Skip to main content
Top

2017 | OriginalPaper | Chapter

7. Metamaterial-Based Planar Antennas

Authors : Gnanam Gnanagurunathan, Krishnasamy T. Selvan

Published in: Frontiers in Electronic Technologies

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microstrip patch antenna is used extensively in wireless and mobile applications due to its low profile and lightweight. However, this antenna is prone to low gain, limited bandwidth and increased cross polarization levels. Metamaterial can be integrated onto an antenna to improve its performance. A possible approach to enhance the performance is by suppressing surface waves. This can be achieved by using Electromagnetic Bandgap (EBG) structures. In addition, plane waves that come in contact with EBG structures can be reflected in phase thereby enhancing the radiation properties of the microstrip antenna. Therefore, the main motivation underlying this work is to provide an overview on the evolution, characterization and performance enhancement of microstrip antennas with EBG structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference A.A. Oliner, Periodic structures and photonic-band-gap terminology: historical perspectives, in 29th European Microwave Conference, 1999, (Munich, Germany, 1999), pp. 295–298 A.A. Oliner, Periodic structures and photonic-band-gap terminology: historical perspectives, in 29th European Microwave Conference, 1999, (Munich, Germany, 1999), pp. 295–298
3.
go back to reference F. Yang, Y. Rahmat-Samii, Electromagnetic Bandgap Structures in Antenna Engineering (Cambridge University Press, 2009) F. Yang, Y. Rahmat-Samii, Electromagnetic Bandgap Structures in Antenna Engineering (Cambridge University Press, 2009)
4.
go back to reference N. Engheta, R.W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (John Wiley & Sons, Inc, 2006) N. Engheta, R.W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (John Wiley & Sons, Inc, 2006)
5.
go back to reference J.C. Bose, On the rotation of plane of polarisation of electric waves by a twisted structure. Proc. R. Soc. Lond. 63, 146–152 (1898)CrossRef J.C. Bose, On the rotation of plane of polarisation of electric waves by a twisted structure. Proc. R. Soc. Lond. 63, 146–152 (1898)CrossRef
6.
go back to reference I. Lindell, A.H. Sihvola, J. Kurkijarvi, Karl f Lindman: the last hertzian and a harbinger of electromagnetic chirality. IEEE Antennas Propag. Mag. 34(3), 24–30 (1992)CrossRef I. Lindell, A.H. Sihvola, J. Kurkijarvi, Karl f Lindman: the last hertzian and a harbinger of electromagnetic chirality. IEEE Antennas Propag. Mag. 34(3), 24–30 (1992)CrossRef
8.
go back to reference V.G. Veselago, The electrodynamics of substances with simultaneously negative values of E and µ. Sov. Phys. Uspekh 10, 509 (1968)CrossRef V.G. Veselago, The electrodynamics of substances with simultaneously negative values of E and µ. Sov. Phys. Uspekh 10, 509 (1968)CrossRef
9.
go back to reference E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)CrossRef E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)CrossRef
10.
go back to reference S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)CrossRef S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)CrossRef
11.
go back to reference C.T. Chan, K.M. Ho, C.M. Soukoulis, Photonic band gaps in experimentally realizable periodic dielectric structures. Europhys. Lett. 16, 563 (1991)CrossRef C.T. Chan, K.M. Ho, C.M. Soukoulis, Photonic band gaps in experimentally realizable periodic dielectric structures. Europhys. Lett. 16, 563 (1991)CrossRef
12.
go back to reference E. Yablonovitch, T.J. Gmitter, Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295–2298 (1991)CrossRef E. Yablonovitch, T.J. Gmitter, Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295–2298 (1991)CrossRef
13.
go back to reference X. Ying, A. Alphones, Propagation characteristics of complimentary split ring resonator (CSRR) based EBG structure. Microw. Opt. Technol. Lett. 47 (2005) X. Ying, A. Alphones, Propagation characteristics of complimentary split ring resonator (CSRR) based EBG structure. Microw. Opt. Technol. Lett. 47 (2005)
14.
go back to reference M.M. Karbassian, H. Ghafouri-Shiraz, Effect of shape of patterns on the performance of microstrip photonic band-gap filters. Microw. Opt. Technol. Lett. 48, 1007–1011 (2006)CrossRef M.M. Karbassian, H. Ghafouri-Shiraz, Effect of shape of patterns on the performance of microstrip photonic band-gap filters. Microw. Opt. Technol. Lett. 48, 1007–1011 (2006)CrossRef
15.
go back to reference N. Yang, Z.N. Chen, Y.Y. Wang, M.Y.W. Chia, A two-layer compact electromagnetic bandgap (EBG) structure and its applications in microstrip filter design. Microw. Opt. Technol. Lett. 37 (2002) N. Yang, Z.N. Chen, Y.Y. Wang, M.Y.W. Chia, A two-layer compact electromagnetic bandgap (EBG) structure and its applications in microstrip filter design. Microw. Opt. Technol. Lett. 37 (2002)
16.
go back to reference S.K. Menon, K. Vasudevan, C.K. Aanandan, P. Mohanan, Design and analysis of microstrip lines with EBG-backed ground planes of different geometrical shapes. Microw. Opt. Technol. Lett. 46, 544–546 (2005)CrossRef S.K. Menon, K. Vasudevan, C.K. Aanandan, P. Mohanan, Design and analysis of microstrip lines with EBG-backed ground planes of different geometrical shapes. Microw. Opt. Technol. Lett. 46, 544–546 (2005)CrossRef
17.
go back to reference S.M. Moghadasi, Compact and Wideband 1-D mushroom-like EBG filters. Prog. Electromagnet. Res. 83, 323–333 (2008) S.M. Moghadasi, Compact and Wideband 1-D mushroom-like EBG filters. Prog. Electromagnet. Res. 83, 323–333 (2008)
18.
go back to reference B.Q. Lin, X.-Y. Ye, X.-Y. Cao, F. Li, Uniplanar EBG structure with improved compact and wideband characteristics. Electron. Lett. 44, 1362–1363 (2008) B.Q. Lin, X.-Y. Ye, X.-Y. Cao, F. Li, Uniplanar EBG structure with improved compact and wideband characteristics. Electron. Lett. 44, 1362–1363 (2008)
19.
go back to reference J.D. Ruiz, F.L. Martinez, J. Hinojosa, 1D Koch fractal electromagnetic bandgap microstrip structures with r/a ratios higher than 0.5. Microw. Opt. Technol. Lett. 53, 646–649 (2011)CrossRef J.D. Ruiz, F.L. Martinez, J. Hinojosa, 1D Koch fractal electromagnetic bandgap microstrip structures with r/a ratios higher than 0.5. Microw. Opt. Technol. Lett. 53, 646–649 (2011)CrossRef
20.
go back to reference S.K. Padhi, Improved performance of EBGs on a co-planar transmission line using tapered distribution. Microw. Opt. Technol. Lett. 42, 128–131 (2004)CrossRef S.K. Padhi, Improved performance of EBGs on a co-planar transmission line using tapered distribution. Microw. Opt. Technol. Lett. 42, 128–131 (2004)CrossRef
21.
go back to reference G. Gnanagurunathan, K.T. Selvan, Performance analysis of complementary and non-complementary EBG geometries, presented at the progress, in Electromagnetics Research Symposium (PIERS 2012), (Kuala Lumpur, Malaysia, 2012) G. Gnanagurunathan, K.T. Selvan, Performance analysis of complementary and non-complementary EBG geometries, presented at the progress, in Electromagnetics Research Symposium (PIERS 2012), (Kuala Lumpur, Malaysia, 2012)
22.
go back to reference F. Yang, Y. Rahmat-Samii, Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications. IEEE Trans. Antennas Propag. 51, 2691–2703 (2003)CrossRef F. Yang, Y. Rahmat-Samii, Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications. IEEE Trans. Antennas Propag. 51, 2691–2703 (2003)CrossRef
23.
go back to reference D. Sievenpiper, L. Zhang, R.F.J. Broas, N.G. Alexopolous, E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 47, 2059–2074 (1999)CrossRef D. Sievenpiper, L. Zhang, R.F.J. Broas, N.G. Alexopolous, E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 47, 2059–2074 (1999)CrossRef
24.
go back to reference R. Coccioli, F.-R. Yang, K.-P. Ma, T. Itoh, Aperture-coupled patch antenna on UC-PBG substrate. IEEE Trans. Microw. Theory Tech. 47, 2123–2130 (1999)CrossRef R. Coccioli, F.-R. Yang, K.-P. Ma, T. Itoh, Aperture-coupled patch antenna on UC-PBG substrate. IEEE Trans. Microw. Theory Tech. 47, 2123–2130 (1999)CrossRef
25.
go back to reference Y. Qian, R. Coccioli, D. Sievenpiper, V. Radisic, E. Yablonovitch, T. Itoh, Microstrip patch antenna using novel photonic band-gap structures. Microw. J. 42, 6676 (1999) Y. Qian, R. Coccioli, D. Sievenpiper, V. Radisic, E. Yablonovitch, T. Itoh, Microstrip patch antenna using novel photonic band-gap structures. Microw. J. 42, 6676 (1999)
26.
go back to reference G. Gnanagurunathan, K.T. Selvan, Gain enhancement of microstrip patch antenna by using complementary EBG geometries. J. Electromagnet. Waves Appl. 26, 329–341, (2012) (2012/01/01) G. Gnanagurunathan, K.T. Selvan, Gain enhancement of microstrip patch antenna by using complementary EBG geometries. J. Electromagnet. Waves Appl. 26, 329–341, (2012) (2012/01/01)
27.
go back to reference R. Gonzalo, P. Maagt, M. Sorolla, Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates. IEEE Trans. Microw. Theory Tech. 47, 2131–2138 (1999)CrossRef R. Gonzalo, P. Maagt, M. Sorolla, Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates. IEEE Trans. Microw. Theory Tech. 47, 2131–2138 (1999)CrossRef
28.
go back to reference F. Yang, C.-S. Kee, Y. Rahmat-Samii, Step-like structure and EBG structure to improve the performance of patch antennas on high dielectric substrate, in IEEE Antennas and Propagation Society International Symposium, (Boston, 2001), pp. 482–485 F. Yang, C.-S. Kee, Y. Rahmat-Samii, Step-like structure and EBG structure to improve the performance of patch antennas on high dielectric substrate, in IEEE Antennas and Propagation Society International Symposium, (Boston, 2001), pp. 482–485
29.
go back to reference M. Fallah-Rad, L. Shafai, Enhanced performance of a microstrip patch antenna using a high impedance EBG structure, in IEEE Antennas and Propagation Society International Symposium, 2003, (2003), pp. 982–985 M. Fallah-Rad, L. Shafai, Enhanced performance of a microstrip patch antenna using a high impedance EBG structure, in IEEE Antennas and Propagation Society International Symposium, 2003, (2003), pp. 982–985
30.
go back to reference X.L. Bao, G. Ruvio, M.J. Ammann, Low-profile dual-frequency GPS patch antenna enhanced with dual-band EBG structure. Microw. Opt. Technol. Lett. 49 (2007) X.L. Bao, G. Ruvio, M.J. Ammann, Low-profile dual-frequency GPS patch antenna enhanced with dual-band EBG structure. Microw. Opt. Technol. Lett. 49 (2007)
31.
go back to reference K.R. Jha, G. Singh, Analysis and design of enhanced directivity microstrip antenna at terahertz frequency by using electromagnetic bandgap material, in International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 24 (2010) K.R. Jha, G. Singh, Analysis and design of enhanced directivity microstrip antenna at terahertz frequency by using electromagnetic bandgap material, in International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 24 (2010)
32.
go back to reference K.P. Ma, K. Hirose, F.-R. Yang, Y. Qian, T. Itoh, Realisation of magnetic conducting surface using novel photonic bandgap structure. Electron. Lett. 34, 2041–2042 (1998)CrossRef K.P. Ma, K. Hirose, F.-R. Yang, Y. Qian, T. Itoh, Realisation of magnetic conducting surface using novel photonic bandgap structure. Electron. Lett. 34, 2041–2042 (1998)CrossRef
33.
go back to reference D. Qu, L. Shafai, A. Foroozesh, Improving microstrip patch antenna performance using EBG substrates. IEE Proc. Microw. Antennas Propag. 153, 558–563 (2006)CrossRef D. Qu, L. Shafai, A. Foroozesh, Improving microstrip patch antenna performance using EBG substrates. IEE Proc. Microw. Antennas Propag. 153, 558–563 (2006)CrossRef
34.
go back to reference C.C. Chiau, X. Chen, C. Parini, Multiperiod EBG structure for wide stopband circuits. IEE Proc. Microw. Antennas Propag. 150, 489–492 (2003)CrossRef C.C. Chiau, X. Chen, C. Parini, Multiperiod EBG structure for wide stopband circuits. IEE Proc. Microw. Antennas Propag. 150, 489–492 (2003)CrossRef
35.
go back to reference D.N. Elsheak, M.F. Iskander, H.A. Elsade, E.A. Abdallah, H. Elhenawy, Enhancement of ultra-wideband microstrip monopole antenna by using unequal arms V-shaped slot printed on metamaterial surface. Microw. Opt. Technol. Lett. 52, 2203–2209 (2010)CrossRef D.N. Elsheak, M.F. Iskander, H.A. Elsade, E.A. Abdallah, H. Elhenawy, Enhancement of ultra-wideband microstrip monopole antenna by using unequal arms V-shaped slot printed on metamaterial surface. Microw. Opt. Technol. Lett. 52, 2203–2209 (2010)CrossRef
36.
go back to reference G. Gnanagurunathan, K.T. Selvan, Artificial magnetic conductors on wideband patch antenna. Progress Electromagn. Res. Lett. 36, 9–19 (2013) G. Gnanagurunathan, K.T. Selvan, Artificial magnetic conductors on wideband patch antenna. Progress Electromagn. Res. Lett. 36, 9–19 (2013)
37.
go back to reference W. Yang, H. Wang, W. Che, J. Wang, A wideband and high-gain edge-fed patch antenna and array using artificial magnetic conductor structures. IEEE Antennas Wirel. Propag. Lett. 12, 769–772 (2013)CrossRef W. Yang, H. Wang, W. Che, J. Wang, A wideband and high-gain edge-fed patch antenna and array using artificial magnetic conductor structures. IEEE Antennas Wirel. Propag. Lett. 12, 769–772 (2013)CrossRef
38.
go back to reference C.C. Chiau et al., A sandwiched multiperiod EBG structure for microstrip patch antennas. Microw. Opt. Technol. Lett. 46, 437–440 (2005) C.C. Chiau et al., A sandwiched multiperiod EBG structure for microstrip patch antennas. Microw. Opt. Technol. Lett. 46, 437–440 (2005)
39.
go back to reference Y. Zhang, J. von Hagen, M. Younis, C. Fischer, W. Wiesbeck, Planar artificial magnetic conductors and patch antennas. IEEE Trans. Antennas Propag. 51 (2003) Y. Zhang, J. von Hagen, M. Younis, C. Fischer, W. Wiesbeck, Planar artificial magnetic conductors and patch antennas. IEEE Trans. Antennas Propag. 51 (2003)
40.
go back to reference X. J. Wang, Y. Hao, Dual-band operation of an electromagnetic band-gap patch antenna. Microw. Opt. Technol. Lett. 49 (2007) X. J. Wang, Y. Hao, Dual-band operation of an electromagnetic band-gap patch antenna. Microw. Opt. Technol. Lett. 49 (2007)
41.
go back to reference S. Velan, E.F. Sundarsingh, M. Kanagasabai, A.K. Sarma, C. Raviteja, R. Sivasamy et al., Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications. IEEE Antennas Wirel. Propag. Lett. 14, 249–252 (2015)CrossRef S. Velan, E.F. Sundarsingh, M. Kanagasabai, A.K. Sarma, C. Raviteja, R. Sivasamy et al., Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications. IEEE Antennas Wirel. Propag. Lett. 14, 249–252 (2015)CrossRef
42.
go back to reference A. Pirhadi, F. Keshmiri, M. Hakkak, M. Tayarani, Analysis and design of dual band high directive EBG resonator antenna using square loop FSS as superstrate layer. Progress Electromag. Res. 70, 1–20 (2007)CrossRef A. Pirhadi, F. Keshmiri, M. Hakkak, M. Tayarani, Analysis and design of dual band high directive EBG resonator antenna using square loop FSS as superstrate layer. Progress Electromag. Res. 70, 1–20 (2007)CrossRef
43.
go back to reference D.H. Lee, Y.J. Lee, J. Yeo, R. Mittra, W.S. Park, Directivity enhancement of circular polarized patch antenna using ring-shaped frequency selective surface superstrate. Microw. Opt. Technol. Lett. 49, 199–201 (2007)CrossRef D.H. Lee, Y.J. Lee, J. Yeo, R. Mittra, W.S. Park, Directivity enhancement of circular polarized patch antenna using ring-shaped frequency selective surface superstrate. Microw. Opt. Technol. Lett. 49, 199–201 (2007)CrossRef
44.
go back to reference Z.-C. Ge, W.-X. Zhang, Z.-G. Liu, Y.Y. Gu, Broadband and high-gain printed antennas constructed from Fabry–Perot resonator structure using EBG or FSS cover. Microw. Opt. Technol. Lett. 48, 1272–1274 (2005) Z.-C. Ge, W.-X. Zhang, Z.-G. Liu, Y.Y. Gu, Broadband and high-gain printed antennas constructed from Fabry–Perot resonator structure using EBG or FSS cover. Microw. Opt. Technol. Lett. 48, 1272–1274 (2005)
45.
go back to reference L. Moustafa, B. Jecko, Design of a wideband highly directive EBG antenna using double-layer frequency selective surfaces and multifeed technique for application in the ku-band. IEEE Antennas Wirel. Propag. Lett. 9, 342–346 (2010)CrossRef L. Moustafa, B. Jecko, Design of a wideband highly directive EBG antenna using double-layer frequency selective surfaces and multifeed technique for application in the ku-band. IEEE Antennas Wirel. Propag. Lett. 9, 342–346 (2010)CrossRef
46.
go back to reference Y. Ge, K.P. Esselle, Y. Hao, Design of low-profile high-gain EBG resonator antennas using a genetic algorithm. IEEE Antennas Wirel. Propag. Lett. 6, 480–483 (2007)CrossRef Y. Ge, K.P. Esselle, Y. Hao, Design of low-profile high-gain EBG resonator antennas using a genetic algorithm. IEEE Antennas Wirel. Propag. Lett. 6, 480–483 (2007)CrossRef
47.
go back to reference L. Leger, T. Monediere, J. Bernard, Enhancement of gain and radiation bandwidth for a planar 1-D EBG antenna. IEEE Microw. Wirel. Compon. Lett. 15, 573–575 (2005)CrossRef L. Leger, T. Monediere, J. Bernard, Enhancement of gain and radiation bandwidth for a planar 1-D EBG antenna. IEEE Microw. Wirel. Compon. Lett. 15, 573–575 (2005)CrossRef
48.
go back to reference A.A. Eldek, A miniaturized patch antenna at 2.4 GHz using uni-planar compact photonic band gap structure. Microw. Opt. Technol. Lett. 50, 1360–1363 (2008)CrossRef A.A. Eldek, A miniaturized patch antenna at 2.4 GHz using uni-planar compact photonic band gap structure. Microw. Opt. Technol. Lett. 50, 1360–1363 (2008)CrossRef
49.
go back to reference H.-H. Xie, Y.-C. Jiao, K. Song, B. Yang, Miniature electromagnetic band-gap structure using spiral ground plane. Progress Electromag. Res. Lett. 17, 163–170 (2010)CrossRef H.-H. Xie, Y.-C. Jiao, K. Song, B. Yang, Miniature electromagnetic band-gap structure using spiral ground plane. Progress Electromag. Res. Lett. 17, 163–170 (2010)CrossRef
50.
go back to reference M.F. Karim, H. Ghafouri-Shiraz, EBG-assisted slot antenna for Bluetooth applications. Microw. Opt. Technol. Lett. 48, 482–487 (2006)CrossRef M.F. Karim, H. Ghafouri-Shiraz, EBG-assisted slot antenna for Bluetooth applications. Microw. Opt. Technol. Lett. 48, 482–487 (2006)CrossRef
51.
go back to reference S. Yan, P.J. Soh, M. Mercuri, D.M.M.P. Schreurs, G.A.E. Vandenbosch, Low profile dual-band antenna loaded with artificial magnetic conductor for indoor radar systems. IET Radar Sonar Navig. 9, 184–190 (2015)CrossRef S. Yan, P.J. Soh, M. Mercuri, D.M.M.P. Schreurs, G.A.E. Vandenbosch, Low profile dual-band antenna loaded with artificial magnetic conductor for indoor radar systems. IET Radar Sonar Navig. 9, 184–190 (2015)CrossRef
52.
go back to reference F. Yang, Y. Rahmat-Samii, Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications. 51, 2936–2946 (2003) F. Yang, Y. Rahmat-Samii, Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications. 51, 2936–2946 (2003)
53.
go back to reference K. Payandehjoo, R. Abhari, Employing EBG structures in multiantenna systems for improving isolation and diversity gain. IEEE Antennas Wirel. Propag. Lett. 8, 1162–1165 (2009)CrossRef K. Payandehjoo, R. Abhari, Employing EBG structures in multiantenna systems for improving isolation and diversity gain. IEEE Antennas Wirel. Propag. Lett. 8, 1162–1165 (2009)CrossRef
54.
go back to reference H.S. Farahani, M. Veysi, M. Kamyab, A. Tadjalli, Mutual coupling reduction in patch antenna arrays using UC-EBG superstrate. IEEE Antennas Wirel. Propag. Lett. 9, 57–59 (2010)CrossRef H.S. Farahani, M. Veysi, M. Kamyab, A. Tadjalli, Mutual coupling reduction in patch antenna arrays using UC-EBG superstrate. IEEE Antennas Wirel. Propag. Lett. 9, 57–59 (2010)CrossRef
55.
go back to reference F. Consoli, R. Catalano, R. Laudani, L. Tumino, S. Barbarino, Planar slot antenna with PBG filter for wireless communications. Microw. Opt. Technol. Lett. 49, 551–555 (2007)CrossRef F. Consoli, R. Catalano, R. Laudani, L. Tumino, S. Barbarino, Planar slot antenna with PBG filter for wireless communications. Microw. Opt. Technol. Lett. 49, 551–555 (2007)CrossRef
56.
go back to reference T. Masri, M.K.A. Rahim, Dual-band microstrip antenna array with a combination of mushroom, modified Minkowski and Sierpinski electromagnetic band gap structures. IET Microw. Antennas Propag. 4, 1756–1763 (2010)CrossRef T. Masri, M.K.A. Rahim, Dual-band microstrip antenna array with a combination of mushroom, modified Minkowski and Sierpinski electromagnetic band gap structures. IET Microw. Antennas Propag. 4, 1756–1763 (2010)CrossRef
57.
go back to reference G. Gnanagurunathan, Electromagnetic Bandgap stucture based patch antenna (PHD, Department of Electrical and Electronic Engineering, University of Nottingham, 2012) G. Gnanagurunathan, Electromagnetic Bandgap stucture based patch antenna (PHD, Department of Electrical and Electronic Engineering, University of Nottingham, 2012)
Metadata
Title
Metamaterial-Based Planar Antennas
Authors
Gnanam Gnanagurunathan
Krishnasamy T. Selvan
Copyright Year
2017
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-4235-5_7