia C, Giacalone F, Bivona LA, Salvo AMP, Petrucci C, Strappaveccia G, Vaccaro L, Aprile C, Gruttadauria M (2014) Evidences of release and catch mechanism in the heck reaction catalyzed by palladium immobilized on highly cross-linked-supported imidazolium salts. J Mol Catal A Chem 387:57–62
165.
go back to reference Costa NJS, Kiyohara PK, Monteiro AL, Coppel Y, Philippot K, Rossi LM (2010) A single-step procedure for the preparation of palladium nanoparticles and a phosphine-functionalized support as catalyst for Suzuki cross-coupling reactions. J Catal 276:382–389 Costa NJS, Kiyohara PK, Monteiro AL, Coppel Y, Philippot K, Rossi LM (2010) A single-step procedure for the preparation of palladium nanoparticles and a phosphine-functionalized support as catalyst for Suzuki cross-coupling reactions. J Catal 276:382–389
166.
go back to reference Kumar S, Singh S, Mathur N, Roy P, Joshi H (2023) Titania Nanorod-supported mercaptoundecanoic acid-grafted palladium nanoparticles as a highly reusable heterogeneous catalyst for substrate-dependent Ullmann coupling and debromination of aryl bromides. Inorg Chem 62:3993–4002PubMed Kumar S, Singh S, Mathur N, Roy P, Joshi H (2023) Titania Nanorod-supported mercaptoundecanoic acid-grafted palladium nanoparticles as a highly reusable heterogeneous catalyst for substrate-dependent Ullmann coupling and debromination of aryl bromides. Inorg Chem 62:3993–4002PubMed
167.
go back to reference Mishra B, Ghosh D, Tripathi BP (2022) Finely dispersed AgPd bimetallic nanoparticles on a polydopamine modified metal organic framework for diverse catalytic applications. J Catal 411:1–14 Mishra B, Ghosh D, Tripathi BP (2022) Finely dispersed AgPd bimetallic nanoparticles on a polydopamine modified metal organic framework for diverse catalytic applications. J Catal 411:1–14
168.
go back to reference Shaikh NM, Sawant AD, Bagihalli GB, Challa M, Adimule VM (2022) Highly active mixed Au–Pd nanoparticles supported on RHA silica through immobilised ionic liquid for Suzuki coupling reaction. Top Catal Shaikh NM, Sawant AD, Bagihalli GB, Challa M, Adimule VM (2022) Highly active mixed Au–Pd nanoparticles supported on RHA silica through immobilised ionic liquid for Suzuki coupling reaction. Top Catal
169.
go back to reference Aalinejad M, Pesyan Noroozi N, Alamgholiloo H (2022) Stabilization of Pd–Ni alloy nanoparticles on Kryptofix 23 modified SBA-15 for catalytic enhancement. Colloids Surf A Physicochem Eng Asp 634:127956 Aalinejad M, Pesyan Noroozi N, Alamgholiloo H (2022) Stabilization of Pd–Ni alloy nanoparticles on Kryptofix 23 modified SBA-15 for catalytic enhancement. Colloids Surf A Physicochem Eng Asp 634:127956
170.
go back to reference Massaro M, Riela S, Cavallaro G, Gruttadauria M, Milioto S, Noto R, Lazzara G (2014) Eco-friendly functionalization of natural Halloysite clay nanotube with ionic liquids by microwave irradiation for Suzuki coupling reaction. J Organomet Chem 749:410–415 Massaro M, Riela S, Cavallaro G, Gruttadauria M, Milioto S, Noto R, Lazzara G (2014) Eco-friendly functionalization of natural Halloysite clay nanotube with ionic liquids by microwave irradiation for Suzuki coupling reaction. J Organomet Chem 749:410–415
171.
go back to reference Bordet A, Leitner W (2023) Adaptive catalytic systems for chemical energy conversion. Angew Chem Int Ed 62:e202301956 Bordet A, Leitner W (2023) Adaptive catalytic systems for chemical energy conversion. Angew Chem Int Ed 62:e202301956
172.
go back to reference Bordet A, Lacroix L-M, Fazzini P-F, Carrey J, Soulantica K, Chaudret B (2016) Magnetically induced continuous CO2 hydrogenation using composite iron carbide nanoparticles of exceptionally high heating power. Angew Chem Int Ed 55:15894–15898 Bordet A, Lacroix L-M, Fazzini P-F, Carrey J, Soulantica K, Chaudret B (2016) Magnetically induced continuous CO2 hydrogenation using composite iron carbide nanoparticles of exceptionally high heating power. Angew Chem Int Ed 55:15894–15898
173.
go back to reference Kreissl H, Jin J, Lin S-H, Schüette D, Störtte S, Levin N, Chaudret B, Vorholt A, Bordet A, Leitner W (2021) Commercial Cu2Cr2O5 decorated with iron carbide nanoparticles as multifunctional catalyst for magnetically induced continuous flow hydrogenation of aromatic ketones. Angew Chem Int Ed 60:26639–26646 Kreissl H, Jin J, Lin S-H, Schüette D, Störtte S, Levin N, Chaudret B, Vorholt A, Bordet A, Leitner W (2021) Commercial Cu2Cr2O5 decorated with iron carbide nanoparticles as multifunctional catalyst for magnetically induced continuous flow hydrogenation of aromatic ketones. Angew Chem Int Ed 60:26639–26646
174.
go back to reference Lin S-H, Hetaba W, Chaudret B, Leitner W, Bordet A (2022) Copper-decorated iron carbide nanoparticles heated by magnetic induction as adaptive multifunctional catalysts for the selective Hydrodeoxygenation of aldehydes. Adv Energy Mater 12:2201783 Lin S-H, Hetaba W, Chaudret B, Leitner W, Bordet A (2022) Copper-decorated iron carbide nanoparticles heated by magnetic induction as adaptive multifunctional catalysts for the selective Hydrodeoxygenation of aldehydes. Adv Energy Mater 12:2201783
175.
go back to reference Zhang W, Wang L, Wang K, Khan MU, Wang M, Li H, Zeng J (2016) Integration of Photothermal effect and heat insulation to efficiently reduce reaction temperature of CO2 hydrogenation. Small 13:1602583 Zhang W, Wang L, Wang K, Khan MU, Wang M, Li H, Zeng J (2016) Integration of Photothermal effect and heat insulation to efficiently reduce reaction temperature of CO2 hydrogenation. Small 13:1602583
176.
go back to reference Li Y, Hao J, Song H, Zhang F, Bai X, Meng X, Zhang H, Wang S, Hu Y, Ye J (2019) Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-Diven CO2 Methanation. Nat Commun 10:2359–2368PubMedPubMedCentral Li Y, Hao J, Song H, Zhang F, Bai X, Meng X, Zhang H, Wang S, Hu Y, Ye J (2019) Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-Diven CO2 Methanation. Nat Commun 10:2359–2368PubMedPubMedCentral
177.
go back to reference Stuart MAC, Huck WTS, Genzer J, Mller M, Ocer C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113PubMed Stuart MAC, Huck WTS, Genzer J, Mller M, Ocer C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113PubMed
178.
go back to reference Poole DA, Mathew S, Reek JNH (2021) Just add water: modulating the structure-derived acidity of catalytic hexameric resorcinarene capsules. J Am Chem Soc 143:16419–16427PubMedPubMedCentral Poole DA, Mathew S, Reek JNH (2021) Just add water: modulating the structure-derived acidity of catalytic hexameric resorcinarene capsules. J Am Chem Soc 143:16419–16427PubMedPubMedCentral
179.
go back to reference Koumura N, Zijlstra RWJ, van Delden RA, Harada N, Feringa BL (1999) Light-driven monodirectional molecular rotor. Nature 401:153–155 Koumura N, Zijlstra RWJ, van Delden RA, Harada N, Feringa BL (1999) Light-driven monodirectional molecular rotor. Nature 401:153–155
180.
go back to reference Wei Y, Han S, Kim J, Soh S, Grzybowski BA (2010) Photoswitchable catalysis mediated by dynamic aggregation of nanoparticles. J Am Chem Soc 132:11018–11020PubMed Wei Y, Han S, Kim J, Soh S, Grzybowski BA (2010) Photoswitchable catalysis mediated by dynamic aggregation of nanoparticles. J Am Chem Soc 132:11018–11020PubMed
181.
go back to reference Kean ZS, Akbulatov S, Tian Y, Widenhoefer RA, Boulatov R, Craig SL (2014) Photomechanical actuation of ligand geometry in enantioselective catalysis. Angew Chem Int Ed 53:14508–14511 Kean ZS, Akbulatov S, Tian Y, Widenhoefer RA, Boulatov R, Craig SL (2014) Photomechanical actuation of ligand geometry in enantioselective catalysis. Angew Chem Int Ed 53:14508–14511
182.
go back to reference Peris E (2018) Smart N-heterocyclic carbene ligands in catalysis. Chem Rev 118:9988–10031PubMed Peris E (2018) Smart N-heterocyclic carbene ligands in catalysis. Chem Rev 118:9988–10031PubMed
183.
go back to reference Ruiz-Zambrana C, Gutiérrez-Blanco A, Gonell S, Poyatos M, Peris E (2021) Redox-switchable cycloisomerization of alkynoic acids with napthalenediimide-derived N-heterocyclic carbene complexes. Angew Chem Int Ed 60:20003–20011 Ruiz-Zambrana C, Gutiérrez-Blanco A, Gonell S, Poyatos M, Peris E (2021) Redox-switchable cycloisomerization of alkynoic acids with napthalenediimide-derived N-heterocyclic carbene complexes. Angew Chem Int Ed 60:20003–20011
184.
go back to reference Snell KD, Keenan AG (1979) Surface modified electrodes. Chem Soc Rev 8:259–282 Snell KD, Keenan AG (1979) Surface modified electrodes. Chem Soc Rev 8:259–282
185.
go back to reference Wrighton MS (1986) Surface functionalization of electodes with molecular reagents. Science 231:32–37PubMed Wrighton MS (1986) Surface functionalization of electodes with molecular reagents. Science 231:32–37PubMed
186.
go back to reference Wang S, Yang F, Jiang SP, Chen S, Wang X (2010) Tuning the electrocatalytic activity of Pt nanoparticles on carbon nanotubes via surface functionalization. Electrochem Commun 12:1646–1649 Wang S, Yang F, Jiang SP, Chen S, Wang X (2010) Tuning the electrocatalytic activity of Pt nanoparticles on carbon nanotubes via surface functionalization. Electrochem Commun 12:1646–1649
187.
go back to reference Zhang M, Xie J, Sun Q, Yan Z, Chen M, Jing J (2013) Enhanced electrocatalytic activity of high Pt-loadings on surface functionalized graphene nanosheets for methanol oxidation. Int J Hydrogen Energy 38:16402–16409 Zhang M, Xie J, Sun Q, Yan Z, Chen M, Jing J (2013) Enhanced electrocatalytic activity of high Pt-loadings on surface functionalized graphene nanosheets for methanol oxidation. Int J Hydrogen Energy 38:16402–16409
188.
go back to reference Xin L, Yang F, Rasouli S, Qiu Y, Li Z-F, Uzunoglu A, Sun C-J, Liu Y, Ferreira P, Li W, Ren Y, Stanciu LA, Xie J (2016) Understanding Pt nanoparticle anchoring on graphene supports through surface functionalization. ACS Catal 6:2642–2653 Xin L, Yang F, Rasouli S, Qiu Y, Li Z-F, Uzunoglu A, Sun C-J, Liu Y, Ferreira P, Li W, Ren Y, Stanciu LA, Xie J (2016) Understanding Pt nanoparticle anchoring on graphene supports through surface functionalization. ACS Catal 6:2642–2653
189.
go back to reference Han C, Zenner J, Johny J, Kaeffer N, Bordet A, Leitner W (2022) Electrocatalytic hydrogenation of alkenes with Pd/Carbon nanotubes at an oil–water interface. Nat Catal 5:1110–1119 Han C, Zenner J, Johny J, Kaeffer N, Bordet A, Leitner W (2022) Electrocatalytic hydrogenation of alkenes with Pd/Carbon nanotubes at an oil–water interface. Nat Catal 5:1110–1119
190.
go back to reference Zagoraiou E, Paloukis F, Daletou MK (2021) Correlations between properties and activity of platinum supported on modified carbon nanotubes with pyridines. Appl Surf Sci 567:150749 Zagoraiou E, Paloukis F, Daletou MK (2021) Correlations between properties and activity of platinum supported on modified carbon nanotubes with pyridines. Appl Surf Sci 567:150749
191.
go back to reference Chen Y, Ma Y, Zhou Y, Huang Y, Li S, Chen Y, Wang R, Tang J, Wu P, Zhao X, Chen C, Zhu Z, Chen S, Cheng K, Lin D (2022) Enhanced methanol oxidation on PtNi nanoparticles supported on silane-modified reduced graphene oxide. Int J Hydrogen Energy 47:6638–6649 Chen Y, Ma Y, Zhou Y, Huang Y, Li S, Chen Y, Wang R, Tang J, Wu P, Zhao X, Chen C, Zhu Z, Chen S, Cheng K, Lin D (2022) Enhanced methanol oxidation on PtNi nanoparticles supported on silane-modified reduced graphene oxide. Int J Hydrogen Energy 47:6638–6649
192.
go back to reference Li S, Liang X, Shen S, Yang H, Wu CL (2021) Surface engineering of flower-like ionic liquid-functionalized graphene anchoring palladium nanocrystals for a boosted ethanol oxidation reaction. Inorg Chem 60:17388–17397PubMed Li S, Liang X, Shen S, Yang H, Wu CL (2021) Surface engineering of flower-like ionic liquid-functionalized graphene anchoring palladium nanocrystals for a boosted ethanol oxidation reaction. Inorg Chem 60:17388–17397PubMed
193.
go back to reference Kim JH, Cheon JY, Shin TJ, Park JY, Joo SH (2016) Effect of surface oxygen functionalization of carbon support on the activity and durability of Pt/C catalysts for the oxygen reduction reaction. Carbon 101:449–457 Kim JH, Cheon JY, Shin TJ, Park JY, Joo SH (2016) Effect of surface oxygen functionalization of carbon support on the activity and durability of Pt/C catalysts for the oxygen reduction reaction. Carbon 101:449–457
Metadata
Title
Metal Nanoparticles on Molecularly Modified Surfaces and Their Application in Catalysis
Authors
Yuyan Zhang
Alexis Bordet
Copyright Year
2024
DOI
https://doi.org/10.1007/3418_2024_121