Skip to main content
Top

2018 | Supplement | Chapter

9. Metasurface Antennas

Authors : Gabriele Minatti, Marco Faenzi, Mario Mencagli, Francesco Caminita, David González Ovejero, Cristian Della Giovampaola, Alice Benini, Enrica Martini, Marco Sabbadini, Stefano Maci

Published in: Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter reports design and analysis methods for planar antennas based on modulated metasurfaces (MTSs). These antennas transform a surface wave (SW) into a leaky wave by means of the interaction with a MTS having a spatially modulated equivalent impedance. The basic concept is that the MTS imposes the impedance boundary conditions (BCs) seen by the SW, and therefore the MTS controls amplitude, phase, and polarization of the aperture field. Thus, MTS antennas are highly customizable in terms of their performances, by simply changing the MTS and without affecting the overall structure. Several technological solutions can be adopted to implement the MTS, from sub-wavelength patches printed on a grounded slab at microwave frequencies, to a bed of nails structure in the millimetre and sub-millimetre wave range: in any case, the resulting device has light weight and a low profile. The design of the MTS is based on a generalized form of the Floquet wave theorem adiabatically applied to curvilinear locally periodic BCs. The design defines the continuous BCs required for reproducing a desired aperture field, and it is verified by a fast full-wave solver for impedance BCs. Next, the continuous BCs are discretized and implemented by a distribution of electrically small printed metallic elements in a regular lattice, like pixels in an image. The final layout is composed of tens of thousands of pixels and it is analyzed by a full-wave solver which makes use of entire domain basis functions combined with a fast-multipole algorithm. Examples of design and realizations of MTS antennas are shown, proving the effectiveness of the concept.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C.L. Holloway, A. Dienstfrey, E.F. Kuester, J.F. O’Hara, A.K. Azad, A.J. Taylor, A discussion on the interpretation and characterization of metafilms/metasurfaces: the two dimensional equivalent of metamaterials. Metamaterials 3, 100–112 (2009)CrossRef C.L. Holloway, A. Dienstfrey, E.F. Kuester, J.F. O’Hara, A.K. Azad, A.J. Taylor, A discussion on the interpretation and characterization of metafilms/metasurfaces: the two dimensional equivalent of metamaterials. Metamaterials 3, 100–112 (2009)CrossRef
2.
go back to reference M.G. Silverinha, C.A. Fernandes, J.R. Costa, Electromagnetic charactrerization of textured surfaces formed by metallic pins. IEEE Trans. Antennas Propag. 56(2), 405, 415 (2008) M.G. Silverinha, C.A. Fernandes, J.R. Costa, Electromagnetic charactrerization of textured surfaces formed by metallic pins. IEEE Trans. Antennas Propag. 56(2), 405, 415 (2008)
3.
go back to reference C.L. Holloway, E.F. Kuester, J.A. Gordon, J. O’Hara, J. Booth, D.R. Smith, An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 54(2), 10–35 (2012)CrossRef C.L. Holloway, E.F. Kuester, J.A. Gordon, J. O’Hara, J. Booth, D.R. Smith, An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 54(2), 10–35 (2012)CrossRef
4.
go back to reference G. Minatti, F. Caminita, M. Casaletti, S. Maci, Spiral leaky-wave antennas based on modulated surface impedance. IEEE Trans. Antennas Propag. 59(12), 4436–4444 (2011)MathSciNetCrossRefMATH G. Minatti, F. Caminita, M. Casaletti, S. Maci, Spiral leaky-wave antennas based on modulated surface impedance. IEEE Trans. Antennas Propag. 59(12), 4436–4444 (2011)MathSciNetCrossRefMATH
5.
go back to reference A.M. Patel, A. Grbic, A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface. IEEE Trans. Antennas Propag. 59(6), 2087–2096 (2011)CrossRef A.M. Patel, A. Grbic, A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface. IEEE Trans. Antennas Propag. 59(6), 2087–2096 (2011)CrossRef
6.
go back to reference G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, S. Maci, Modulated metasurface antennas for space: synthesis, analysis and realizations. IEEE Trans. Antennas Propag. 63(4), 1288–1300 (2015)MathSciNetCrossRef G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, S. Maci, Modulated metasurface antennas for space: synthesis, analysis and realizations. IEEE Trans. Antennas Propag. 63(4), 1288–1300 (2015)MathSciNetCrossRef
7.
go back to reference B.H. Fong, J.S. Colburn, J.J. Ottusch, J.L. Visher, D.F. Sievenpiper, Scalar and tensor holographic artificial impedance surfaces. IEEE Trans. Antennas Propag. 58(10), 3212–3221 (2010)CrossRef B.H. Fong, J.S. Colburn, J.J. Ottusch, J.L. Visher, D.F. Sievenpiper, Scalar and tensor holographic artificial impedance surfaces. IEEE Trans. Antennas Propag. 58(10), 3212–3221 (2010)CrossRef
8.
go back to reference G. Minatti, S. Maci, P. De Vita, A. Freni, M. Sabbadini, A circularly-polarized isoflux antenna based on anisotropic metasurface. IEEE Trans. Antennas Propag. 60(11), 4998–5009 (2012)MathSciNetCrossRefMATH G. Minatti, S. Maci, P. De Vita, A. Freni, M. Sabbadini, A circularly-polarized isoflux antenna based on anisotropic metasurface. IEEE Trans. Antennas Propag. 60(11), 4998–5009 (2012)MathSciNetCrossRefMATH
9.
go back to reference M. Faenzi, F. Caminita, E. Martini, P. De Vita, G. Minatti, M. Sabbadini, S. Maci, Realization and measurement of broadside beam modulated metasurface antennas, in Antennas Wirel. Propag. Lett. IEEE 15, 610–613, (2016)CrossRef M. Faenzi, F. Caminita, E. Martini, P. De Vita, G. Minatti, M. Sabbadini, S. Maci, Realization and measurement of broadside beam modulated metasurface antennas, in Antennas Wirel. Propag. Lett. IEEE 15, 610–613, (2016)CrossRef
10.
go back to reference S. Pandi, C.A. Balanis, C.R. Birtcher, Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization. IEEE Trans. Antennas Propag. 63(7), 3016–3024 (2015)MathSciNetCrossRefMATH S. Pandi, C.A. Balanis, C.R. Birtcher, Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization. IEEE Trans. Antennas Propag. 63(7), 3016–3024 (2015)MathSciNetCrossRefMATH
11.
go back to reference M. Casaletti, M. Śmierzchalski, M. Ettorre, R. Sauleau, N. Capet, Polarized beams using scalar metasurfaces. IEEE Trans. Antennas Propag. 64(8), 3391–3400 (2016)MathSciNetCrossRefMATH M. Casaletti, M. Śmierzchalski, M. Ettorre, R. Sauleau, N. Capet, Polarized beams using scalar metasurfaces. IEEE Trans. Antennas Propag. 64(8), 3391–3400 (2016)MathSciNetCrossRefMATH
12.
go back to reference M. Sabbadini, G. Minatti, S. Maci, P. De Vita, Method for designing a modulated metasurface antenna structure. Patent WO 2015090351 A1, 25 June 2015 M. Sabbadini, G. Minatti, S. Maci, P. De Vita, Method for designing a modulated metasurface antenna structure. Patent WO 2015090351 A1, 25 June 2015
13.
go back to reference S. Maci, G. Minatti, M. Casaletti, M. Bosiljevac, Metasurfing: addressing waves on impenetrable metasurfaces. IEEE Antennas Wirel. Propag. Lett. 10, 1499–1502 (2011)CrossRef S. Maci, G. Minatti, M. Casaletti, M. Bosiljevac, Metasurfing: addressing waves on impenetrable metasurfaces. IEEE Antennas Wirel. Propag. Lett. 10, 1499–1502 (2011)CrossRef
14.
go back to reference E. Martini, S. Maci, Metasurface Transformation Theory, in Transformation Electromagnetics and Metamaterials, ed. by D.H. Werner, D.H. Know (Springer, London, 2013), pp. 83–116 E. Martini, S. Maci, Metasurface Transformation Theory, in Transformation Electromagnetics and Metamaterials, ed. by D.H. Werner, D.H. Know (Springer, London, 2013), pp. 83–116
15.
go back to reference C. Pfeiffer, A. Grbic, A printed, broadband Luneburg lens antenna. IEEE Trans. Antennas Propag. 58(9), 3055–3059 (2010)CrossRef C. Pfeiffer, A. Grbic, A printed, broadband Luneburg lens antenna. IEEE Trans. Antennas Propag. 58(9), 3055–3059 (2010)CrossRef
16.
go back to reference M. Bosiljevac, M. Casaletti, F. Caminita, Z. Sipus, S. Maci, Non-uniform metasurface Luneburg lens antenna design. IEEE Trans. Antennas Propag. 60(9), 4065–4073 (2012)MathSciNetCrossRefMATH M. Bosiljevac, M. Casaletti, F. Caminita, Z. Sipus, S. Maci, Non-uniform metasurface Luneburg lens antenna design. IEEE Trans. Antennas Propag. 60(9), 4065–4073 (2012)MathSciNetCrossRefMATH
17.
go back to reference C. Pfeiffer, A. Grbic, Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 110(19), 197401 (2013)CrossRef C. Pfeiffer, A. Grbic, Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 110(19), 197401 (2013)CrossRef
18.
go back to reference M. Selvanayagam, G. Eleftheriades, Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation. Opt. Express 21(12), 14409–14429 (2013)CrossRef M. Selvanayagam, G. Eleftheriades, Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation. Opt. Express 21(12), 14409–14429 (2013)CrossRef
19.
go back to reference N. Yu, P. Genevet, F. Aieta, M.A. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, F. Capasso, Flat optics: controlling wavefronts with optical antenna metasurfaces. IEEE J. Sel. Topics Quantum Electron. 19(3), 4700423–4700423 (2013) N. Yu, P. Genevet, F. Aieta, M.A. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, F. Capasso, Flat optics: controlling wavefronts with optical antenna metasurfaces. IEEE J. Sel. Topics Quantum Electron. 19(3), 4700423–4700423 (2013)
20.
go back to reference P.S. Kildal, E. Alfonso, A. Valero-Nogueira, E. Rajo-Iglesias, Local metamaterial-based waveguides in gaps between parallel metal plates. IEEE Antennas Wirel. Propag. Lett. 8, 84–87 (2009)CrossRef P.S. Kildal, E. Alfonso, A. Valero-Nogueira, E. Rajo-Iglesias, Local metamaterial-based waveguides in gaps between parallel metal plates. IEEE Antennas Wirel. Propag. Lett. 8, 84–87 (2009)CrossRef
21.
go back to reference A.M. Patel, A. Grbic, Transformation electromagnetics devices based on printed-circuit tensor impedance surfaces. IEEE Trans. Microwave Theory Tech. 62(5), 1102–1111 (2014)CrossRef A.M. Patel, A. Grbic, Transformation electromagnetics devices based on printed-circuit tensor impedance surfaces. IEEE Trans. Microwave Theory Tech. 62(5), 1102–1111 (2014)CrossRef
22.
go back to reference R. Quarfoth, D. Sievenpiper, Surface wave scattering reduction using beam shifters. IEEE Antennas Wirel. Propag. Lett. 13, 963,966 (2014)CrossRef R. Quarfoth, D. Sievenpiper, Surface wave scattering reduction using beam shifters. IEEE Antennas Wirel. Propag. Lett. 13, 963,966 (2014)CrossRef
23.
go back to reference A. Vakil, N. Engheta, Transformation optics using graphene. Science 332, 1291–1294 (2011)CrossRef A. Vakil, N. Engheta, Transformation optics using graphene. Science 332, 1291–1294 (2011)CrossRef
24.
go back to reference R. Yang, Y. Hao, An accurate control of the surface wave using transformation optics. Opt. Express 20(9), 9341–9350 (2012)CrossRef R. Yang, Y. Hao, An accurate control of the surface wave using transformation optics. Opt. Express 20(9), 9341–9350 (2012)CrossRef
25.
go back to reference R. Yang, W. Tang, T. Hao, Wideband beam-steerable flat reflectors via transformation optics. IEEE Antennas Wirel. Propag. Lett. 10, 99–102 (2011) R. Yang, W. Tang, T. Hao, Wideband beam-steerable flat reflectors via transformation optics. IEEE Antennas Wirel. Propag. Lett. 10, 99–102 (2011)
26.
go back to reference W. Tang, C. Argyropoulos, E. Kallos, S. Wei, Y. Hao, Discrete coordinate transformation for designing all-dielectric flat antennas. IEEE Trans. Antennas Propag. 58(12), 3795–3804 (2010)CrossRef W. Tang, C. Argyropoulos, E. Kallos, S. Wei, Y. Hao, Discrete coordinate transformation for designing all-dielectric flat antennas. IEEE Trans. Antennas Propag. 58(12), 3795–3804 (2010)CrossRef
27.
go back to reference M. Mencagli Jr., E. Martini, D. Gonzàlez-Ovejero, S. Maci, Metasurface transformation optics. J. Opt. 16, 125106 (2014)CrossRef M. Mencagli Jr., E. Martini, D. Gonzàlez-Ovejero, S. Maci, Metasurface transformation optics. J. Opt. 16, 125106 (2014)CrossRef
28.
go back to reference M. Mencagli Jr., E Martini, D Gonzàlez-Ovejero, S Maci Metasurfing by Transformation Electromagnetics. IEEE Antennas Wirel. Propag. 13, 1767, 1770 (2014)CrossRef M. Mencagli Jr., E Martini, D Gonzàlez-Ovejero, S Maci Metasurfing by Transformation Electromagnetics. IEEE Antennas Wirel. Propag. 13, 1767, 1770 (2014)CrossRef
29.
go back to reference E. Martini, M. Mencagli, S. Maci, Metasurface transformation for Surface wave control. Phyl. Trans. R. Soc. A A373, 20140355 (2015)CrossRef E. Martini, M. Mencagli, S. Maci, Metasurface transformation for Surface wave control. Phyl. Trans. R. Soc. A A373, 20140355 (2015)CrossRef
30.
go back to reference M. Mencagli, E. Martini, S. Maci, Surface wave dispersion for anisotropic metasurfaces constituted by elliptical patches. IEEE Trans. Antennas Propag. 63(7), 2992–3003 (2015)MathSciNetCrossRefMATH M. Mencagli, E. Martini, S. Maci, Surface wave dispersion for anisotropic metasurfaces constituted by elliptical patches. IEEE Trans. Antennas Propag. 63(7), 2992–3003 (2015)MathSciNetCrossRefMATH
31.
go back to reference A.M. Patel, A. Grbic, Effective surface impedance of a printed-circuit tensor impedance surface (PCTIS). IEEE Trans. Microwave Theory Tech. 61(4), 1403–1413 (2013)CrossRef A.M. Patel, A. Grbic, Effective surface impedance of a printed-circuit tensor impedance surface (PCTIS). IEEE Trans. Microwave Theory Tech. 61(4), 1403–1413 (2013)CrossRef
32.
go back to reference M. Mencagli Jr., E. Martini, S. Maci, Transition functions for closed form representation of metasurface reactance. IEEE Trans. Antennas Propag. 64(1), 136–145 (2016)MathSciNetCrossRefMATH M. Mencagli Jr., E. Martini, S. Maci, Transition functions for closed form representation of metasurface reactance. IEEE Trans. Antennas Propag. 64(1), 136–145 (2016)MathSciNetCrossRefMATH
33.
go back to reference M. Mencagli Jr., C. Della Giovampaola, S. Maci, A Closed-form representation of isofrequency dispersion curve and group velocity for surface waves supported by anisotropic and spatially dispersive metasurfaces, 64(6), 2319–2327 (2016) M. Mencagli Jr., C. Della Giovampaola, S. Maci, A Closed-form representation of isofrequency dispersion curve and group velocity for surface waves supported by anisotropic and spatially dispersive metasurfaces, 64​(6), 2319–2327 (2016)
34.
go back to reference O.M Bucci, G Franceschetti, G. Mazzarella, G. Panariello, Intersection approach to array pattern synthesis. IEE Proc. H Microwaves Antennas Propag. 137(6), 349–357 (1990)CrossRef O.M Bucci, G Franceschetti, G. Mazzarella, G. Panariello, Intersection approach to array pattern synthesis. IEE Proc. H Microwaves Antennas Propag. 137(6), 349–357 (1990)CrossRef
35.
go back to reference G. Minatti, F. Caminita, E. Martini, S. Maci, Flat optics for leaky-waves on modulated metasurfaces: adiabatic floquet-wave analysis. IEEE Trans. Antennas Propag. 64(9), 3896–3906 (2016)MathSciNetCrossRefMATH G. Minatti, F. Caminita, E. Martini, S. Maci, Flat optics for leaky-waves on modulated metasurfaces: adiabatic floquet-wave analysis. IEEE Trans. Antennas Propag. 64(9), 3896–3906 (2016)MathSciNetCrossRefMATH
36.
go back to reference G. Minatti, F. Caminita, E. Martini, M. Sabbadini, S. Maci, Synthesis of modulated-metasurface antennas with amplitude, phase and polarization control. IEEE Trans. Antennas Propag. 64(9), 3907–3919 (2016)MathSciNetCrossRefMATH G. Minatti, F. Caminita, E. Martini, M. Sabbadini, S. Maci, Synthesis of modulated-metasurface antennas with amplitude, phase and polarization control. IEEE Trans. Antennas Propag. 64(9), 3907–3919 (2016)MathSciNetCrossRefMATH
37.
go back to reference D. Gonzalez-Ovejero, S. Maci, Gaussian ring basis functions for the analysis of modulated metasurface antennas. IEEE Trans. Antennas Propag. 63(9), 3982–3993 (2015)MathSciNetCrossRefMATH D. Gonzalez-Ovejero, S. Maci, Gaussian ring basis functions for the analysis of modulated metasurface antennas. IEEE Trans. Antennas Propag. 63(9), 3982–3993 (2015)MathSciNetCrossRefMATH
38.
go back to reference S. Maci, M. Caiazzo, A. Cucini, M. Casaletti, A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab. IEEE Trans. Antennas Propag. 53(1), 70–81 (2005)CrossRef S. Maci, M. Caiazzo, A. Cucini, M. Casaletti, A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab. IEEE Trans. Antennas Propag. 53(1), 70–81 (2005)CrossRef
39.
go back to reference M.A. Francavilla, E. Martini, S. Maci, G. Vecchi, On the numerical simulation of metasurfaces with impedance boundary condition integral equations. IEEE Trans. Antennas Propag. 63(5), 2153–2161 (2015)CrossRef M.A. Francavilla, E. Martini, S. Maci, G. Vecchi, On the numerical simulation of metasurfaces with impedance boundary condition integral equations. IEEE Trans. Antennas Propag. 63(5), 2153–2161 (2015)CrossRef
40.
41.
go back to reference C.R. Anderson, An implementation of the fast multipole method without multipole. SIAM J. Sci. Stat. Comput. 13(4), 923–947 (1992)MathSciNetCrossRef C.R. Anderson, An implementation of the fast multipole method without multipole. SIAM J. Sci. Stat. Comput. 13(4), 923–947 (1992)MathSciNetCrossRef
42.
go back to reference M. Albani, A. Mazzinghi, A. Freni, Asymptotic approximation of mutual admittance involved in MoM analysis of RLSA antennas. IEEE Trans. Antennas Propag. 57(4) (2009)CrossRef M. Albani, A. Mazzinghi, A. Freni, Asymptotic approximation of mutual admittance involved in MoM analysis of RLSA antennas. IEEE Trans. Antennas Propag. 57(4) (2009)CrossRef
43.
go back to reference A. Tellechea, F. Caminita, E. Martini, I. Ederra, J.C. Iriarte, R. Gonzalo, S. Maci, Dual circularly-polarized broadside beam metasurface antenna. IEEE Trans. Antennas Propag. 64(7) 2944–2953 (2016) A. Tellechea, F. Caminita, E. Martini, I. Ederra, J.C. Iriarte, R. Gonzalo, S. Maci, Dual circularly-polarized broadside beam metasurface antenna. IEEE Trans. Antennas Propag. 64(7) 2944–2953 (2016)
44.
go back to reference A. Chakraborty, B.N. Das, G.S. Sanyal, Determination of phase functions for a desired one-dimensional pattern. IEEE Trans. Antennas Propag. 29(3), 502–506 (1981)CrossRef A. Chakraborty, B.N. Das, G.S. Sanyal, Determination of phase functions for a desired one-dimensional pattern. IEEE Trans. Antennas Propag. 29(3), 502–506 (1981)CrossRef
45.
go back to reference G. Minatti, E. Martini, S. Maci, Efficiency of metasurface antennas. IEEE Trans. Antennas Propag. 65(4), 1532–1541, (2017)MathSciNetCrossRef G. Minatti, E. Martini, S. Maci, Efficiency of metasurface antennas. IEEE Trans. Antennas Propag. 65(4), 1532–1541, (2017)MathSciNetCrossRef
46.
go back to reference A.L. Cullen, The excitation of plane surface waves. Proc. IEE—Part IV Inst. Monogr. 101(7), 225–234 (1954) A.L. Cullen, The excitation of plane surface waves. Proc. IEE—Part IV Inst. Monogr. 101(7), 225–234 (1954)
47.
go back to reference A. Kay, F. Zucker, Efficiency of surface wave excitation, in 1958 IRE International Convention Record (New York, NY, USA, 1955), pp. 1–5 A. Kay, F. Zucker, Efficiency of surface wave excitation, in 1958 IRE International Convention Record (New York, NY, USA, 1955), pp. 1–5
48.
go back to reference A.L. Cullen, A note on the excitation of surface waves. Proc. IEE—Part C Monogr. 104(6), 472–474 (1957)CrossRef A.L. Cullen, A note on the excitation of surface waves. Proc. IEE—Part C Monogr. 104(6), 472–474 (1957)CrossRef
49.
go back to reference D.A. Hill, J.R. Wait, Excitation of the Zenneck surface wave by a vertical aperture. Radio Sci. 13(6), 969–977 (1978)CrossRef D.A. Hill, J.R. Wait, Excitation of the Zenneck surface wave by a vertical aperture. Radio Sci. 13(6), 969–977 (1978)CrossRef
50.
go back to reference S. Mahmoud, Y.M.M. Antar, H. Hammad, A. Freundorfer, Theoretical considerations in the optimization of surface waves on a planar structure. IEEE Trans. Antennas Propag. 52(8), 2057–2063 (2004)MathSciNetCrossRef S. Mahmoud, Y.M.M. Antar, H. Hammad, A. Freundorfer, Theoretical considerations in the optimization of surface waves on a planar structure. IEEE Trans. Antennas Propag. 52(8), 2057–2063 (2004)MathSciNetCrossRef
51.
go back to reference H. Hammad, Y.M.M. Antar, A. Freundorfer, S. Mahmoud, Uniplanar CPW-fed slot launchers for efficient TM0 surface wave excitation. IEEE Trans. Microwave Theory Tech. 51(4), 1234–1240 (2003)CrossRef H. Hammad, Y.M.M. Antar, A. Freundorfer, S. Mahmoud, Uniplanar CPW-fed slot launchers for efficient TM0 surface wave excitation. IEEE Trans. Microwave Theory Tech. 51(4), 1234–1240 (2003)CrossRef
52.
go back to reference B. Friedman, W. Elwyn Williams, Excitation of surface waves. Proc. IEE—Part C Monogr. 105(7), 252–258 (1958) B. Friedman, W. Elwyn Williams, Excitation of surface waves. Proc. IEE—Part C Monogr. 105(7), 252–258 (1958)
53.
go back to reference G. Tsandoulas, Excitation of a grounded dielectric slab by a horizontal dipole. IEEE Trans. Antennas Propag. 17(2), 156–161 (1969)CrossRef G. Tsandoulas, Excitation of a grounded dielectric slab by a horizontal dipole. IEEE Trans. Antennas Propag. 17(2), 156–161 (1969)CrossRef
54.
go back to reference M. Ebrahimpouri, E. Rajo-Iglesias, Z. Sipus, O. Quevedo-Teruel, Low-cost metasurface using glide symmetry for integrated waveguides, in 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos (2016), pp. 1–2 M. Ebrahimpouri, E. Rajo-Iglesias, Z. Sipus, O. Quevedo-Teruel, Low-cost metasurface using glide symmetry for integrated waveguides, in 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos (2016), pp. 1–2
55.
go back to reference O. Quevedo-Teruel, M. Ebrahimpouri, M. Ng Mou Kehn, Ultrawideband metasurface lenses based on off-shifted opposite layers. IEEE Antennas Wirel. Propag. Lett. 15, 484–487 (2016)CrossRef O. Quevedo-Teruel, M. Ebrahimpouri, M. Ng Mou Kehn, Ultrawideband metasurface lenses based on off-shifted opposite layers. IEEE Antennas Wirel. Propag. Lett. 15, 484–487 (2016)CrossRef
Metadata
Title
Metasurface Antennas
Authors
Gabriele Minatti
Marco Faenzi
Mario Mencagli
Francesco Caminita
David González Ovejero
Cristian Della Giovampaola
Alice Benini
Enrica Martini
Marco Sabbadini
Stefano Maci
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-62773-1_9