Skip to main content
Top
Published in: Journal of Materials Science 21/2018

16-07-2018 | Electronic materials

Metallized nanoporous anodic alumina films and their applications

Author: G. A. Lyubas

Published in: Journal of Materials Science | Issue 21/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The optimal conditions of the aluminum electrochemical anodization and electrochemical and chemical metallization were determined. Metallized nanoporous anodic alumina (NAA) films with ultrahigh/average/low density of pores were obtained using the optimal conditions. The physical and chemical properties of the obtained NAA films were studied by high-resolution scanning electron microscopy and the reflective interference spectra in a wavelength range of 235–735 nm. Possible applications of the obtained NAA films are in micro/nanoscale lasers with indirect electrical pumping by laser diodes; optical interferometric chemical nanosensors; and the selective interference coloration and protection of the metal surface.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lyubas GA (2017) Generation of laser radiation by nanostructured solid active elements based on nanoporous aluminum oxide films activated with rhodamine 6G. Nanotechnol Russ 12:276–284CrossRef Lyubas GA (2017) Generation of laser radiation by nanostructured solid active elements based on nanoporous aluminum oxide films activated with rhodamine 6G. Nanotechnol Russ 12:276–284CrossRef
2.
go back to reference Lyubas GA, Shelkovnikov VV, Korotaev SV (2016) Optical interferometric sensor based on thin layers of nanoporous anodized aluminum containing nanoparticles of noble metals. Nanotechnol Russ 11:29–40CrossRef Lyubas GA, Shelkovnikov VV, Korotaev SV (2016) Optical interferometric sensor based on thin layers of nanoporous anodized aluminum containing nanoparticles of noble metals. Nanotechnol Russ 11:29–40CrossRef
3.
go back to reference Shelkovnikov VV, Lyubas GA, Korotaev SV (2016) Enhanced reflective interference spectra of nanoporous anodic alumina films by double electrochemical deposition of chemical metal nanoparticles. Prot Met Phys Chem Surf 52:227–231CrossRef Shelkovnikov VV, Lyubas GA, Korotaev SV (2016) Enhanced reflective interference spectra of nanoporous anodic alumina films by double electrochemical deposition of chemical metal nanoparticles. Prot Met Phys Chem Surf 52:227–231CrossRef
4.
go back to reference Kumeria T, Rahman MM, Santos A, Ferré-Borrull J, Marsal LF, Losic D (2014) Structural and optical nanoengineering of nanoporous anodic alumina rugate filters for real-time and label-free biosensing applications. Anal Chem 86:1837–1844CrossRef Kumeria T, Rahman MM, Santos A, Ferré-Borrull J, Marsal LF, Losic D (2014) Structural and optical nanoengineering of nanoporous anodic alumina rugate filters for real-time and label-free biosensing applications. Anal Chem 86:1837–1844CrossRef
5.
go back to reference Santos A, Kumeria T, Losic D (2014) Nanoporous anodic alumina: a versatile platform for optical biosensors. Materials 7:4297–4320CrossRef Santos A, Kumeria T, Losic D (2014) Nanoporous anodic alumina: a versatile platform for optical biosensors. Materials 7:4297–4320CrossRef
6.
go back to reference Santos A, Kumeria T, Losic D (2013) Optically optimized photoluminescent and interferometric biosensors base on nanoporous anodic alumina: a comparison. Anal Chem 85:7904–7911CrossRef Santos A, Kumeria T, Losic D (2013) Optically optimized photoluminescent and interferometric biosensors base on nanoporous anodic alumina: a comparison. Anal Chem 85:7904–7911CrossRef
7.
go back to reference Ferré-Borrull J, Rahman MM, Pallares J, Marsal LF (2014) Tuning nanoporous anodic alumina distributed-Bragg reflectors with the number of anodization cycles and the anodization temperature. Nanoscale Res Lett 9:416–422CrossRef Ferré-Borrull J, Rahman MM, Pallares J, Marsal LF (2014) Tuning nanoporous anodic alumina distributed-Bragg reflectors with the number of anodization cycles and the anodization temperature. Nanoscale Res Lett 9:416–422CrossRef
8.
go back to reference Ferré-Borrull J, Pallares J, Macias G, Marsal LF (2014) Nanostructural engineering of nanoporous anodic alumina for biosensing applications. Materials 7:5225–5253CrossRef Ferré-Borrull J, Pallares J, Macias G, Marsal LF (2014) Nanostructural engineering of nanoporous anodic alumina for biosensing applications. Materials 7:5225–5253CrossRef
9.
go back to reference Macias G, Hernández-Eguía LP, Ferré-Borrull J, Pallares J, Marsal LF (2013) Gold-coated ordered nanoporous anodic alumina bilayers for future label-free interferometric biosensors. ACS Appl Mater Interfaces 5:8093–8098CrossRef Macias G, Hernández-Eguía LP, Ferré-Borrull J, Pallares J, Marsal LF (2013) Gold-coated ordered nanoporous anodic alumina bilayers for future label-free interferometric biosensors. ACS Appl Mater Interfaces 5:8093–8098CrossRef
10.
go back to reference Marinho SJ, Jesus LM, Barbosa LB, Ardila DR, Alencar M, Rodrigues JJ Jr (2015) Bi-chromatic random laser from alumina porous ceramic infiltrated with rhodamine B. Laser Phys Lett 12:055801–055805CrossRef Marinho SJ, Jesus LM, Barbosa LB, Ardila DR, Alencar M, Rodrigues JJ Jr (2015) Bi-chromatic random laser from alumina porous ceramic infiltrated with rhodamine B. Laser Phys Lett 12:055801–055805CrossRef
11.
go back to reference Zhang W, Yao J, Zhao YS (2016) Organic micro/nanoscale lasers. Acc Chem Res 49:1691–1700CrossRef Zhang W, Yao J, Zhao YS (2016) Organic micro/nanoscale lasers. Acc Chem Res 49:1691–1700CrossRef
12.
go back to reference Li YJ, Yan Y, Zhao YS, Yao J (2016) Construction of nanowire heterojunctions: photonic function-oriented nanoarchitectonics. Adv Mater 28:1319–1326CrossRef Li YJ, Yan Y, Zhao YS, Yao J (2016) Construction of nanowire heterojunctions: photonic function-oriented nanoarchitectonics. Adv Mater 28:1319–1326CrossRef
13.
go back to reference Zhang ZL, Zheng HR, Dong J, Yan XQ, Sun Y, Xu HX (2012) Surface enhanced fluorescence by porous alumina with nanohole arrays. Sci China Ser G 55:767–771CrossRef Zhang ZL, Zheng HR, Dong J, Yan XQ, Sun Y, Xu HX (2012) Surface enhanced fluorescence by porous alumina with nanohole arrays. Sci China Ser G 55:767–771CrossRef
14.
go back to reference Moon JM, Wei A (2005) Uniform gold nanorod arrays from polyethyleniminecoated alumina templates. J Phys Chem B 109:23336–23341CrossRef Moon JM, Wei A (2005) Uniform gold nanorod arrays from polyethyleniminecoated alumina templates. J Phys Chem B 109:23336–23341CrossRef
15.
go back to reference Nielsch K, Muller F, Li AP, Gosele U (2000) Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Adv Mater 12:582–586CrossRef Nielsch K, Muller F, Li AP, Gosele U (2000) Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Adv Mater 12:582–586CrossRef
16.
go back to reference Belov A, Gavrilov S, Shevyakov V, Redichev E (2011) Pulsed electrodeposition of metals into porous anodic alumina. Appl Phys A Mater Sci Process 102:219–223CrossRef Belov A, Gavrilov S, Shevyakov V, Redichev E (2011) Pulsed electrodeposition of metals into porous anodic alumina. Appl Phys A Mater Sci Process 102:219–223CrossRef
17.
go back to reference Hwang SK, Jeong SH, Lee OJ, Lee KH (2005) Fabrication of vacuum tube arrays with a submicron dimension using anodic aluminum oxide nanotemplates. Microelectron Eng 77:2–7CrossRef Hwang SK, Jeong SH, Lee OJ, Lee KH (2005) Fabrication of vacuum tube arrays with a submicron dimension using anodic aluminum oxide nanotemplates. Microelectron Eng 77:2–7CrossRef
18.
go back to reference Ng CKY, Ngan AHW (2011) Precise control of nanohoneycomb ordering over anodic aluminum oxide of square centimeter areas. Chem Mater 23:5264–5268CrossRef Ng CKY, Ngan AHW (2011) Precise control of nanohoneycomb ordering over anodic aluminum oxide of square centimeter areas. Chem Mater 23:5264–5268CrossRef
19.
go back to reference Guo Y, Zhou L, Kameyama H (2011) Thermal and hydrothermal stability of a metal monolithic anodic alumina support for steam reforming of methane. Chem Eng J 168:341–345CrossRef Guo Y, Zhou L, Kameyama H (2011) Thermal and hydrothermal stability of a metal monolithic anodic alumina support for steam reforming of methane. Chem Eng J 168:341–345CrossRef
20.
go back to reference Alam KM, Singh AP, Bodepudi SC, Pramanik S (2011) Fabrication of hexagonally ordered nanopores in anodic alumina: an alternative pretreatment. Surf Sci 605:441–449CrossRef Alam KM, Singh AP, Bodepudi SC, Pramanik S (2011) Fabrication of hexagonally ordered nanopores in anodic alumina: an alternative pretreatment. Surf Sci 605:441–449CrossRef
21.
go back to reference Devan RS, Patil RA, Lin JH, Ma YR (2012) Onedimensional metaloxide nanostructures: recent developments in synthesis, characterization, and applications. Adv Funct Mater 22:3326–3370CrossRef Devan RS, Patil RA, Lin JH, Ma YR (2012) Onedimensional metaloxide nanostructures: recent developments in synthesis, characterization, and applications. Adv Funct Mater 22:3326–3370CrossRef
22.
go back to reference Zhang D, Zhang H, He Y (2006) In situ thickness measurement of porous alumina by atomic force microscopy and the reflectance wavelength measurement from 400–1000 nm. Microsc Res Tech 69:267–270CrossRef Zhang D, Zhang H, He Y (2006) In situ thickness measurement of porous alumina by atomic force microscopy and the reflectance wavelength measurement from 400–1000 nm. Microsc Res Tech 69:267–270CrossRef
23.
go back to reference Chen CY, Huang JH, Song JH, Zhou YS, Lin L, Huang PC, Zhang Y, Liu CP, He JH, Wang ZL (2011) Anisotropic outputs of a nanogenerator from oblique-aligned ZnO nanowire arrays. ACS Nano 5:6707–6713CrossRef Chen CY, Huang JH, Song JH, Zhou YS, Lin L, Huang PC, Zhang Y, Liu CP, He JH, Wang ZL (2011) Anisotropic outputs of a nanogenerator from oblique-aligned ZnO nanowire arrays. ACS Nano 5:6707–6713CrossRef
24.
go back to reference Sadykov V, Parmon V, Tikhov S (2009) Design of some oxide/metal composite supports and catalysts. Compos Interfaces 16:457–476CrossRef Sadykov V, Parmon V, Tikhov S (2009) Design of some oxide/metal composite supports and catalysts. Compos Interfaces 16:457–476CrossRef
25.
go back to reference Ginzburg P, Rodriguez-Fortuno FJ, Wurtz GA, Dickson W, Murphy AP, Morgan F, Pollard RJ, Iorsh IV, Atrashchenko AV, Belov PA, Kivshar YS, Nevet A, Ankonina G, Orenstein M, Zayats AV (2013) Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials. Opt Express 21:14907–14917CrossRef Ginzburg P, Rodriguez-Fortuno FJ, Wurtz GA, Dickson W, Murphy AP, Morgan F, Pollard RJ, Iorsh IV, Atrashchenko AV, Belov PA, Kivshar YS, Nevet A, Ankonina G, Orenstein M, Zayats AV (2013) Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials. Opt Express 21:14907–14917CrossRef
26.
go back to reference Simovski CR, Belov PA, Atrashchenko AV, Kivshar YS (2012) Wire metamaterials: physics and applications. Adv Mater 24:4229–4248CrossRef Simovski CR, Belov PA, Atrashchenko AV, Kivshar YS (2012) Wire metamaterials: physics and applications. Adv Mater 24:4229–4248CrossRef
27.
go back to reference Barnakov YA, Kiriy N, Black P, Li H, Yakim AV, Gu L, Mayy M, Narimanov EE, Noginov MA (2011) Toward curvilinear metamaterials based on silver-filled alumina templates. Opt Mater Express 1:1061–1064CrossRef Barnakov YA, Kiriy N, Black P, Li H, Yakim AV, Gu L, Mayy M, Narimanov EE, Noginov MA (2011) Toward curvilinear metamaterials based on silver-filled alumina templates. Opt Mater Express 1:1061–1064CrossRef
28.
go back to reference Naik GV, Kim J, Boltasseva A (2011) Oxides and nitrides as alternative plasmonic materials in the optical range. Opt Mater Express 1:1090–1099CrossRef Naik GV, Kim J, Boltasseva A (2011) Oxides and nitrides as alternative plasmonic materials in the optical range. Opt Mater Express 1:1090–1099CrossRef
29.
go back to reference Noginov MA, Barnakov YuA, Li H, Zhu G, Tumkur TU, Mayy M, Jacob Z, Alekseyev L, Narimanov EE (2010) Silver-filled alumina membrane: metamaterial with hyperbolic dispersion and near-zero singularity. Photonic metamaterials and plasmonics, p MTuA4 Noginov MA, Barnakov YuA, Li H, Zhu G, Tumkur TU, Mayy M, Jacob Z, Alekseyev L, Narimanov EE (2010) Silver-filled alumina membrane: metamaterial with hyperbolic dispersion and near-zero singularity. Photonic metamaterials and plasmonics, p MTuA4
30.
go back to reference Noginov MA, Barnakov YA, Zhu G, Tumkur T, Li H, Narimanov EE (2009) Bulk photonic metamaterial with hyperbolic dispersion. Appl Phys Lett 94:151105–151110CrossRef Noginov MA, Barnakov YA, Zhu G, Tumkur T, Li H, Narimanov EE (2009) Bulk photonic metamaterial with hyperbolic dispersion. Appl Phys Lett 94:151105–151110CrossRef
31.
go back to reference Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy AM, Zhang X (2008) Optical negative refraction in bulk metamaterials of nanowires. Science 321:930CrossRef Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy AM, Zhang X (2008) Optical negative refraction in bulk metamaterials of nanowires. Science 321:930CrossRef
32.
go back to reference Gerrard EJP, Nurshahidah A, Derek F (2011) Progress in nano-engineered anodic aluminum oxide membrane development. Materials 4:487–526CrossRef Gerrard EJP, Nurshahidah A, Derek F (2011) Progress in nano-engineered anodic aluminum oxide membrane development. Materials 4:487–526CrossRef
33.
go back to reference Ebihara K, Takahashi H, Nagayama M (1983) Structure and density of anodic oxide films formed on aluminum in oxalic acid solutions. J Met Finish Soc Jpn 34:548–553CrossRef Ebihara K, Takahashi H, Nagayama M (1983) Structure and density of anodic oxide films formed on aluminum in oxalic acid solutions. J Met Finish Soc Jpn 34:548–553CrossRef
34.
go back to reference Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453CrossRef Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453CrossRef
Metadata
Title
Metallized nanoporous anodic alumina films and their applications
Author
G. A. Lyubas
Publication date
16-07-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 21/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2686-5

Other articles of this Issue 21/2018

Journal of Materials Science 21/2018 Go to the issue

Premium Partners