Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Production Engineering 2/2019

01-12-2018 | Production Process

Method for highly spatially resolved determination of residual stress by using nanoindentation

Authors: Simon Vogt, Thomas Greß, Franz Ferdinand Neumayer, Norbert Schwarzer, Adrian Harris, Wolfram Volk

Published in: Production Engineering | Issue 2/2019

Login to get access
share
SHARE

Abstract

Measurement of highly spatially resolved residual stresses is a crucial task for tailoring the stress state during manufacturing to improve mechanical performance of metallic objects. Especially in sheet metal forming or blanking with sheet thicknesses down to 0.1 mm, a highly resolved pattern of the stress distribution over the sheet thickness is required for optimisation. For this purpose, a method which uses an extended Hertzian theory for calculating residual stresses from the results of nanoindentation is used to measure the stress profile in metallic cylinders. For verification of the indentation results, hole drilling is utilised to determine residual stresses in the near-surface area. This method provides similar assumptions about the stress state (biaxial). The measuring principle is also based on correlations between mechanical behaviour of the material and the residual stress distribution. The results yield a good accordance of the measured values despite the different scales of measurement. Therefore, a highly spatially resolved measurement of residual stresses with nanoindentation is possible and shows comparable values to the classic hole drilling technique.
Literature
2.
go back to reference DIN EN 15305 (2009) Zerstörungsfreie Prüfung – Röntgendiffraktometrisches Prüfverfahren zur Ermittlung der Eigenspannungen DIN EN 15305 (2009) Zerstörungsfreie Prüfung – Röntgendiffraktometrisches Prüfverfahren zur Ermittlung der Eigenspannungen
4.
go back to reference Lasmis JL (2002) Prestress Engineering of structural material: a global design approach to the residual stress problem. In: Totten G, Howes M, Inoue T (eds) Handbook of residual stress and deformation of steel, ASM International, pp 11–26 Lasmis JL (2002) Prestress Engineering of structural material: a global design approach to the residual stress problem. In: Totten G, Howes M, Inoue T (eds) Handbook of residual stress and deformation of steel, ASM International, pp 11–26
10.
go back to reference Schwarz T (1996) Beitrag zur eigenspannungsermittlung an isotropen, anisotropen sowie inhomogenen, schichtweise aufgebauten werkstoffen mittels bohrlochmethode und ringkernverfahren. PhD thesis, Materials Testing Institute University of Stuttgart Schwarz T (1996) Beitrag zur eigenspannungsermittlung an isotropen, anisotropen sowie inhomogenen, schichtweise aufgebauten werkstoffen mittels bohrlochmethode und ringkernverfahren. PhD thesis, Materials Testing Institute University of Stuttgart
18.
go back to reference Tietz HD, Blumenauer H, Hoffmann H (1977) Eigenspannungen in Werkstoffen. Nr. 6/N, Sitzungsberichte der Akademie der Wissenschaften der DDR, Akademie-Verlag, Berlin Tietz HD, Blumenauer H, Hoffmann H (1977) Eigenspannungen in Werkstoffen. Nr. 6/N, Sitzungsberichte der Akademie der Wissenschaften der DDR, Akademie-Verlag, Berlin
Metadata
Title
Method for highly spatially resolved determination of residual stress by using nanoindentation
Authors
Simon Vogt
Thomas Greß
Franz Ferdinand Neumayer
Norbert Schwarzer
Adrian Harris
Wolfram Volk
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
Production Engineering / Issue 2/2019
Print ISSN: 0944-6524
Electronic ISSN: 1863-7353
DOI
https://doi.org/10.1007/s11740-018-0857-5

Other articles of this Issue 2/2019

Production Engineering 2/2019 Go to the issue

Premium Partners