Skip to main content
Top

2024 | OriginalPaper | Chapter

Metal Nanoparticles on Polymeric Membranes Applied in Catalytic Hydrogenations

Authors : Rosa Pich, Jean-François Lahitte, Jean-Christophe Remigy, Daniel Pla, Montserrat Gómez

Published in: Surface Functionalized Metal Catalysts

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Polymeric catalytic membranes, adapted for the immobilization of metal nanoparticles (MNPs) with the objective of being applied in hydrogenation reactions, are reviewed in this chapter, highlighting the works including a rational design and full characterization of the catalytic membrane reactors. The most relevant contributions concern zero-valent MNPs (mono- and bimetallic systems) of late transition metals (groups 8–10), involving a significant variety of (un)functionalized polymers. Both batch and continuous-flow processes are discussed, with the latter being of particular interest for large-scale applications. The literature analysis carried out evidences that there is still room for developing innovative polymeric catalytic membranes, regarding both design and applications. Thus, for instance, well-defined stereo-controlled polymeric membranes for enantioselective hydrogenations or multi-step processes involving a series of polymeric catalytic reactors would be of interest, particularly for the production of fine chemicals under smooth conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Koros WJ, Ma YH, Shimidzu T (1996) Terminology for membranes and membrane processes. Pure Appl Chem 68:1479–1489 Koros WJ, Ma YH, Shimidzu T (1996) Terminology for membranes and membrane processes. Pure Appl Chem 68:1479–1489
2.
go back to reference Abdullah N, Rahman MA, Dzarfan Othman MH, Jaafar J, Ismail AF (2018) Chapter 2 – membranes and membrane processes: fundamentals. In: Basile A, Mozia S, Molinari R (eds) Current trends and future developments on (bio-) membranes. Elsevier, pp 45–70 Abdullah N, Rahman MA, Dzarfan Othman MH, Jaafar J, Ismail AF (2018) Chapter 2 – membranes and membrane processes: fundamentals. In: Basile A, Mozia S, Molinari R (eds) Current trends and future developments on (bio-) membranes. Elsevier, pp 45–70
3.
go back to reference Sitter S, Chen Q, Grossmann IE (2019) An overview of process intensification methods. Curr Opin Chem Eng 25:87–94 Sitter S, Chen Q, Grossmann IE (2019) An overview of process intensification methods. Curr Opin Chem Eng 25:87–94
4.
go back to reference Itoh N, Wu T-H (1997) An adiabatic type of palladium membrane reactor for coupling endothermic and exothermic reactions. J Membr Sci 124:213–222 Itoh N, Wu T-H (1997) An adiabatic type of palladium membrane reactor for coupling endothermic and exothermic reactions. J Membr Sci 124:213–222
5.
go back to reference Dong X, Jin W, Xu N, Li K (2011) Dense ceramic catalytic membranes and membrane reactors for energy and environmental applications. Chem Commun 47:10886–10902 Dong X, Jin W, Xu N, Li K (2011) Dense ceramic catalytic membranes and membrane reactors for energy and environmental applications. Chem Commun 47:10886–10902
6.
go back to reference Zhang G, Jin W, Xu N (2018) Design and fabrication of ceramic catalytic membrane reactors for green chemical engineering applications. Engineering 4:848–860 Zhang G, Jin W, Xu N (2018) Design and fabrication of ceramic catalytic membrane reactors for green chemical engineering applications. Engineering 4:848–860
7.
go back to reference Qing W, Liu F, Yao H, Sun S, Chen C, Zhang W (2020) Functional catalytic membrane development: a review of catalyst coating techniques. Adv Colloid Interf Sci 282:102207 Qing W, Liu F, Yao H, Sun S, Chen C, Zhang W (2020) Functional catalytic membrane development: a review of catalyst coating techniques. Adv Colloid Interf Sci 282:102207
8.
go back to reference Vankelecom IFJ (2002) Polymeric membranes in catalytic reactors. Chem Rev 102:3779–3810PubMed Vankelecom IFJ (2002) Polymeric membranes in catalytic reactors. Chem Rev 102:3779–3810PubMed
9.
go back to reference Qing W, Li X, Shao S, Shi X, Wang J, Feng Y, Zhang W, Zhang W (2019) Polymeric catalytically active membranes for reaction-separation coupling: a review. J Membr Sci 583:118–138 Qing W, Li X, Shao S, Shi X, Wang J, Feng Y, Zhang W, Zhang W (2019) Polymeric catalytically active membranes for reaction-separation coupling: a review. J Membr Sci 583:118–138
10.
go back to reference Ozdemir SS, Buonomenna MG, Drioli E (2006) Catalytic polymeric membranes: preparation and application. Appl Catal A 307:167–183 Ozdemir SS, Buonomenna MG, Drioli E (2006) Catalytic polymeric membranes: preparation and application. Appl Catal A 307:167–183
11.
go back to reference Brunetti A, Zito PF, Giorno L, Drioli E, Barbieri G (2018) Membrane reactors for low temperature applications: an overview. Chem Eng Process 124:282–307 Brunetti A, Zito PF, Giorno L, Drioli E, Barbieri G (2018) Membrane reactors for low temperature applications: an overview. Chem Eng Process 124:282–307
12.
go back to reference Robeson LM (2012) 8.13 – polymer membranes. In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 325–347 Robeson LM (2012) 8.13 – polymer membranes. In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 325–347
13.
go back to reference Volkov VV, Petrova IV, Lebedeva VI, Roldughin VI, Tereshchenko GF (2011) Palladium-loaded polymeric membranes for hydrogenation in catalytic membrane reactors. In: Basile A, Gallucci F (eds) Membranes for membrane reactors: preparation, optimization and selection. Wiley, p 531 Volkov VV, Petrova IV, Lebedeva VI, Roldughin VI, Tereshchenko GF (2011) Palladium-loaded polymeric membranes for hydrogenation in catalytic membrane reactors. In: Basile A, Gallucci F (eds) Membranes for membrane reactors: preparation, optimization and selection. Wiley, p 531
14.
go back to reference Gryaznov VM (1963) Mechanism of the catalytic redistribution of hydrogen in unsaturated cyclic hydrocarbons. Russ Chem Rev 32:188 Gryaznov VM (1963) Mechanism of the catalytic redistribution of hydrogen in unsaturated cyclic hydrocarbons. Russ Chem Rev 32:188
15.
go back to reference Gryaznov VM, Smirnov VS, Vdovin VM, Ermilova MM, Gogua LD, Pritula NA, Litvinov IA (1979) Method of preparing a hydrogen-permeable membrane catalyst on a base of palladium or its alloys for the hydrogenation of unsaturated organic compounds, U.S. Patent Gryaznov VM, Smirnov VS, Vdovin VM, Ermilova MM, Gogua LD, Pritula NA, Litvinov IA (1979) Method of preparing a hydrogen-permeable membrane catalyst on a base of palladium or its alloys for the hydrogenation of unsaturated organic compounds, U.S. Patent
16.
go back to reference Gryaznov VM, Smirnov VS, Vdovin VM, Ermilova MM, Gogua LD, Pritula NA, Fedorova GK (1983) Membrane catalyst for hydrogenation of organic compounds and method for preparing same, U.S. Patent Gryaznov VM, Smirnov VS, Vdovin VM, Ermilova MM, Gogua LD, Pritula NA, Fedorova GK (1983) Membrane catalyst for hydrogenation of organic compounds and method for preparing same, U.S. Patent
17.
go back to reference Ng LY, Mohammad AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33 Ng LY, Mohammad AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33
18.
go back to reference Buonomenna MG, Choi SH, Drioli E (2010) Catalysis in polymeric membrane reactors: the membrane role. Asia Pac J Chem Eng 5:26–34 Buonomenna MG, Choi SH, Drioli E (2010) Catalysis in polymeric membrane reactors: the membrane role. Asia Pac J Chem Eng 5:26–34
19.
go back to reference Kudaibergenov SE, Dzhardimalieva GI (2020) Flow-through catalytic reactors based on metal nanoparticles immobilized within porous polymeric gels and surfaces/hollows of polymeric membranes. Polymers 12:572PubMedPubMedCentral Kudaibergenov SE, Dzhardimalieva GI (2020) Flow-through catalytic reactors based on metal nanoparticles immobilized within porous polymeric gels and surfaces/hollows of polymeric membranes. Polymers 12:572PubMedPubMedCentral
20.
go back to reference Stankiewicz A (2003) Reactive separations for process intensification: an industrial perspective. Chem Eng Process 42:137–144 Stankiewicz A (2003) Reactive separations for process intensification: an industrial perspective. Chem Eng Process 42:137–144
21.
go back to reference Miachon S, Dalmon J-A (2004) Catalysis in membrane reactors: what about the catalyst? Top Catal 29:59–65 Miachon S, Dalmon J-A (2004) Catalysis in membrane reactors: what about the catalyst? Top Catal 29:59–65
22.
go back to reference López-Viveros M, Favier I, Gómez M, Lahitte J-F, Remigy J-C (2021) Remarkable catalytic activity of polymeric membranes containing gel-trapped palladium nanoparticles for hydrogenation reactions. Catal Today 364:263–269 López-Viveros M, Favier I, Gómez M, Lahitte J-F, Remigy J-C (2021) Remarkable catalytic activity of polymeric membranes containing gel-trapped palladium nanoparticles for hydrogenation reactions. Catal Today 364:263–269
23.
go back to reference Venezia B, Panariello L, Biri D, Shin J, Damilos S, Radhakrishnan ANP, Blackman C, Gavriilidis A (2021) Catalytic Teflon AF-2400 membrane reactor with adsorbed ex situ synthesized Pd-based nanoparticles for nitrobenzene hydrogenation. Catal Today 362:104–112 Venezia B, Panariello L, Biri D, Shin J, Damilos S, Radhakrishnan ANP, Blackman C, Gavriilidis A (2021) Catalytic Teflon AF-2400 membrane reactor with adsorbed ex situ synthesized Pd-based nanoparticles for nitrobenzene hydrogenation. Catal Today 362:104–112
24.
go back to reference Oliveira DGM, Rosa GR, Scheeren CW (2017) Rh and Pd nanoparticles supported in a polymeric membrane: evaluation in hydrogenation and Suzuki-Miyaura reactions. J Nanosci Nanotechnol 17:9295–9301 Oliveira DGM, Rosa GR, Scheeren CW (2017) Rh and Pd nanoparticles supported in a polymeric membrane: evaluation in hydrogenation and Suzuki-Miyaura reactions. J Nanosci Nanotechnol 17:9295–9301
25.
go back to reference Roucoux A, Schulz J, Patin H (2002) Reduced transition metal colloids: a novel family of reusable catalysts? Chem Rev 102:3757–3778PubMed Roucoux A, Schulz J, Patin H (2002) Reduced transition metal colloids: a novel family of reusable catalysts? Chem Rev 102:3757–3778PubMed
26.
go back to reference Bagnato G, Figoli A, Garbe R, Russo F, Galiano F, Sanna A (2021) Development of Ru-PEEK-WC catalytic membrane using a more sustainable solvent for stable hydrogenation reactions. Fuel Process Technol 216:106766 Bagnato G, Figoli A, Garbe R, Russo F, Galiano F, Sanna A (2021) Development of Ru-PEEK-WC catalytic membrane using a more sustainable solvent for stable hydrogenation reactions. Fuel Process Technol 216:106766
27.
go back to reference Gu Y (2016) Membranes polymères fonctionnalisées par des poly(liquide ionique)s et des nanoparticules de palladium : applications au captage de CO2 et aux membranes catalytiques, Laboratoire de Génie Chimique (LGC), UMR 5503. Université Toulouse III Paul Sabatier, Toulouse Gu Y (2016) Membranes polymères fonctionnalisées par des poly(liquide ionique)s et des nanoparticules de palladium : applications au captage de CO2 et aux membranes catalytiques, Laboratoire de Génie Chimique (LGC), UMR 5503. Université Toulouse III Paul Sabatier, Toulouse
28.
go back to reference Chen B, Li F, Huang Z, Lu T, Yuan G (2014) Stability or flexibility: metal nanoparticles supported over cross-linked functional polymers as catalytic active sites for hydrogenation and carbonylation. Appl Catal A 481:54–63 Chen B, Li F, Huang Z, Lu T, Yuan G (2014) Stability or flexibility: metal nanoparticles supported over cross-linked functional polymers as catalytic active sites for hydrogenation and carbonylation. Appl Catal A 481:54–63
29.
go back to reference Bastos-Arrieta J, Munoz J, Stenbock-Fermor A, Munoz M, Muraviev DN, Cespedes F, Tsarkova LA, Baeza M (2016) Intermatrix synthesis as a rapid, inexpensive and reproducible methodology for the in situ functionalization of nanostructured surfaces with quantum dots. Appl Surf Sci 368:417–426 Bastos-Arrieta J, Munoz J, Stenbock-Fermor A, Munoz M, Muraviev DN, Cespedes F, Tsarkova LA, Baeza M (2016) Intermatrix synthesis as a rapid, inexpensive and reproducible methodology for the in situ functionalization of nanostructured surfaces with quantum dots. Appl Surf Sci 368:417–426
30.
go back to reference Ludtke K, Peinemann K-V, Kasche V, Behling R-D (1998) Nitrate removal of drinking water by means of catalytically active membranes. J Membr Sci 151:3–11 Ludtke K, Peinemann K-V, Kasche V, Behling R-D (1998) Nitrate removal of drinking water by means of catalytically active membranes. J Membr Sci 151:3–11
31.
go back to reference Groeschel L, Haidar R, Beyer A, Coelfen H, Frank B, Schomaecker R (2005) Hydrogenation of propyne in palladium-containing polyacrylic acid membranes and its characterization. Ind Eng Chem Res 44:9064–9070 Groeschel L, Haidar R, Beyer A, Coelfen H, Frank B, Schomaecker R (2005) Hydrogenation of propyne in palladium-containing polyacrylic acid membranes and its characterization. Ind Eng Chem Res 44:9064–9070
32.
go back to reference Goyal A, Mohl M, Kumar A, Puskas R, Kukovecz A, Konya Z, Kiricsi I, Ajayan PM (2011) In situ synthesis of catalytic metal nanoparticle-PDMS membranes by thermal decomposition process. Compos Sci Technol 71:129–133 Goyal A, Mohl M, Kumar A, Puskas R, Kukovecz A, Konya Z, Kiricsi I, Ajayan PM (2011) In situ synthesis of catalytic metal nanoparticle-PDMS membranes by thermal decomposition process. Compos Sci Technol 71:129–133
33.
go back to reference Ruiz P, Munoz M, Macanas J, Turta C, Prodius D, Muraviev DN (2010) Intermatrix synthesis of polymer stabilized inorganic nanocatalyst with maximum accessibility for reactants. Dalton Trans 39:1751–1757PubMed Ruiz P, Munoz M, Macanas J, Turta C, Prodius D, Muraviev DN (2010) Intermatrix synthesis of polymer stabilized inorganic nanocatalyst with maximum accessibility for reactants. Dalton Trans 39:1751–1757PubMed
34.
go back to reference Domènech B, Bastos-Arrieta J, Alonso A, Macanás J, Muñoz M, Muraviev DN (2012) Bifunctional polymer-metal nanocomposite ion exchange materials. In: Ayben KL (ed) Ion exchange technologies. IntechOpen, Rijeka. Ch. 3 Domènech B, Bastos-Arrieta J, Alonso A, Macanás J, Muñoz M, Muraviev DN (2012) Bifunctional polymer-metal nanocomposite ion exchange materials. In: Ayben KL (ed) Ion exchange technologies. IntechOpen, Rijeka. Ch. 3
35.
go back to reference Gu Y, Emin C, Remigy J-C, Favier I, Gómez M, Noble RD, Gin DL, Macanás J, Domènech B, Lahitte J-F (2016) Hybrid catalytic membranes: tunable and versatile materials for fine chemistry applications. Mater Today Proc 3:419–423 Gu Y, Emin C, Remigy J-C, Favier I, Gómez M, Noble RD, Gin DL, Macanás J, Domènech B, Lahitte J-F (2016) Hybrid catalytic membranes: tunable and versatile materials for fine chemistry applications. Mater Today Proc 3:419–423
36.
go back to reference Domènech B, Muñoz M, Muraviev DN, Macanas J (2011) Polymer-stabilized palladium nanoparticles for catalytic membranes: ad hoc polymer fabrication. Nanoscale Res Lett 6 Domènech B, Muñoz M, Muraviev DN, Macanas J (2011) Polymer-stabilized palladium nanoparticles for catalytic membranes: ad hoc polymer fabrication. Nanoscale Res Lett 6
37.
go back to reference Vincent T, Spinelli S, Guibal E (2003) Chitosan-supported palladium catalyst. II. Chlorophenol Dehalogenation Ind Eng Chem Res 42:5968–5976 Vincent T, Spinelli S, Guibal E (2003) Chitosan-supported palladium catalyst. II. Chlorophenol Dehalogenation Ind Eng Chem Res 42:5968–5976
38.
go back to reference Vincent T, Guibal E (2004) Chitosan-supported palladium catalyst. 5. Nitrophenol degradation using palladium supported on hollow chitosan fibers. Environ Sci Technol 38:4233–4240PubMed Vincent T, Guibal E (2004) Chitosan-supported palladium catalyst. 5. Nitrophenol degradation using palladium supported on hollow chitosan fibers. Environ Sci Technol 38:4233–4240PubMed
39.
go back to reference Volkov VV, Lebedeva VI, Petrova IV, Bobyl AV, Konnikov SG, Roldughin VI, van Erkel J, Tereshchenko GF (2011) Adlayers of palladium particles and their aggregates on porous polypropylene hollow fiber membranes as hydrogenization contractors/reactors. Adv Colloid Interf Sci 164:144–155 Volkov VV, Lebedeva VI, Petrova IV, Bobyl AV, Konnikov SG, Roldughin VI, van Erkel J, Tereshchenko GF (2011) Adlayers of palladium particles and their aggregates on porous polypropylene hollow fiber membranes as hydrogenization contractors/reactors. Adv Colloid Interf Sci 164:144–155
40.
go back to reference Chen Y, Fan S, Qiu B, Chen J, Mai Z, Wang Y, Bai K, Xiao Z (2021) Cu-ag bimetallic Core-shell nanoparticles in pores of a membrane microreactor for enhanced synergistic catalysis. ACS Appl Mater Interfaces 13:24795–24803PubMed Chen Y, Fan S, Qiu B, Chen J, Mai Z, Wang Y, Bai K, Xiao Z (2021) Cu-ag bimetallic Core-shell nanoparticles in pores of a membrane microreactor for enhanced synergistic catalysis. ACS Appl Mater Interfaces 13:24795–24803PubMed
41.
go back to reference Faria VW, Brunelli MF, Scheeren CW (2015) Iridium nanoparticles supported in polymeric membranes: a new material for hydrogenation reactions. RSC Adv 5:84920–84926 Faria VW, Brunelli MF, Scheeren CW (2015) Iridium nanoparticles supported in polymeric membranes: a new material for hydrogenation reactions. RSC Adv 5:84920–84926
42.
go back to reference Nechifor AC, Goran A, Grosu V-A, Pirtac A, Albu PC, Oprea O, Grosu AR, Pascu D, Pancescu FM, Nechifor G, Tanczos S-K, Bungau SG (2021) Reactional processes on osmium-polymeric membranes for 5-nitrobenzimidazole reduction. Membranes 11:633PubMedPubMedCentral Nechifor AC, Goran A, Grosu V-A, Pirtac A, Albu PC, Oprea O, Grosu AR, Pascu D, Pancescu FM, Nechifor G, Tanczos S-K, Bungau SG (2021) Reactional processes on osmium-polymeric membranes for 5-nitrobenzimidazole reduction. Membranes 11:633PubMedPubMedCentral
43.
go back to reference Durmaz EN, Sahin S, Virga E, de Beer S, de Smet LCPM, de Vos WM (2021) Polyelectrolytes as building blocks for next-generation membranes with advanced functionalities. ACS Appl Polym Mater 3:4347–4374PubMedPubMedCentral Durmaz EN, Sahin S, Virga E, de Beer S, de Smet LCPM, de Vos WM (2021) Polyelectrolytes as building blocks for next-generation membranes with advanced functionalities. ACS Appl Polym Mater 3:4347–4374PubMedPubMedCentral
44.
go back to reference Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers. Techniques, factors and applications. Prog Polym Sci 29:767–814 Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers. Techniques, factors and applications. Prog Polym Sci 29:767–814
45.
go back to reference Macanas J, Ouyang L, Bruening ML, Munoz M, Remigy JC, Lahitte JF (2010) Development of polymeric hollow fiber membranes containing catalytic metal nanoparticles. Catal Today 156:181–186 Macanas J, Ouyang L, Bruening ML, Munoz M, Remigy JC, Lahitte JF (2010) Development of polymeric hollow fiber membranes containing catalytic metal nanoparticles. Catal Today 156:181–186
46.
go back to reference Emin C, Gu Y, Remigy JC, Lahitte JF (2015) Polyethersulfone hollow fiber modified with poly(styrenesulfonate) and Pd nanoparticles for catalytic reaction. Eur Phys J Spec Top 224:1843–1848 Emin C, Gu Y, Remigy JC, Lahitte JF (2015) Polyethersulfone hollow fiber modified with poly(styrenesulfonate) and Pd nanoparticles for catalytic reaction. Eur Phys J Spec Top 224:1843–1848
47.
go back to reference Gu Y, Favier I, Pradel C, Gin DL, Lahitte J-F, Noble RD, Gómez M, Remigy J-C (2015) High catalytic efficiency of palladium nanoparticles immobilized in a polymer membrane containing poly(ionic liquid) in Suzuki-Miyaura cross-coupling reaction. J Membr Sci 492:331–339 Gu Y, Favier I, Pradel C, Gin DL, Lahitte J-F, Noble RD, Gómez M, Remigy J-C (2015) High catalytic efficiency of palladium nanoparticles immobilized in a polymer membrane containing poly(ionic liquid) in Suzuki-Miyaura cross-coupling reaction. J Membr Sci 492:331–339
48.
go back to reference Goma-Bilongo T, Akbari A, Clifton MJ, Remigy JC (2006) Numerical simulation of a UV photografting process for hollow-fiber membranes. J Membr Sci 278:308–317 Goma-Bilongo T, Akbari A, Clifton MJ, Remigy JC (2006) Numerical simulation of a UV photografting process for hollow-fiber membranes. J Membr Sci 278:308–317
49.
go back to reference Akbari A, Desclaux S, Remigy JC, Aptel P (2002) Treatment of textile dye effluents using a new photografted nanofiltration membrane. Desalination 149:101–107 Akbari A, Desclaux S, Remigy JC, Aptel P (2002) Treatment of textile dye effluents using a new photografted nanofiltration membrane. Desalination 149:101–107
50.
go back to reference Yamagishi H, Crivello JV, Belfort G (1995) Evaluation of photochemically modified poly(arylsulfone) ultrafiltration membranes. J Membr Sci 105:249 Yamagishi H, Crivello JV, Belfort G (1995) Evaluation of photochemically modified poly(arylsulfone) ultrafiltration membranes. J Membr Sci 105:249
51.
go back to reference Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237 Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237
52.
go back to reference Ouyang L, Dotzauer DM, Hogg SR, Macanas J, Lahitte J-F, Bruening ML (2010) Catalytic hollow fiber membranes prepared using layer-by-layer adsorption of polyelectrolytes and metal nanoparticles. Catal Today 156:100–106 Ouyang L, Dotzauer DM, Hogg SR, Macanas J, Lahitte J-F, Bruening ML (2010) Catalytic hollow fiber membranes prepared using layer-by-layer adsorption of polyelectrolytes and metal nanoparticles. Catal Today 156:100–106
53.
go back to reference Hogg SR, Muthu S, O'Callaghan M, Lahitte J-F, Bruening ML (2012) Wet air oxidation of formic acid using platinum nanoparticle modified polysulfone hollow fiber gas liquid contactor. ACS Appl Mater Interfaces 4:1440–1448PubMed Hogg SR, Muthu S, O'Callaghan M, Lahitte J-F, Bruening ML (2012) Wet air oxidation of formic acid using platinum nanoparticle modified polysulfone hollow fiber gas liquid contactor. ACS Appl Mater Interfaces 4:1440–1448PubMed
54.
go back to reference Fischer L, Volz A, Hagemann U, Ulbricht M (2023) Polymeric multi-composites with a tailored nickel microenvironment as catalytic flow-through membrane reactors for efficient p-nitrophenol degradation. Chem Eng J 463:142437 Fischer L, Volz A, Hagemann U, Ulbricht M (2023) Polymeric multi-composites with a tailored nickel microenvironment as catalytic flow-through membrane reactors for efficient p-nitrophenol degradation. Chem Eng J 463:142437
55.
go back to reference Fischer L, Hesaraki SAH, Volz A, Ulbricht M (2023) Highly nickel loaded nanocomposite membranes for catalytic H2 production and hydrogenation of p-nitrophenol using ammonia borane. ACS Appl Nano Mater 6:14910–14920 Fischer L, Hesaraki SAH, Volz A, Ulbricht M (2023) Highly nickel loaded nanocomposite membranes for catalytic H2 production and hydrogenation of p-nitrophenol using ammonia borane. ACS Appl Nano Mater 6:14910–14920
56.
go back to reference Gu Y, Bacchin P, Lahitte JF, Remigy JC, Favier I, Gómez M, Gin DL, Noble RD (2017) Catalytic membrane reactor for Suzuki-Miyaura C−C cross-coupling: explanation for its high efficiency via modeling. AICHE J 63:698–704 Gu Y, Bacchin P, Lahitte JF, Remigy JC, Favier I, Gómez M, Gin DL, Noble RD (2017) Catalytic membrane reactor for Suzuki-Miyaura C−C cross-coupling: explanation for its high efficiency via modeling. AICHE J 63:698–704
57.
go back to reference Hashim SM, Mohamed AR, Bhatia S (2011) Catalytic inorganic membrane reactors: present research and future prospects. Rev Chem Eng 27:157–178 Hashim SM, Mohamed AR, Bhatia S (2011) Catalytic inorganic membrane reactors: present research and future prospects. Rev Chem Eng 27:157–178
58.
go back to reference Favier I, Pla D, Gómez M (2020) Palladium nanoparticles in polyols: synthesis, catalytic couplings and hydrogenations. Chem Rev 120:1146–1183PubMed Favier I, Pla D, Gómez M (2020) Palladium nanoparticles in polyols: synthesis, catalytic couplings and hydrogenations. Chem Rev 120:1146–1183PubMed
59.
go back to reference Liu X, Astruc D (2018) Development of the applications of palladium on charcoal in organic synthesis. Adv Synth Catal 360:3426–3459 Liu X, Astruc D (2018) Development of the applications of palladium on charcoal in organic synthesis. Adv Synth Catal 360:3426–3459
60.
go back to reference Ciebien JF, Cohen RE, Duran A (1998) Catalytic properties of palladium nanoclusters synthesized within diblock copolymer films: hydrogenation of ethylene and propylene. Supramol Sci 5:31–39 Ciebien JF, Cohen RE, Duran A (1998) Catalytic properties of palladium nanoclusters synthesized within diblock copolymer films: hydrogenation of ethylene and propylene. Supramol Sci 5:31–39
61.
go back to reference Ciebien JF, Cohen RE, Duran A (1999) Membrane catalysts for partial hydrogenation of 1,3-butadiene: catalytic properties of palladium nanoclusters synthesized within diblock copolymer films. Mater Sci Eng C C7:45–50 Ciebien JF, Cohen RE, Duran A (1999) Membrane catalysts for partial hydrogenation of 1,3-butadiene: catalytic properties of palladium nanoclusters synthesized within diblock copolymer films. Mater Sci Eng C C7:45–50
62.
go back to reference Sulman E, Sulman M, Tyamina I, Doluda V, Nikoshvili L, Lyubimova N, Sidorov A, Matveeva V (2015) Adsorption processes for the synthesis of catalytically active metal nanoparticles in polymeric matrices. Chem Eng Technol 38:683–689 Sulman E, Sulman M, Tyamina I, Doluda V, Nikoshvili L, Lyubimova N, Sidorov A, Matveeva V (2015) Adsorption processes for the synthesis of catalytically active metal nanoparticles in polymeric matrices. Chem Eng Technol 38:683–689
63.
go back to reference Nemygina NA, Nikoshvili LZ, Matveeva VG, Sulman MG, Sulman EM, Kiwi-Minsker L (2016) Pd-nanoparticles confined within hollow polymeric framework as effective catalysts for the synthesis of fine chemicals. Top Catal 59:1185–1195 Nemygina NA, Nikoshvili LZ, Matveeva VG, Sulman MG, Sulman EM, Kiwi-Minsker L (2016) Pd-nanoparticles confined within hollow polymeric framework as effective catalysts for the synthesis of fine chemicals. Top Catal 59:1185–1195
64.
go back to reference Liu M, Zhu X, Liao Q, Chen R, Ye D, Chen G, Wang K (2020) Catalytic membrane microreactors with an ultrathin freestanding membrane for nitrobenzene hydrogenation. ACS Appl Mater Interfaces 12:9806–9813PubMed Liu M, Zhu X, Liao Q, Chen R, Ye D, Chen G, Wang K (2020) Catalytic membrane microreactors with an ultrathin freestanding membrane for nitrobenzene hydrogenation. ACS Appl Mater Interfaces 12:9806–9813PubMed
65.
go back to reference Liguori F, Barbaro P (2014) Green semi-hydrogenation of alkynes by Pd@borate monolith catalysts under continuous flow. J Catal 311:212–220 Liguori F, Barbaro P (2014) Green semi-hydrogenation of alkynes by Pd@borate monolith catalysts under continuous flow. J Catal 311:212–220
66.
go back to reference Liguori F, Barbaro P (2014) Continuous flow synthesis of Rh and Pd nanoparticles onto ion-exchange borate monoliths: application to selective catalytic hydrogenation of unsaturated carbonyl compounds under flow conditions. Cat Sci Technol 4:3835–3839 Liguori F, Barbaro P (2014) Continuous flow synthesis of Rh and Pd nanoparticles onto ion-exchange borate monoliths: application to selective catalytic hydrogenation of unsaturated carbonyl compounds under flow conditions. Cat Sci Technol 4:3835–3839
67.
go back to reference Xu Y, Yao Y, Yu H, Shi B, Gao S, Zhang L, Miller AL, Fang J-C, Wang X, Huang K (2019) Nanoparticle-encapsulated hollow porous polymeric nanosphere frameworks as highly active and tunable size-selective catalysts. ACS Macro Lett 8:1263–1267PubMed Xu Y, Yao Y, Yu H, Shi B, Gao S, Zhang L, Miller AL, Fang J-C, Wang X, Huang K (2019) Nanoparticle-encapsulated hollow porous polymeric nanosphere frameworks as highly active and tunable size-selective catalysts. ACS Macro Lett 8:1263–1267PubMed
68.
go back to reference Liu Y, Li M, Chen G (2013) A new type of raspberry-like polymer composite sub-microspheres with tunable gold nanoparticles coverage and their enhanced catalytic properties. J Mater Chem A 1:930–937 Liu Y, Li M, Chen G (2013) A new type of raspberry-like polymer composite sub-microspheres with tunable gold nanoparticles coverage and their enhanced catalytic properties. J Mater Chem A 1:930–937
69.
go back to reference Schmidt A, Haidar R, Schomaecker R (2005) Selectivity of partial hydrogenation reactions performed in a pore-through-flow catalytic membrane reactor. Catal Today 104:305–312 Schmidt A, Haidar R, Schomaecker R (2005) Selectivity of partial hydrogenation reactions performed in a pore-through-flow catalytic membrane reactor. Catal Today 104:305–312
70.
go back to reference Groeschel L, Haidar R, Beyer A, Reichert K-H, Schomaecker R (2004) Characterization of palladium nanoparticles adsorbed on polyacrylic acid particles as hydrogenation catalyst. Catal Lett 95:67–75 Groeschel L, Haidar R, Beyer A, Reichert K-H, Schomaecker R (2004) Characterization of palladium nanoparticles adsorbed on polyacrylic acid particles as hydrogenation catalyst. Catal Lett 95:67–75
71.
go back to reference Beyer A, Schomaecker R, Reichert K-H (2003) Synthesis and characterization of palladium containing membranes based upon polyacrylic acid. Colloid Polym Sci 281:862–868 Beyer A, Schomaecker R, Reichert K-H (2003) Synthesis and characterization of palladium containing membranes based upon polyacrylic acid. Colloid Polym Sci 281:862–868
72.
go back to reference Kidambi S, Bruening ML (2005) Multilayered polyelectrolyte films containing palladium nanoparticles: synthesis, characterization, and application in selective hydrogenation. Chem Mater 17:301–307 Kidambi S, Bruening ML (2005) Multilayered polyelectrolyte films containing palladium nanoparticles: synthesis, characterization, and application in selective hydrogenation. Chem Mater 17:301–307
73.
go back to reference Robello DR, Mis MR, Nair M (2015) Micron-sized membrane reactors: multicompartment semipermeable polymer particles containing palladium nanoparticles. J Appl Polym Sci 132:42021/42021-42021/42010 Robello DR, Mis MR, Nair M (2015) Micron-sized membrane reactors: multicompartment semipermeable polymer particles containing palladium nanoparticles. J Appl Polym Sci 132:42021/42021-42021/42010
74.
go back to reference Goszewska I, Gizinski D, Zienkiewicz-Machnik M, Lisovytskiy D, Nikiforov K, Masternak J, Srebowata A, Sa J (2017) A novel nano-palladium catalyst for continuous-flow chemoselective hydrogenation reactions. Catal Commun 94:65–68 Goszewska I, Gizinski D, Zienkiewicz-Machnik M, Lisovytskiy D, Nikiforov K, Masternak J, Srebowata A, Sa J (2017) A novel nano-palladium catalyst for continuous-flow chemoselective hydrogenation reactions. Catal Commun 94:65–68
75.
go back to reference Kowalewski E, Zawadzki B, Matus K, Nikiforow K, Srebowata A (2021) Continuous-flow hydrogenation over resin supported palladium catalyst for the synthesis of industrially relevant chemicals. React. Kinet Mech Catal 132:717–728 Kowalewski E, Zawadzki B, Matus K, Nikiforow K, Srebowata A (2021) Continuous-flow hydrogenation over resin supported palladium catalyst for the synthesis of industrially relevant chemicals. React. Kinet Mech Catal 132:717–728
76.
go back to reference Gizinski D, Goszewska I, Zielinski M, Lisovytskiy D, Nikiforov K, Masternak J, Zienkiewicz-Machnik M, Srebowata A, Sa J (2017) Chemoselective flow hydrogenation of α,β – unsaturated aldehyde with nano-nickel. Catal Commun 98:17–21 Gizinski D, Goszewska I, Zielinski M, Lisovytskiy D, Nikiforov K, Masternak J, Zienkiewicz-Machnik M, Srebowata A, Sa J (2017) Chemoselective flow hydrogenation of α,β – unsaturated aldehyde with nano-nickel. Catal Commun 98:17–21
77.
go back to reference Biesinger MC, Lau LW, Gerson AR, Smart RSC (2012) The role of the Auger parameter in XPS studies of nickel metal, halides and oxides. Phys Chem Chem Phys 14:2434–2442PubMed Biesinger MC, Lau LW, Gerson AR, Smart RSC (2012) The role of the Auger parameter in XPS studies of nickel metal, halides and oxides. Phys Chem Chem Phys 14:2434–2442PubMed
78.
go back to reference Biesinger MC, Payne BP, Lau LWM, Gerson A, Smart RSC (2009) X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf Interface Anal 41:324–332 Biesinger MC, Payne BP, Lau LWM, Gerson A, Smart RSC (2009) X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf Interface Anal 41:324–332
79.
go back to reference Mamontova E, Trabbia C, Favier I, Serrano-Maldonado A, Ledeuil J-B, Madec L, Gómez M, Pla D (2023) Novel catalyst composites of Ni- and co-based nanoparticles supported on inorganic oxides for fatty acid hydrogenations. Nanomaterials 13:1435PubMedPubMedCentral Mamontova E, Trabbia C, Favier I, Serrano-Maldonado A, Ledeuil J-B, Madec L, Gómez M, Pla D (2023) Novel catalyst composites of Ni- and co-based nanoparticles supported on inorganic oxides for fatty acid hydrogenations. Nanomaterials 13:1435PubMedPubMedCentral
80.
go back to reference Pérez Alonso A, Mauriés S, Ledeuil J-B, Madec L, Pham Minh D, Pla D, Gómez M (2022) Nickel nanoparticles immobilized on pristine halloysite: an outstanding catalyst for hydrogenation processes. ChemCatChem 14:e2022007 Pérez Alonso A, Mauriés S, Ledeuil J-B, Madec L, Pham Minh D, Pla D, Gómez M (2022) Nickel nanoparticles immobilized on pristine halloysite: an outstanding catalyst for hydrogenation processes. ChemCatChem 14:e2022007
81.
go back to reference Xie R, Fan G, Ma Q, Yang L, Li F (2014) Facile synthesis and enhanced catalytic performance of graphene-supported Ni nanocatalyst from a layered double hydroxide-based composite precursor. J Mater Chem A 2:7880–7889 Xie R, Fan G, Ma Q, Yang L, Li F (2014) Facile synthesis and enhanced catalytic performance of graphene-supported Ni nanocatalyst from a layered double hydroxide-based composite precursor. J Mater Chem A 2:7880–7889
82.
go back to reference Gryglewicz S, Sliwak A, Cwikla J, Gryglewicz G (2014) Performance of carbon nanofiber and activated carbon supported nickel catalysts for liquid-phase hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. Catal Lett 144:62–69 Gryglewicz S, Sliwak A, Cwikla J, Gryglewicz G (2014) Performance of carbon nanofiber and activated carbon supported nickel catalysts for liquid-phase hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. Catal Lett 144:62–69
83.
go back to reference Bhogeswararao S, Pavan Kumar V, Chary KVR, Srinivas D (2013) Noble metal promoted CeO2-ZrO2-supported Ni catalysts for liquid-phase hydrogenation of cinnamaldehyde. Catal Lett 143:1266–1276 Bhogeswararao S, Pavan Kumar V, Chary KVR, Srinivas D (2013) Noble metal promoted CeO2-ZrO2-supported Ni catalysts for liquid-phase hydrogenation of cinnamaldehyde. Catal Lett 143:1266–1276
84.
go back to reference Malobela LJ, Heveling J, Augustyn WG, Cele LM (2014) Nickel-cobalt on carbonaceous supports for the selective catalytic hydrogenation of cinnamaldehyde. Ind Eng Chem Res 53:13910–13919 Malobela LJ, Heveling J, Augustyn WG, Cele LM (2014) Nickel-cobalt on carbonaceous supports for the selective catalytic hydrogenation of cinnamaldehyde. Ind Eng Chem Res 53:13910–13919
85.
go back to reference Ceatra L, Parvulescu OC, Rodriguez Ramos I, Dobre T (2016) Preparation, characterization, and testing of a carbon-supported catalyst obtained by slow pyrolysis of nickel salt impregnated vegetal material. Ind Eng Chem Res 55:1491–1502 Ceatra L, Parvulescu OC, Rodriguez Ramos I, Dobre T (2016) Preparation, characterization, and testing of a carbon-supported catalyst obtained by slow pyrolysis of nickel salt impregnated vegetal material. Ind Eng Chem Res 55:1491–1502
86.
go back to reference Jiao N, Li Z, Xia C, Liu J (2017) Palladium nanoparticles immobilized on cross-linked polymeric ionic liquid material: application as efficient and recoverable catalyst for the hydrogenation of nitroarenes. ChemistrySelect 2:4545–4556 Jiao N, Li Z, Xia C, Liu J (2017) Palladium nanoparticles immobilized on cross-linked polymeric ionic liquid material: application as efficient and recoverable catalyst for the hydrogenation of nitroarenes. ChemistrySelect 2:4545–4556
87.
go back to reference Copéret C, Comas-Vives A, Conley MP, Estes DP, Fedorov A, Mougel V, Nagae H, Núñez-Zarur F, Zhizhko PA (2016) Surface organometallic and coordination chemistry toward single-site heterogeneous catalysts: strategies, methods, structures, and activities. Chem Rev 116:323–421PubMed Copéret C, Comas-Vives A, Conley MP, Estes DP, Fedorov A, Mougel V, Nagae H, Núñez-Zarur F, Zhizhko PA (2016) Surface organometallic and coordination chemistry toward single-site heterogeneous catalysts: strategies, methods, structures, and activities. Chem Rev 116:323–421PubMed
88.
go back to reference Astakhov AV, Khazipov OV, Chernenko AY, Pasyukov DV, Kashin AS, Gordeev EG, Khrustalev VN, Chernyshev VM, Ananikov VP (2017) A new mode of operation of Pd-NHC systems studied in a catalytic Mizoroki-heck reaction. Organometallics 36:1981–1992 Astakhov AV, Khazipov OV, Chernenko AY, Pasyukov DV, Kashin AS, Gordeev EG, Khrustalev VN, Chernyshev VM, Ananikov VP (2017) A new mode of operation of Pd-NHC systems studied in a catalytic Mizoroki-heck reaction. Organometallics 36:1981–1992
89.
go back to reference Favier I, Toro M-L, Lecante P, Pla D, Gómez M (2018) Palladium-mediated radical homocoupling reactions: a surface catalytic insight. Cat Sci Technol 8:4766–4773 Favier I, Toro M-L, Lecante P, Pla D, Gómez M (2018) Palladium-mediated radical homocoupling reactions: a surface catalytic insight. Cat Sci Technol 8:4766–4773
90.
go back to reference Duarte TAG, Favier I, Pradel C, Martins LMDRS, Carvalho AP, Pla D, Gómez M (2020) Tetraalkylammonium functionalized hydrochars as efficient supports for palladium nanocatalysts. ChemCatChem 12:2295–2303 Duarte TAG, Favier I, Pradel C, Martins LMDRS, Carvalho AP, Pla D, Gómez M (2020) Tetraalkylammonium functionalized hydrochars as efficient supports for palladium nanocatalysts. ChemCatChem 12:2295–2303
91.
go back to reference Zhang Y, Quek X-Y, Wu L, Guan Y, Hensen EJ (2013) Palladium nanoparticles entrapped in polymeric ionic liquid microgels as recyclable hydrogenation catalysts. J Mol Catal A Chem 379:53–58 Zhang Y, Quek X-Y, Wu L, Guan Y, Hensen EJ (2013) Palladium nanoparticles entrapped in polymeric ionic liquid microgels as recyclable hydrogenation catalysts. J Mol Catal A Chem 379:53–58
92.
go back to reference Xu J, Chen G, Yan R, Wang D, Zhang M, Zhang W, Sun P (2011) One-stage synthesis of Cagelike porous polymeric microspheres and application as catalyst scaffold of Pd nanoparticles. Macromolecules 44:3730–3738 Xu J, Chen G, Yan R, Wang D, Zhang M, Zhang W, Sun P (2011) One-stage synthesis of Cagelike porous polymeric microspheres and application as catalyst scaffold of Pd nanoparticles. Macromolecules 44:3730–3738
93.
go back to reference Gao Y, Chen C-A, Gau H-M, Bailey JA, Akhadov E, Williams D, Wang H-L (2008) Facile synthesis of polyaniline-supported Pd nanoparticles and their catalytic properties toward selective hydrogenation of alkynes and cinnamaldehyde. Chem Mater 20:2839–2844 Gao Y, Chen C-A, Gau H-M, Bailey JA, Akhadov E, Williams D, Wang H-L (2008) Facile synthesis of polyaniline-supported Pd nanoparticles and their catalytic properties toward selective hydrogenation of alkynes and cinnamaldehyde. Chem Mater 20:2839–2844
94.
go back to reference Guo L, Bai J, Li C, Meng Q, Liang H, Sun W, Li H, Liu H (2013) A novel catalyst containing palladium nanoparticles supported on PVP composite nanofiber films: synthesis, characterization and efficient catalysis. Appl Surf Sci 283:107–114 Guo L, Bai J, Li C, Meng Q, Liang H, Sun W, Li H, Liu H (2013) A novel catalyst containing palladium nanoparticles supported on PVP composite nanofiber films: synthesis, characterization and efficient catalysis. Appl Surf Sci 283:107–114
95.
go back to reference Gao H, Xu Y, Liao S, Liu R, Liu J, Li D, Yu D, Zhao Y, Fan Y (1995) Catalytic polymeric hollow-fiber reactors for the selective hydrogenation of conjugated dines. J Membr Sci 106:213 Gao H, Xu Y, Liao S, Liu R, Liu J, Li D, Yu D, Zhao Y, Fan Y (1995) Catalytic polymeric hollow-fiber reactors for the selective hydrogenation of conjugated dines. J Membr Sci 106:213
96.
go back to reference Liu C, Xu Y, Liao S, Yu D, Zhao Y, Fan Y (1997) Selective hydrogenation of propadiene and propyne in propene with catalytic polymeric hollow-fiber reactor. J Membr Sci 137:139–144 Liu C, Xu Y, Liao S, Yu D, Zhao Y, Fan Y (1997) Selective hydrogenation of propadiene and propyne in propene with catalytic polymeric hollow-fiber reactor. J Membr Sci 137:139–144
97.
go back to reference Liu C, Xu Y, Liao S, Yu D (1998) Mono- and bimetallic catalytic hollow-fiber reactors for the selective hydrogenation of butadiene in 1-butene. Appl Catal A 172:23–29 Liu C, Xu Y, Liao S, Yu D (1998) Mono- and bimetallic catalytic hollow-fiber reactors for the selective hydrogenation of butadiene in 1-butene. Appl Catal A 172:23–29
98.
go back to reference Gancheva T, Virgilio N (2019) Tailored macroporous hydrogel-nanoparticle nanocomposites for monolithic flow-through catalytic reactors. React Chem Eng 4:806–811 Gancheva T, Virgilio N (2019) Tailored macroporous hydrogel-nanoparticle nanocomposites for monolithic flow-through catalytic reactors. React Chem Eng 4:806–811
99.
go back to reference Yamada YMA, Watanabe T, Ohno A, Uozumi Y (2012) Development of polymeric palladium-nanoparticle membrane-installed microflow devices and their application in hydrodehalogenation. ChemSusChem 5:293–299PubMed Yamada YMA, Watanabe T, Ohno A, Uozumi Y (2012) Development of polymeric palladium-nanoparticle membrane-installed microflow devices and their application in hydrodehalogenation. ChemSusChem 5:293–299PubMed
100.
go back to reference Ziegler S, Theis J, Fritsch D (2001) Palladium modified porous polymeric membranes and their performance in selective hydrogenation of propyne. J Membr Sci 187:71–84 Ziegler S, Theis J, Fritsch D (2001) Palladium modified porous polymeric membranes and their performance in selective hydrogenation of propyne. J Membr Sci 187:71–84
101.
go back to reference Troeger L, Huennefeld H, Nunes S, Oehring M, Fritsch D (1997) Structural characterization of catalytically active metal nanoclusters in poly(amide imide) films with high metal loading. J Phys Chem B 101:1279–1291 Troeger L, Huennefeld H, Nunes S, Oehring M, Fritsch D (1997) Structural characterization of catalytically active metal nanoclusters in poly(amide imide) films with high metal loading. J Phys Chem B 101:1279–1291
102.
go back to reference Peirano Blondet F, Vincent T, Guibal E (2008) Hydrogenation of nitrotoluene using palladium supported on chitosan hollow fiber, catalyst characterization and influence of operative parameters studied by experimental design methodology. Int J Biol Macromol 43:69–78 Peirano Blondet F, Vincent T, Guibal E (2008) Hydrogenation of nitrotoluene using palladium supported on chitosan hollow fiber, catalyst characterization and influence of operative parameters studied by experimental design methodology. Int J Biol Macromol 43:69–78
103.
go back to reference Wu H, Wu C, He Q, Liao X, Shi B (2010) Collagen fiber with surface-grafted polyphenol as a novel support for Pd(0) nanoparticles: synthesis, characterization and catalytic application. Mater Sci Eng C 30:770–776 Wu H, Wu C, He Q, Liao X, Shi B (2010) Collagen fiber with surface-grafted polyphenol as a novel support for Pd(0) nanoparticles: synthesis, characterization and catalytic application. Mater Sci Eng C 30:770–776
104.
go back to reference Long NV, Nguyen DC, Hirata H, Ohtaki M, Hayakawa T, Nogami M (2010) Chemical synthesis and characterization of palladium nanoparticles. Adv Nat Sci Nanosci 1:035012 Long NV, Nguyen DC, Hirata H, Ohtaki M, Hayakawa T, Nogami M (2010) Chemical synthesis and characterization of palladium nanoparticles. Adv Nat Sci Nanosci 1:035012
105.
go back to reference Harraz FA, El-Sheikh SM, Mohamed RM, Ibrahim IA (2009) Synthesis and characterization of palladium nanoparticles for catalytic applications. Int J Nanopart 2:361–371 Harraz FA, El-Sheikh SM, Mohamed RM, Ibrahim IA (2009) Synthesis and characterization of palladium nanoparticles for catalytic applications. Int J Nanopart 2:361–371
106.
go back to reference Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44:7852–7872 Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44:7852–7872
107.
go back to reference Narayanan R, El-Sayed MA (2003) Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. J Am Chem Soc 125:8340–8347PubMed Narayanan R, El-Sayed MA (2003) Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. J Am Chem Soc 125:8340–8347PubMed
108.
go back to reference Mahdavi H, Rahimi A, Shahalizade T (2016) Catalytic polymeric membranes with palladium nanoparticle/multi-wall carbon nanotubes as hierarchical nanofillers: preparation, characterization and application. J Polym Res 23:1–12 Mahdavi H, Rahimi A, Shahalizade T (2016) Catalytic polymeric membranes with palladium nanoparticle/multi-wall carbon nanotubes as hierarchical nanofillers: preparation, characterization and application. J Polym Res 23:1–12
109.
go back to reference Zhang N, Wu Y, Yuen G, de Lannoy C-F (2023) Ultrafiltration Pd-immobilized catalytic membrane microreactors continuously reduce nitrophenol study of catalytic activity and simultaneous separation. Sep Purif Technol 312:123318 Zhang N, Wu Y, Yuen G, de Lannoy C-F (2023) Ultrafiltration Pd-immobilized catalytic membrane microreactors continuously reduce nitrophenol study of catalytic activity and simultaneous separation. Sep Purif Technol 312:123318
110.
go back to reference Lee S, Shin S-J, Baek H, Choi Y, Hyun K, Seo M, Kim K, Koh D-Y, Kim H, Choi M (2020) Dynamic metal-polymer interaction for the design of chemoselective and long-lived hydrogenation catalysts. Sci Adv 6:eabb7369PubMedPubMedCentral Lee S, Shin S-J, Baek H, Choi Y, Hyun K, Seo M, Kim K, Koh D-Y, Kim H, Choi M (2020) Dynamic metal-polymer interaction for the design of chemoselective and long-lived hydrogenation catalysts. Sci Adv 6:eabb7369PubMedPubMedCentral
111.
go back to reference Brandao L, Madeira LM, Mendes AM (2007) Propyne hydrogenation in a continuous polymeric catalytic membrane reactor. Chem Eng Sci 62:6768–6776 Brandao L, Madeira LM, Mendes AM (2007) Propyne hydrogenation in a continuous polymeric catalytic membrane reactor. Chem Eng Sci 62:6768–6776
112.
go back to reference Brandão L, Fritsch D, Mendes AM, Madeira LM (2007) Propylene hydrogenation in a continuous polymeric catalytic membrane reactor. Ind Eng Chem Res 46:5278–5285 Brandão L, Fritsch D, Mendes AM, Madeira LM (2007) Propylene hydrogenation in a continuous polymeric catalytic membrane reactor. Ind Eng Chem Res 46:5278–5285
113.
go back to reference He Y, Cheshomi N, Lawson SM, Itta AK, Rezaei F, Kapila S, Rownaghi AA (2021) PDMS/PAI-HF composite membrane containing immobilized palladium nanoparticles for 4-nitrophenol reduction. Chem Eng J 410:128326 He Y, Cheshomi N, Lawson SM, Itta AK, Rezaei F, Kapila S, Rownaghi AA (2021) PDMS/PAI-HF composite membrane containing immobilized palladium nanoparticles for 4-nitrophenol reduction. Chem Eng J 410:128326
114.
go back to reference Bottino A, Capannelli G, Comite A, Di Felice R (2002) Polymeric and ceramic membranes in three-phase catalytic membrane reactors for the hydrogenation of methylenecyclohexane. Desalination 144:411–416 Bottino A, Capannelli G, Comite A, Di Felice R (2002) Polymeric and ceramic membranes in three-phase catalytic membrane reactors for the hydrogenation of methylenecyclohexane. Desalination 144:411–416
115.
go back to reference Kotte MR, Kuvarega AT, Talapaneni SN, Cho M, Coskun A, Diallo MS (2018) A facile and scalable route to the preparation of catalytic membranes with in situ synthesized supramolecular dendrimer particle hosts for Pt(0) nanoparticles using a low-generation PAMAM dendrimer (G1-NH2) as precursor. ACS Appl Mater Interfaces 10:33238–33251PubMed Kotte MR, Kuvarega AT, Talapaneni SN, Cho M, Coskun A, Diallo MS (2018) A facile and scalable route to the preparation of catalytic membranes with in situ synthesized supramolecular dendrimer particle hosts for Pt(0) nanoparticles using a low-generation PAMAM dendrimer (G1-NH2) as precursor. ACS Appl Mater Interfaces 10:33238–33251PubMed
116.
go back to reference Büker J, Alkan B, Chabbra S, Kochetov N, Falk T, Schnegg A, Schulz C, Wiggers H, Muhler M, Peng B (2021) Liquid-phase cyclohexene oxidation with O2 over spray-flame-synthesized La1−xSrxCoO3 perovskite nanoparticles. Chem Eur J 27:16912–16923PubMed Büker J, Alkan B, Chabbra S, Kochetov N, Falk T, Schnegg A, Schulz C, Wiggers H, Muhler M, Peng B (2021) Liquid-phase cyclohexene oxidation with O2 over spray-flame-synthesized La1−xSrxCoO3 perovskite nanoparticles. Chem Eur J 27:16912–16923PubMed
117.
go back to reference Dintzner MR, Kinzie CR, Pulkrabek K, Arena AF (2012) The cyclohexanol cycle and synthesis of nylon 6,6: green chemistry in the undergraduate organic laboratory. J Chem Educ 89:262–264 Dintzner MR, Kinzie CR, Pulkrabek K, Arena AF (2012) The cyclohexanol cycle and synthesis of nylon 6,6: green chemistry in the undergraduate organic laboratory. J Chem Educ 89:262–264
118.
go back to reference Long S, Zhang A, Liu H, Li L, Ding L (2009) Fabrication of a Pt nano-cluster/photosensitive polyimide hybrid membrane reactor and its partial hydrogenation of benzene. Chinese J Catal 30:276–278 Long S, Zhang A, Liu H, Li L, Ding L (2009) Fabrication of a Pt nano-cluster/photosensitive polyimide hybrid membrane reactor and its partial hydrogenation of benzene. Chinese J Catal 30:276–278
119.
go back to reference Zhai H, Zhang A, Li L, Long S (2012) Partial hydrogenation of benzene catalyzed by Pt/N-n-propyl chitosan hybrid membrane. J Appl Polym Sci 123:2140–2146 Zhai H, Zhang A, Li L, Long S (2012) Partial hydrogenation of benzene catalyzed by Pt/N-n-propyl chitosan hybrid membrane. J Appl Polym Sci 123:2140–2146
120.
go back to reference Hereijgers BPC, Weckhuysen BM (2010) Aerobic oxidation of cyclohexane by gold-based catalysts: new mechanistic insight by thorough product analysis. J Catal 270:16–25 Hereijgers BPC, Weckhuysen BM (2010) Aerobic oxidation of cyclohexane by gold-based catalysts: new mechanistic insight by thorough product analysis. J Catal 270:16–25
121.
go back to reference Schuchardt U, Cardoso D, Sercheli R, Pereira R, da Cruz RS, Guerreiro MC, Mandelli D, Spinacé EV, Pires EL (2001) Cyclohexane oxidation continues to be a challenge. Appl Catal A 211:1–17 Schuchardt U, Cardoso D, Sercheli R, Pereira R, da Cruz RS, Guerreiro MC, Mandelli D, Spinacé EV, Pires EL (2001) Cyclohexane oxidation continues to be a challenge. Appl Catal A 211:1–17
122.
go back to reference Musser MT (2011) Cyclohexanol and cyclohexanone, Ullmann’s encyclopedia of industrial chemistry. Wiley Musser MT (2011) Cyclohexanol and cyclohexanone, Ullmann’s encyclopedia of industrial chemistry. Wiley
123.
go back to reference Hodges AM, Linton M, Mau AWH, Cavell KJ, Hey JA, Seen AJ (1990) Perfluorinated membranes as catalyst supports. Appl Organomet Chem 4:465 Hodges AM, Linton M, Mau AWH, Cavell KJ, Hey JA, Seen AJ (1990) Perfluorinated membranes as catalyst supports. Appl Organomet Chem 4:465
124.
go back to reference Byun H, Lee T (2002) Hydrogenation of cyclohexene with perfluorinated cation- and anion-exchange membranes supported platinum. Desalination 144:419–424 Byun H, Lee T (2002) Hydrogenation of cyclohexene with perfluorinated cation- and anion-exchange membranes supported platinum. Desalination 144:419–424
125.
go back to reference Adlim M, Abu Bakar M, Liew KY, Ismail J (2004) Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity. J Mol Catal A Chem 212:141–149 Adlim M, Abu Bakar M, Liew KY, Ismail J (2004) Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity. J Mol Catal A Chem 212:141–149
126.
go back to reference Gelesky MA, Scheeren CW, Foppa L, Pavan FA, Dias SLP, Dupont J (2009) Metal nanoparticle/ionic liquid/cellulose: new catalytically active membrane materials for hydrogenation reactions. Biomacromolecules 10:1888–1893PubMed Gelesky MA, Scheeren CW, Foppa L, Pavan FA, Dias SLP, Dupont J (2009) Metal nanoparticle/ionic liquid/cellulose: new catalytically active membrane materials for hydrogenation reactions. Biomacromolecules 10:1888–1893PubMed
127.
go back to reference Singh D, Rezac ME, Pfromm PH (2010) Partial hydrogenation of soybean oil using metal-decorated integral-asymmetric polymer membranes: effects of morphology and membrane properties. J Membr Sci 348:99–108 Singh D, Rezac ME, Pfromm PH (2010) Partial hydrogenation of soybean oil using metal-decorated integral-asymmetric polymer membranes: effects of morphology and membrane properties. J Membr Sci 348:99–108
128.
go back to reference Holda AK, Vankelecom IFJ (2015) Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. J Appl Polym Sci 132:42130/42131 Holda AK, Vankelecom IFJ (2015) Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. J Appl Polym Sci 132:42130/42131
129.
go back to reference Fritsch D, Bengtson G (2006) Catalytic polymer membranes for high temperature hydrogenation of viscous liquids. Adv Eng Mater 8:386–389 Fritsch D, Bengtson G (2006) Catalytic polymer membranes for high temperature hydrogenation of viscous liquids. Adv Eng Mater 8:386–389
130.
go back to reference Liu C, Xu Y, Liao S, Yu D (2000) Selective hydrogenation of cyclopentadiene in mono- and bimetallic catalytic hollow-fiber reactors. J Mol Catal A Chem 157:253–259 Liu C, Xu Y, Liao S, Yu D (2000) Selective hydrogenation of cyclopentadiene in mono- and bimetallic catalytic hollow-fiber reactors. J Mol Catal A Chem 157:253–259
131.
go back to reference Lim B, Jiang M, Camargo PHC, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–1305PubMed Lim B, Jiang M, Camargo PHC, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–1305PubMed
132.
go back to reference Yarulin A, Berguerand C, Yuranov I, Cardenas-Lizana F, Prokopyeva I, Kiwi-Minsker L (2015) Pt-Zn nanoparticles supported on porous polymeric matrix for selective 3-nitrostyrene hydrogenation. J Catal 321:7–12 Yarulin A, Berguerand C, Yuranov I, Cardenas-Lizana F, Prokopyeva I, Kiwi-Minsker L (2015) Pt-Zn nanoparticles supported on porous polymeric matrix for selective 3-nitrostyrene hydrogenation. J Catal 321:7–12
133.
go back to reference Stanford JP, Soto MC, Pfromm PH, Rezac ME (2016) Aqueous phase hydrogenation of levulinic acid using a porous catalytic membrane reactor. Catal Today 268:19–28 Stanford JP, Soto MC, Pfromm PH, Rezac ME (2016) Aqueous phase hydrogenation of levulinic acid using a porous catalytic membrane reactor. Catal Today 268:19–28
134.
go back to reference Bagnato G, Figoli A, Ursino C, Galiano F, Sanna A (2018) A novel Ru-polyethersulfone (PES) catalytic membrane for highly efficient and selective hydrogenation of furfural to furfuryl alcohol. J Mater Chem A 6:4955–4965 Bagnato G, Figoli A, Ursino C, Galiano F, Sanna A (2018) A novel Ru-polyethersulfone (PES) catalytic membrane for highly efficient and selective hydrogenation of furfural to furfuryl alcohol. J Mater Chem A 6:4955–4965
135.
go back to reference Molinari R, Lavorato C, Argurio P (2020) Visible-light photocatalysts and their perspectives for building photocatalytic membrane reactors for various liquid phase chemical conversions. Catalysts 10:1334 Molinari R, Lavorato C, Argurio P (2020) Visible-light photocatalysts and their perspectives for building photocatalytic membrane reactors for various liquid phase chemical conversions. Catalysts 10:1334
Metadata
Title
Metal Nanoparticles on Polymeric Membranes Applied in Catalytic Hydrogenations
Authors
Rosa Pich
Jean-François Lahitte
Jean-Christophe Remigy
Daniel Pla
Montserrat Gómez
Copyright Year
2024
DOI
https://doi.org/10.1007/3418_2024_120