Skip to main content
Top

2016 | OriginalPaper | Chapter

30. Metal-Organic Frameworks (MOFs) for Photocatalytic Organic Transformations

Authors : Dengrong Sun, Zhaohui Li

Published in: Nanostructured Photocatalysts

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The ever-increasing global demand for energy has stimulated a new wave of research on efficient solar energy utilization. Photocatalysis is a promising pathway in the direct transformation of solar energy to chemical energy. Metal-organic frameworks (MOFs), which are constructed from metal clusters interconnected by multidentate organic ligands, have emerged as promising photocatalysts due to their highly flexible structure and tunable light-absorption properties. In this chapter, we summarize our recent work in using photocatalytic active MOFs for organic transformations, including CO2 reduction, amine oxidation, and one-pot tandem photocatalytic oxidation/Knoevenagel condensation. Strategies to improve the photocatalytic performance of MOFs, including amine functionalization on organic linkers, post-synthetic metal exchange in the metal center, and doping of noble metal nanoparticles into MOFs, are also discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Corma A, García H, Li Xamena FX (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655CrossRef Corma A, García H, Li Xamena FX (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655CrossRef
2.
go back to reference Meek ST, Greathouse JA, Allendorf MD (2011) Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater 23:249–267CrossRef Meek ST, Greathouse JA, Allendorf MD (2011) Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater 23:249–267CrossRef
3.
go back to reference Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214CrossRef Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214CrossRef
4.
go back to reference Murray LJ, Dinca M, Long JR (2009) Hydrogen storage in metal-organic frameworks. Chem Soc Rev 2009(38):1294–1314CrossRef Murray LJ, Dinca M, Long JR (2009) Hydrogen storage in metal-organic frameworks. Chem Soc Rev 2009(38):1294–1314CrossRef
5.
go back to reference Li JR, Sculley J, Zhou HC (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932CrossRef Li JR, Sculley J, Zhou HC (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932CrossRef
6.
go back to reference Lee J, Farha OK, Roberts J et al (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38:1450–1459CrossRef Lee J, Farha OK, Roberts J et al (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38:1450–1459CrossRef
7.
go back to reference McKinlay AC, Morris RE, Horcajada P et al (2010) Bio-MOFs: metall-organi frameworks for biological and medical applications. Angew Chem 122:6400–6406CrossRef McKinlay AC, Morris RE, Horcajada P et al (2010) Bio-MOFs: metall-organi frameworks for biological and medical applications. Angew Chem 122:6400–6406CrossRef
8.
go back to reference McKinlay AC, Morris RE, Horcajada P et al (2010) Bio-MOFs: metall-organi frameworks for biological and medical applications. Angew Chem Int Ed 49:6260–6266CrossRef McKinlay AC, Morris RE, Horcajada P et al (2010) Bio-MOFs: metall-organi frameworks for biological and medical applications. Angew Chem Int Ed 49:6260–6266CrossRef
9.
go back to reference Zhang T, Lin W (2014) Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem Soc Rev 43:5982–5993CrossRef Zhang T, Lin W (2014) Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem Soc Rev 43:5982–5993CrossRef
10.
go back to reference Nasalevich MA, van der Veen M, Kapteijn F et al (2014) CrystEngComm 16:4919–4926CrossRef Nasalevich MA, van der Veen M, Kapteijn F et al (2014) CrystEngComm 16:4919–4926CrossRef
11.
go back to reference Wang JL, Wang C, Lin W (2012) Metal-organic frameworks for light harvesting and photocatalysis. ACS Catal 2:2630–2640CrossRef Wang JL, Wang C, Lin W (2012) Metal-organic frameworks for light harvesting and photocatalysis. ACS Catal 2:2630–2640CrossRef
12.
go back to reference Li SL, Xu Q (2013) Metal-organic frameworks as platform for clean energy. Energy Environ Sci 6:1656–1683CrossRef Li SL, Xu Q (2013) Metal-organic frameworks as platform for clean energy. Energy Environ Sci 6:1656–1683CrossRef
13.
go back to reference Cohen SM (2010) Modifying MOFs: new chemistry, new materials. Chem Sci 1:32–36CrossRef Cohen SM (2010) Modifying MOFs: new chemistry, new materials. Chem Sci 1:32–36CrossRef
14.
go back to reference Cohen SM (2012) Postsynthetic methods for the functionalization of metal-organic frameworks. Chem Rev 112:970–1000CrossRef Cohen SM (2012) Postsynthetic methods for the functionalization of metal-organic frameworks. Chem Rev 112:970–1000CrossRef
15.
go back to reference Hendon CH, Tiana D, Fontecave M et al (2013) Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization. J Am Chem Soc 135:10942–10945CrossRef Hendon CH, Tiana D, Fontecave M et al (2013) Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization. J Am Chem Soc 135:10942–10945CrossRef
16.
go back to reference Silva CG, Luz I, Li Xamena FX et al (2010) Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation. Chem Eur J 16:11133–11138CrossRef Silva CG, Luz I, Li Xamena FX et al (2010) Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation. Chem Eur J 16:11133–11138CrossRef
17.
go back to reference Vermoortele F, Ameloot R, Vimont A et al (2011) An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation. Chem Commun 47:1521–1523CrossRef Vermoortele F, Ameloot R, Vimont A et al (2011) An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation. Chem Commun 47:1521–1523CrossRef
18.
go back to reference Manna K, Zhang T, Lin W (2014) Postsynthetic metalation of bipyridyl-containing metal-organic frameworks for highly efficient catalytic organic transformations. J Am Chem Soc 136:6566–6569CrossRef Manna K, Zhang T, Lin W (2014) Postsynthetic metalation of bipyridyl-containing metal-organic frameworks for highly efficient catalytic organic transformations. J Am Chem Soc 136:6566–6569CrossRef
19.
go back to reference Wang C, Xie Z, deKrafft KE et al (2011) Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc 133:13445–13454CrossRef Wang C, Xie Z, deKrafft KE et al (2011) Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc 133:13445–13454CrossRef
20.
go back to reference Inoue T, Fujishima A, Konishi S et al (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638CrossRef Inoue T, Fujishima A, Konishi S et al (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638CrossRef
21.
go back to reference Lin W, Frei H (2005) Photochemical CO2 splitting by metal-to-metal charge-transfer excitation in mesoporous ZrCu(I)-MCM-41 silicate sieve. J Am Chem Soc 127:1610–1611CrossRef Lin W, Frei H (2005) Photochemical CO2 splitting by metal-to-metal charge-transfer excitation in mesoporous ZrCu(I)-MCM-41 silicate sieve. J Am Chem Soc 127:1610–1611CrossRef
22.
go back to reference Appel AM, Bercaw JE, Bocarsly AB et al (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658CrossRef Appel AM, Bercaw JE, Bocarsly AB et al (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658CrossRef
23.
go back to reference Dan-Hardi M, Serre C, Frot T et al (2009) A new photoactive crystalline highly porous titanium(IV) dicarboxylate. J Am Chem Soc 131:10857–10859CrossRef Dan-Hardi M, Serre C, Frot T et al (2009) A new photoactive crystalline highly porous titanium(IV) dicarboxylate. J Am Chem Soc 131:10857–10859CrossRef
24.
go back to reference Fu Y, Sun D, Chen Y et al (2012) An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chem Int Ed 51:3364–3367CrossRef Fu Y, Sun D, Chen Y et al (2012) An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chem Int Ed 51:3364–3367CrossRef
25.
go back to reference Cavka JH, Jakobsen S, Olsbye U et al (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851CrossRef Cavka JH, Jakobsen S, Olsbye U et al (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851CrossRef
26.
go back to reference Sun D, Fu Y, Liu W et al (2013) Studies on photocatalytic CO2 reduction over NH2-UiO-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks. Chem Eur J 19:14279–14285CrossRef Sun D, Fu Y, Liu W et al (2013) Studies on photocatalytic CO2 reduction over NH2-UiO-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks. Chem Eur J 19:14279–14285CrossRef
27.
go back to reference Horiuchi Y, Toyao T, Saito M (2012) Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(IV) metal-organic framework. J Phys Chem C 116:20848–20853CrossRef Horiuchi Y, Toyao T, Saito M (2012) Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(IV) metal-organic framework. J Phys Chem C 116:20848–20853CrossRef
28.
go back to reference Laurier KGM, Vermoortele F, Ameloot R et al (2013) Iron(III)-based metal-organic frameworks as visible light photocatalysts. J Am Chem Soc 135:14488–14491CrossRef Laurier KGM, Vermoortele F, Ameloot R et al (2013) Iron(III)-based metal-organic frameworks as visible light photocatalysts. J Am Chem Soc 135:14488–14491CrossRef
29.
go back to reference Bordiga S, Buzzoni R, Geobaldo F et al (1996) Structure and reactivity of framework and extra framework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods. J Catal 158:486–501CrossRef Bordiga S, Buzzoni R, Geobaldo F et al (1996) Structure and reactivity of framework and extra framework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods. J Catal 158:486–501CrossRef
30.
go back to reference Wang D, Huang R, Liu W et al (2014) Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catal 4:4254–4260CrossRef Wang D, Huang R, Liu W et al (2014) Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catal 4:4254–4260CrossRef
31.
go back to reference Sun D, Ye L, Li Z (2015) Visible-light-assisted aerobic photocatalytic oxidation of amines to imines over NH2-MIL-125(Ti). Appl Catal B Environ 164:428–432CrossRef Sun D, Ye L, Li Z (2015) Visible-light-assisted aerobic photocatalytic oxidation of amines to imines over NH2-MIL-125(Ti). Appl Catal B Environ 164:428–432CrossRef
32.
go back to reference McNamara ND, Neumann GT, Masko ET et al (2013) Catalytic performance and stability of (V) MIL-47 and (Ti) MIL-125 in the oxidative desulfurization of heterocyclic aromatic sulfur compounds. J Catal 305:217–226CrossRef McNamara ND, Neumann GT, Masko ET et al (2013) Catalytic performance and stability of (V) MIL-47 and (Ti) MIL-125 in the oxidative desulfurization of heterocyclic aromatic sulfur compounds. J Catal 305:217–226CrossRef
33.
go back to reference Nasalevich MA, Goestena MG, Savenije TJ et al (2013) Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis. Chem Commun 49:10575–10577CrossRef Nasalevich MA, Goestena MG, Savenije TJ et al (2013) Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis. Chem Commun 49:10575–10577CrossRef
34.
go back to reference Yoon M, Srirambalaji R, Kim K (2012) Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem Rev 112:1196–1231CrossRef Yoon M, Srirambalaji R, Kim K (2012) Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem Rev 112:1196–1231CrossRef
35.
go back to reference Pintado-Sierra M, Rasero-Almansa AM, Corma A et al (2013) Bifunctional iridium-(2-aminoterephthalate)-Zr-MOF chemoselective catalyst for the synthesis of secondary amines by one-pot three-step cascade reaction. J Catal 299:137–145CrossRef Pintado-Sierra M, Rasero-Almansa AM, Corma A et al (2013) Bifunctional iridium-(2-aminoterephthalate)-Zr-MOF chemoselective catalyst for the synthesis of secondary amines by one-pot three-step cascade reaction. J Catal 299:137–145CrossRef
36.
go back to reference Toyao T, Saito M, Horiuchi Y et al (2014) Development of a novel one-pot reaction system utilizing a bifunctional Zr-based metal-organic framework. Catal Sci Technol 2014(4):625–628CrossRef Toyao T, Saito M, Horiuchi Y et al (2014) Development of a novel one-pot reaction system utilizing a bifunctional Zr-based metal-organic framework. Catal Sci Technol 2014(4):625–628CrossRef
37.
go back to reference Gacson J, Corma A, Kapteijn F et al (2013) Metal organic framework catalysis: quo vadis? ACS Catal 4:361–378 Gacson J, Corma A, Kapteijn F et al (2013) Metal organic framework catalysis: quo vadis? ACS Catal 4:361–378
38.
go back to reference Wang D, Li Z (2015) Bi-functional NH2-MIL-10(Fe) for one-pot tandem photo-oxidation/Knoevenagel condensation between aromatic alcohols and active methylene compounds. Catal Sci Technol 5:1623–1628CrossRef Wang D, Li Z (2015) Bi-functional NH2-MIL-10(Fe) for one-pot tandem photo-oxidation/Knoevenagel condensation between aromatic alcohols and active methylene compounds. Catal Sci Technol 5:1623–1628CrossRef
39.
go back to reference Yang Y, Yao HF, Xi FG et al (2014) Amino-functionalized Zr(IV) metal-organic framework as bifunctional acid–base catalyst for Knoevenagel condensation. J Mol Catal A Chem 390:198–205CrossRef Yang Y, Yao HF, Xi FG et al (2014) Amino-functionalized Zr(IV) metal-organic framework as bifunctional acid–base catalyst for Knoevenagel condensation. J Mol Catal A Chem 390:198–205CrossRef
40.
go back to reference Kim M, Cahill JF, Su Y et al (2012) Postsynthetic ligand exchange as a route to functionalization of “inert” metal-organic frameworks. Chem Sci 3:126–130CrossRef Kim M, Cahill JF, Su Y et al (2012) Postsynthetic ligand exchange as a route to functionalization of “inert” metal-organic frameworks. Chem Sci 3:126–130CrossRef
41.
go back to reference Kim M, Cahill JF, Fei H et al (2012) Postsynthetic ligand and cation exchange in robust metal-organic frameworks. J Am Chem Soc 134:18082–18088CrossRef Kim M, Cahill JF, Fei H et al (2012) Postsynthetic ligand and cation exchange in robust metal-organic frameworks. J Am Chem Soc 134:18082–18088CrossRef
42.
go back to reference Brozek CK, Dincá M (2013) Ti3+-, V2+/3+-, Cr2+/3+-, Mn2+-, and Fe2+-Substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5. J Am Chem Soc 135:12886–12891 Brozek CK, Dincá M (2013) Ti3+-, V2+/3+-, Cr2+/3+-, Mn2+-, and Fe2+-Substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5. J Am Chem Soc 135:12886–12891
43.
go back to reference Kim M, Cohen SM (2012) Discovery, development, and functionalization of Zr(IV)-based metal-organic frameworks. CrystEngComm 14:4096–4104CrossRef Kim M, Cohen SM (2012) Discovery, development, and functionalization of Zr(IV)-based metal-organic frameworks. CrystEngComm 14:4096–4104CrossRef
44.
go back to reference Sun D, Liu W, Qiu M et al (2015) Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal-organic frameworks (MOFs). Chem Commun 51:2056–2059CrossRef Sun D, Liu W, Qiu M et al (2015) Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal-organic frameworks (MOFs). Chem Commun 51:2056–2059CrossRef
45.
go back to reference Ikuma Y, Bessho H (2007) Effect of Pt concentration on the production of hydrogen by a TiO2 photocatalyst. Int J Hydrogen Energ 32:2689–2692CrossRef Ikuma Y, Bessho H (2007) Effect of Pt concentration on the production of hydrogen by a TiO2 photocatalyst. Int J Hydrogen Energ 32:2689–2692CrossRef
46.
go back to reference Arabatzis IM, Stergiopoulos T, Andreeva D et al (2003) Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. J Catal 220:127–135CrossRef Arabatzis IM, Stergiopoulos T, Andreeva D et al (2003) Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. J Catal 220:127–135CrossRef
47.
go back to reference Bae E, Choi W (2003) Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environ Sci Technol 37:147–152CrossRef Bae E, Choi W (2003) Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environ Sci Technol 37:147–152CrossRef
48.
go back to reference Sano T, Kutsuna S, Negishi N et al (2004) Effect of Pd-photodeposition over TiO2 on product selectivity in photocatalytic degradation of vinyl chloride monomer. J Mol Catal A 189:263–270CrossRef Sano T, Kutsuna S, Negishi N et al (2004) Effect of Pd-photodeposition over TiO2 on product selectivity in photocatalytic degradation of vinyl chloride monomer. J Mol Catal A 189:263–270CrossRef
49.
go back to reference Sun D, Liu W, Fu Y et al (2014) Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): a case study on M/NH2-MIL-125(Ti) (M=Pt and Au). Chem Eur J 20:4780–4788CrossRef Sun D, Liu W, Fu Y et al (2014) Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): a case study on M/NH2-MIL-125(Ti) (M=Pt and Au). Chem Eur J 20:4780–4788CrossRef
Metadata
Title
Metal-Organic Frameworks (MOFs) for Photocatalytic Organic Transformations
Authors
Dengrong Sun
Zhaohui Li
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-26079-2_30

Premium Partners