Skip to main content
Top

2020 | OriginalPaper | Chapter

8. Methodologies and Solutions of Computational Aeroacoustic Problems

Authors : Tapan K. Sengupta, Yogesh G. Bhumkar

Published in: Computational Aerodynamics and Aeroacoustics

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Computational aeroacoustics (CAA) is an important research area which connects aerodynamics and acoustics. This research area involves simulations of flow-induced acoustic noise and can be broadly categorized into three different methodologies based on the approach used for estimating acoustic field. First two methodologies use computed fluid flow information to further calculate acoustic field details using either an acoustic analogy approach or by solving set of perturbation equations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Arbey, J. Bataille, Noise generated by airfoil profiles placed in a uniform laminar flow. J. Fluid Mech. 134, 33–47 (1983)CrossRef H. Arbey, J. Bataille, Noise generated by airfoil profiles placed in a uniform laminar flow. J. Fluid Mech. 134, 33–47 (1983)CrossRef
2.
go back to reference H.M. Badr, M. Coutanceau, S.C.R. Dennis, C. Menard, Unsteady flow past a rotating circular cylinder at Reynolds numbers $10^3$ and $10^4$. J. Fluid Mech. 220, 459–484 (1990)CrossRef H.M. Badr, M. Coutanceau, S.C.R. Dennis, C. Menard, Unsteady flow past a rotating circular cylinder at Reynolds numbers $10^3$ and $10^4$. J. Fluid Mech. 220, 459–484 (1990)CrossRef
3.
go back to reference S.J. Baek, H.J. Sung, Numerical simulations of the flow behind a rotary oscillating circular cylinder. Phys. Fluids 10, 869–876 (1998)CrossRef S.J. Baek, H.J. Sung, Numerical simulations of the flow behind a rotary oscillating circular cylinder. Phys. Fluids 10, 869–876 (1998)CrossRef
4.
go back to reference Y. Bao, D. Zhou, Y.J. Zhao, A two-step Taylor-characteristic-based Galerkin method for incompressible flows and its application to flow over triangular cylinder with different incidence angles. Int. J. Numer. Meth. Fluids 62, 1181–1208 (2010)MathSciNetMATH Y. Bao, D. Zhou, Y.J. Zhao, A two-step Taylor-characteristic-based Galerkin method for incompressible flows and its application to flow over triangular cylinder with different incidence angles. Int. J. Numer. Meth. Fluids 62, 1181–1208 (2010)MathSciNetMATH
5.
go back to reference P.W. Bearman, Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16, 195–222 (1984)MATHCrossRef P.W. Bearman, Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16, 195–222 (1984)MATHCrossRef
6.
go back to reference E. Berger, R. Willie, Periodic flow phenomenon. Annu. Rev. Fluid Mech. 4, 313–340 (1972)CrossRef E. Berger, R. Willie, Periodic flow phenomenon. Annu. Rev. Fluid Mech. 4, 313–340 (1972)CrossRef
7.
go back to reference Y.G. Bhumkar, T.K. Sengupta, Drag reduction by rotary oscillation for flow past a circular cylinder. Int. J. Emerg. Multidisc. Fluid Sci. 1(4), 269–298 (2010) Y.G. Bhumkar, T.K. Sengupta, Drag reduction by rotary oscillation for flow past a circular cylinder. Int. J. Emerg. Multidisc. Fluid Sci. 1(4), 269–298 (2010)
8.
go back to reference T.F. Brooks, D.S. Pope, M.A. Marcolini, Airfoil self-noise and prediction (1989) T.F. Brooks, D.S. Pope, M.A. Marcolini, Airfoil self-noise and prediction (1989)
9.
go back to reference C.C. Chang, R.L. Chern, Vortex shedding from an impulsively started rotating and translating circular cylinder. J. Fluid Mech. 233, 265–298 (1991)MathSciNetMATHCrossRef C.C. Chang, R.L. Chern, Vortex shedding from an impulsively started rotating and translating circular cylinder. J. Fluid Mech. 233, 265–298 (1991)MathSciNetMATHCrossRef
10.
go back to reference Y.M. Chen, Y.R. Ou, A.J. Pearlstein, Development of the wake behind circular cylinder impulsively started into rotary and rectilinear motion. J. Fluid Mech. 253, 449–484 (1993)MATHCrossRef Y.M. Chen, Y.R. Ou, A.J. Pearlstein, Development of the wake behind circular cylinder impulsively started into rotary and rectilinear motion. J. Fluid Mech. 253, 449–484 (1993)MATHCrossRef
11.
go back to reference M. Cheng, Y.T. Chew, S.C. Luo, Numerical investigation of a rotationally oscillating cylinder in mean flow. J. Fluids Struct. 15, 981–1007 (2001)CrossRef M. Cheng, Y.T. Chew, S.C. Luo, Numerical investigation of a rotationally oscillating cylinder in mean flow. J. Fluids Struct. 15, 981–1007 (2001)CrossRef
12.
go back to reference C. Cheong, P. Joseph, Y. Park, S. Lee, Computation of aeolian tone from a circular cylinder using source models. Appl. Acoust. 69(2), 110–126 (2008)CrossRef C. Cheong, P. Joseph, Y. Park, S. Lee, Computation of aeolian tone from a circular cylinder using source models. Appl. Acoust. 69(2), 110–126 (2008)CrossRef
13.
go back to reference S. Choi, H. Choi, S. Kang, Characteristics of flow over a rotationally oscillating cylinder at low Reynolds number. Phys. Fluids 14(8), 2767–2777 (2002)MATHCrossRef S. Choi, H. Choi, S. Kang, Characteristics of flow over a rotationally oscillating cylinder at low Reynolds number. Phys. Fluids 14(8), 2767–2777 (2002)MATHCrossRef
14.
go back to reference J.M. Cimbala, H.M. Nagib, A. Roshko, Large structure in the far wakes of two-dimensional bluff bodies. J. Fluid Mech. 190, 265–298 (1988)CrossRef J.M. Cimbala, H.M. Nagib, A. Roshko, Large structure in the far wakes of two-dimensional bluff bodies. J. Fluid Mech. 190, 265–298 (1988)CrossRef
15.
go back to reference L.T. Clark, The radiation of sound from an airfoil immersed in a laminar flow (ASME, 1971) L.T. Clark, The radiation of sound from an airfoil immersed in a laminar flow (ASME, 1971)
16.
go back to reference T. Colonius, S.K. Lele, P. Moin, The scattering of sound waves by a vortex: numerical simulation and analytical solutions. J. Fluid Mech. 260, 271–298 (1994)CrossRef T. Colonius, S.K. Lele, P. Moin, The scattering of sound waves by a vortex: numerical simulation and analytical solutions. J. Fluid Mech. 260, 271–298 (1994)CrossRef
17.
go back to reference T. Colonius, S.K. Lele, P. Moin, Sound generation in a mixing layer. J. Fluid Mech. 330, 375–409 (1997)MATHCrossRef T. Colonius, S.K. Lele, P. Moin, Sound generation in a mixing layer. J. Fluid Mech. 330, 375–409 (1997)MATHCrossRef
18.
go back to reference J.S. Cox, K.S. Brentner, C.L. Rumsey, Computation of vortex shedding and radiated sound for a circular cylinder: subcritical to transonic Reynolds numbers. Theor. Comput. Fluid Dyn. 12, 233–253 (1998) J.S. Cox, K.S. Brentner, C.L. Rumsey, Computation of vortex shedding and radiated sound for a circular cylinder: subcritical to transonic Reynolds numbers. Theor. Comput. Fluid Dyn. 12, 233–253 (1998)
20.
go back to reference G. Desquesnes, M. Terracol, P. Sagaut, Numerical investigation of the tone noise mechanism over laminar airfoils. J. Fluid Mech. 591, 155–182 (2007)MATHCrossRef G. Desquesnes, M. Terracol, P. Sagaut, Numerical investigation of the tone noise mechanism over laminar airfoils. J. Fluid Mech. 591, 155–182 (2007)MATHCrossRef
21.
go back to reference F. Diaz, J. Gavalda, J.G. Kawall, J.F. Keffer, F. Giralt, Vortex shedding from a spinning cylinder. Phys. Fluids 26(12), 3454–3460 (1983)CrossRef F. Diaz, J. Gavalda, J.G. Kawall, J.F. Keffer, F. Giralt, Vortex shedding from a spinning cylinder. Phys. Fluids 26(12), 3454–3460 (1983)CrossRef
22.
go back to reference P.E. Doak, Momentum potential theory of energy flux carried by momentum fluctuations. J. Sound Vib. 131(1), 67–90 (1989)CrossRef P.E. Doak, Momentum potential theory of energy flux carried by momentum fluctuations. J. Sound Vib. 131(1), 67–90 (1989)CrossRef
23.
go back to reference S.C.R. Dennis, P. Nguyen, S. Kocabiyik, The flow induced by a rotationally oscillating and translating circular cylinder. J. Fluid Mech. 407, 123–144 (2000)MATHCrossRef S.C.R. Dennis, P. Nguyen, S. Kocabiyik, The flow induced by a rotationally oscillating and translating circular cylinder. J. Fluid Mech. 407, 123–144 (2000)MATHCrossRef
24.
go back to reference B. Etkin, G.K. Korbacher, R.T. Keefe, Acoustic radiation from a stationary cylinder in a finite stream (aeolian tones). J. Acoust. Soc. Am. 29, 30–36 (1957)CrossRef B. Etkin, G.K. Korbacher, R.T. Keefe, Acoustic radiation from a stationary cylinder in a finite stream (aeolian tones). J. Acoust. Soc. Am. 29, 30–36 (1957)CrossRef
25.
go back to reference J.E. Ffowcs Williams, Hydrodynamic noise. Annu. Rev. Fluid Mech. 1, 197–222 (1969) J.E. Ffowcs Williams, Hydrodynamic noise. Annu. Rev. Fluid Mech. 1, 197–222 (1969)
26.
go back to reference J.E. Ffowcs Williams, Aeroacoustics. Annu. Rev. Fluid Mech. 9, 447–468 (1977) J.E. Ffowcs Williams, Aeroacoustics. Annu. Rev. Fluid Mech. 9, 447–468 (1977)
27.
go back to reference J.E. Ffowcs Williams, Aeroacoustics. J. Sound Vib. 190, 387–398 (1996) J.E. Ffowcs Williams, Aeroacoustics. J. Sound Vib. 190, 387–398 (1996)
28.
go back to reference J.E. Ffowcs Williams, D.L. Hawkings, Sound generated by turbulence and surfaces in arbitrary motion. Philos. Trans. the R. Soc. Lond. Ser. A, 264, 321–342 (1969) J.E. Ffowcs Williams, D.L. Hawkings, Sound generated by turbulence and surfaces in arbitrary motion. Philos. Trans. the R. Soc. Lond. Ser. A, 264, 321–342 (1969)
29.
go back to reference J.R. Filler, P.L. Marston, W.C. Mih, Response of the shear layers separating from a circular cylinder to small-amplitude rotational oscillations. Fluid Mech. 231, 481–499 (1991)CrossRef J.R. Filler, P.L. Marston, W.C. Mih, Response of the shear layers separating from a circular cylinder to small-amplitude rotational oscillations. Fluid Mech. 231, 481–499 (1991)CrossRef
30.
go back to reference M.R. Fink, Fine structure of airfoil tone frequency. J. Acoust. Soc. Am. 63(S1), S22–S22 (1978)CrossRef M.R. Fink, Fine structure of airfoil tone frequency. J. Acoust. Soc. Am. 63(S1), S22–S22 (1978)CrossRef
31.
go back to reference M.R. Fink, R.H. Schlinker, R.K. Amiet, Prediction of rotating-blade vortex noise from noise of nonrotating blades (1976) M.R. Fink, R.H. Schlinker, R.K. Amiet, Prediction of rotating-blade vortex noise from noise of nonrotating blades (1976)
32.
go back to reference W.K. George, Some thoughts on similarity, the POD, and finite boundaries, in Fundamental Problematic Issues in Turbulence, ed. by A. Gyr, W. Kinzelbach, A. Tsinober (Birkhauser Verlag, Basel, 1999) W.K. George, Some thoughts on similarity, the POD, and finite boundaries, in Fundamental Problematic Issues in Turbulence, ed. by A. Gyr, W. Kinzelbach, A. Tsinober (Birkhauser Verlag, Basel, 1999)
33.
go back to reference J.H. Gerrard, Measurements of the sound from circular cylinders in an air stream. Proc. Phys. Soc. Lond. B 68, 453–461 (1955)CrossRef J.H. Gerrard, Measurements of the sound from circular cylinders in an air stream. Proc. Phys. Soc. Lond. B 68, 453–461 (1955)CrossRef
34.
go back to reference O.M. Griffin, M.S. Hall, Vortex shedding lock on and flow control in bluff body wakes. J. Fluids Eng. 113, 526–537 (1991)CrossRef O.M. Griffin, M.S. Hall, Vortex shedding lock on and flow control in bluff body wakes. J. Fluids Eng. 113, 526–537 (1991)CrossRef
35.
go back to reference J.C. Hardin, S.L. Lamkin, Aeroacoustic computation of cylinder wake flow. AIAA J. 22, 51–57 (1984)MATHCrossRef J.C. Hardin, S.L. Lamkin, Aeroacoustic computation of cylinder wake flow. AIAA J. 22, 51–57 (1984)MATHCrossRef
36.
go back to reference J.C. Hardin, D.S. Pope, An acoustic/viscous splitting technique for computational aeroacoustics. Theor. Comp. Fluid Dyn. 6, 323–340 (1994)MATHCrossRef J.C. Hardin, D.S. Pope, An acoustic/viscous splitting technique for computational aeroacoustics. Theor. Comp. Fluid Dyn. 6, 323–340 (1994)MATHCrossRef
37.
go back to reference J.W. He, R. Glowinsky, R. Metcalfe, A. Nordlander, J. Periaux, Active control and drag optimization for flow past a circular cylinder. J. Comput. Phys. 163, 83–117 (2000)MathSciNetMATHCrossRef J.W. He, R. Glowinsky, R. Metcalfe, A. Nordlander, J. Periaux, Active control and drag optimization for flow past a circular cylinder. J. Comput. Phys. 163, 83–117 (2000)MathSciNetMATHCrossRef
38.
39.
go back to reference A.S. Hersh, R.E. Hayden, Aerodynamic sound radiation from lifting surfaces with and without leading-edge serrations. Public Domain (1971) A.S. Hersh, R.E. Hayden, Aerodynamic sound radiation from lifting surfaces with and without leading-edge serrations. Public Domain (1971)
40.
go back to reference P. Holmes, J.L. Lumley, G. Berkooz, C.W. Rowley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd edn. (Cambridge University Press, Cambridge, 2012)MATHCrossRef P. Holmes, J.L. Lumley, G. Berkooz, C.W. Rowley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd edn. (Cambridge University Press, Cambridge, 2012)MATHCrossRef
41.
go back to reference O. Inoue, Propagation of sound generated by weak shock-vortex interaction. Phys. Fluids 12, 1258–1261 (2000)MATHCrossRef O. Inoue, Propagation of sound generated by weak shock-vortex interaction. Phys. Fluids 12, 1258–1261 (2000)MATHCrossRef
42.
go back to reference O. Inoue, N. Hatakeyama, Sound generation by a two-dimensional circular cylinder in a uniform flow. J. Fluid Mech. 471, 285–314 (2002)MATHCrossRef O. Inoue, N. Hatakeyama, Sound generation by a two-dimensional circular cylinder in a uniform flow. J. Fluid Mech. 471, 285–314 (2002)MATHCrossRef
44.
go back to reference O. Inoue, Y. Hattori, T. Sasaki, Sound generation by coaxial collision of two vortex rings. J. Fluid Mech. 424, 327–365 (2000)MATHCrossRef O. Inoue, Y. Hattori, T. Sasaki, Sound generation by coaxial collision of two vortex rings. J. Fluid Mech. 424, 327–365 (2000)MATHCrossRef
45.
46.
go back to reference O. Inoue, T. Yamazaki, Secondary vortex streets in two-dimensional cylinder wakes. Fluid Dyn. Res. 25, 1–18 (1999)CrossRef O. Inoue, T. Yamazaki, Secondary vortex streets in two-dimensional cylinder wakes. Fluid Dyn. Res. 25, 1–18 (1999)CrossRef
47.
48.
go back to reference L.D. Landau, E.M. Lifshitz, Fluid mechanics. Course Theor. Phys. 6 (1987) L.D. Landau, E.M. Lifshitz, Fluid mechanics. Course Theor. Phys. 6 (1987)
49.
go back to reference B.E. Lele, S.K. Lele, P. Moin, Direct computation of the sound from a compressible co-rotating vortex pair. J. Fluid Mech. 285, 181–202 (1995)MathSciNetMATHCrossRef B.E. Lele, S.K. Lele, P. Moin, Direct computation of the sound from a compressible co-rotating vortex pair. J. Fluid Mech. 285, 181–202 (1995)MathSciNetMATHCrossRef
50.
go back to reference B.E. Lele, S.K. Lele, P. Moin, Direct computation of the sound generated by vortex pairing in an axisymmetric jet. J. Fluid Mech. 383, 113–142 (1999)MATHCrossRef B.E. Lele, S.K. Lele, P. Moin, Direct computation of the sound generated by vortex pairing in an axisymmetric jet. J. Fluid Mech. 383, 113–142 (1999)MATHCrossRef
51.
go back to reference M.J. Lighthill, On sound generated aerodynamically: I. General theory. Proc. R. Soc. Lond. A 221, 564–587 (1952) M.J. Lighthill, On sound generated aerodynamically: I. General theory. Proc. R. Soc. Lond. A 221, 564–587 (1952)
52.
go back to reference C.C. Lin, The Theory of Hydrodynamic Stability, vol. 155 (Cambridge University Press, Cambridge, 1955), p. 22s 6d C.C. Lin, The Theory of Hydrodynamic Stability, vol. 155 (Cambridge University Press, Cambridge, 1955), p. 22s 6d
53.
go back to reference Y.S.K. Liow, B.T. Tan, M.C. Thompson, K. Hourigan, Sound generated in laminar flow past a two-dimensional rectangular cylinder. J. Sound Vib. 295, 407–427 (2006)CrossRef Y.S.K. Liow, B.T. Tan, M.C. Thompson, K. Hourigan, Sound generated in laminar flow past a two-dimensional rectangular cylinder. J. Sound Vib. 295, 407–427 (2006)CrossRef
54.
go back to reference R.E. Longhouse, Vortex shedding noise of low tip speed, axial flow fans. J. Sound Vib. 53(1), 25–46 (1977)CrossRef R.E. Longhouse, Vortex shedding noise of low tip speed, axial flow fans. J. Sound Vib. 53(1), 25–46 (1977)CrossRef
55.
go back to reference X.Y. Lu, J. Sato, A numerical study of flow past a rotationally oscillating circular cylinder. J. Fluids Struct. 10(8), 829–849 (1996)CrossRef X.Y. Lu, J. Sato, A numerical study of flow past a rotationally oscillating circular cylinder. J. Fluids Struct. 10(8), 829–849 (1996)CrossRef
56.
go back to reference B. Mahato, N. Ganta, Y.G. Bhumkar, Direct simulation of sound generation by a two-dimensional flow past a wedge. Phys. Fluids 30(9), 096101 (2018)CrossRef B. Mahato, N. Ganta, Y.G. Bhumkar, Direct simulation of sound generation by a two-dimensional flow past a wedge. Phys. Fluids 30(9), 096101 (2018)CrossRef
57.
go back to reference B. Mahato, N. Ganta, Y.G. Bhumkar, Computation of aeroacoustics and fluid flow problems using a novel dispersion relation preserving scheme. J. Theor. Comput. Acoust. 26(4), 1850063(1–30) (2018) B. Mahato, N. Ganta, Y.G. Bhumkar, Computation of aeroacoustics and fluid flow problems using a novel dispersion relation preserving scheme. J. Theor. Comput. Acoust. 26(4), 1850063(1–30) (2018)
58.
go back to reference R.R. Mankbadi, M.H. Hayder, L.A. Povinelli, Structure of supersonic jet flow and its radiated sound. AIAA J. 32, 897–906 (1994)CrossRef R.R. Mankbadi, M.H. Hayder, L.A. Povinelli, Structure of supersonic jet flow and its radiated sound. AIAA J. 32, 897–906 (1994)CrossRef
59.
go back to reference F. Margnat, Hybrid prediction of the aerodynamic noise radiated by a rectangular cylinder at incidence. Comput. Fluids 109, 13–26 (2015)MathSciNetMATHCrossRef F. Margnat, Hybrid prediction of the aerodynamic noise radiated by a rectangular cylinder at incidence. Comput. Fluids 109, 13–26 (2015)MathSciNetMATHCrossRef
60.
go back to reference O. Marsden, C. Bogey, C. Bailly, Direct noise computation of the turbulent flow around a zero-incidence airfoil. AIAA J. 46(4), 874 (2008)CrossRef O. Marsden, C. Bogey, C. Bailly, Direct noise computation of the turbulent flow around a zero-incidence airfoil. AIAA J. 46(4), 874 (2008)CrossRef
61.
go back to reference A. McAlpine, E.C. Nash, M.V. Lowson, On the generation of discrete frequency tones by the flow around an aerofoil. J. Sound Vib. 222(5), 753–779 (1999)CrossRef A. McAlpine, E.C. Nash, M.V. Lowson, On the generation of discrete frequency tones by the flow around an aerofoil. J. Sound Vib. 222(5), 753–779 (1999)CrossRef
62.
go back to reference A.G. Munin, A.G. Prozorov, A.V. Toporov, J.S. Wood, Experimental study of noise generated by an airfoil in a low-velocity flow. Sov. Phys. Acoust. 38(1), 55–57 (1992) A.G. Munin, A.G. Prozorov, A.V. Toporov, J.S. Wood, Experimental study of noise generated by an airfoil in a low-velocity flow. Sov. Phys. Acoust. 38(1), 55–57 (1992)
63.
go back to reference E.C. Nash, AIAA 94-0358 laminar boundary layer aeroacoustic instabilities (1994) E.C. Nash, AIAA 94-0358 laminar boundary layer aeroacoustic instabilities (1994)
64.
go back to reference E.C. Nash, M.V. Lowson, A. McAlpine, Boundary-layer instability noise on aerofoils. J. Fluid Mech. 382, 27–61 (1999)MATHCrossRef E.C. Nash, M.V. Lowson, A. McAlpine, Boundary-layer instability noise on aerofoils. J. Fluid Mech. 382, 27–61 (1999)MATHCrossRef
65.
go back to reference N. Ganta, B. Mahato, Y.G. Bhumkar, Analysis of sound generation by flow past a circular cylinder performing rotary oscillations using direct simulation approach. Phys. Fluids 31, 026104 (2019)CrossRef N. Ganta, B. Mahato, Y.G. Bhumkar, Analysis of sound generation by flow past a circular cylinder performing rotary oscillations using direct simulation approach. Phys. Fluids 31, 026104 (2019)CrossRef
66.
go back to reference B.R. Noack, K. Afanasiev, M. Morzynski, G. Tadmor, F. Thiele, A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335–363 (2003)MathSciNetMATHCrossRef B.R. Noack, K. Afanasiev, M. Morzynski, G. Tadmor, F. Thiele, A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335–363 (2003)MathSciNetMATHCrossRef
68.
go back to reference A. Okajima, H. Takata, T. Asanuma, Viscous flow around a rotationally oscillating cylinder. Inst. Space Aeronaut. Sci. 532, 311–318 (1975) A. Okajima, H. Takata, T. Asanuma, Viscous flow around a rotationally oscillating cylinder. Inst. Space Aeronaut. Sci. 532, 311–318 (1975)
69.
go back to reference R.W. Paterson, P.G. Vogt, M.R. Fink, C.L. Munch, Vortex noise of isolated airfoils. J. Aircr. 10(5), 296–302 (1973)CrossRef R.W. Paterson, P.G. Vogt, M.R. Fink, C.L. Munch, Vortex noise of isolated airfoils. J. Aircr. 10(5), 296–302 (1973)CrossRef
71.
go back to reference D.S. Pope, A viscous/acoustic splitting technique for aeolian tone prediction, in Proceedings of Second Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, NASA CP-3352 (1997), pp. 305–318 D.S. Pope, A viscous/acoustic splitting technique for aeolian tone prediction, in Proceedings of Second Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, NASA CP-3352 (1997), pp. 305–318
73.
go back to reference B. Protas, J.E. Wesfreid, Drag force in the open-loop control of the cylinder wake in the laminar regime. Phys. Fluids 14(2), 810–826 (2002)MATHCrossRef B. Protas, J.E. Wesfreid, Drag force in the open-loop control of the cylinder wake in the laminar regime. Phys. Fluids 14(2), 810–826 (2002)MATHCrossRef
74.
go back to reference B. Protas, A. Styczek, Optimal rotary control of the cylinder wake in the laminar regime. Phys. Fluids 14(7), 2073–2087 (2002)MATHCrossRef B. Protas, A. Styczek, Optimal rotary control of the cylinder wake in the laminar regime. Phys. Fluids 14(7), 2073–2087 (2002)MATHCrossRef
75.
go back to reference L. Rayleigh, The Theory of Sound, vol. I and II (Macmillan, London, 1896) L. Rayleigh, The Theory of Sound, vol. I and II (Macmillan, London, 1896)
76.
go back to reference M. Roger, S. Moreau, Broadband self-noise from loaded fan blades. AIAA J. 42(3), 536–544 (2004)CrossRef M. Roger, S. Moreau, Broadband self-noise from loaded fan blades. AIAA J. 42(3), 536–544 (2004)CrossRef
77.
go back to reference T.K. Sengupta, S. Bhaumik, Y.G. Bhumkar, Nonlinear receptivity and instability studies by POD, in AIAA Conference on Theoretical Fluid Mechanics (AIAA, 2011), pp. 2011–3293 T.K. Sengupta, S. Bhaumik, Y.G. Bhumkar, Nonlinear receptivity and instability studies by POD, in AIAA Conference on Theoretical Fluid Mechanics (AIAA, 2011), pp. 2011–3293
78.
go back to reference T.K. Sengupta, K. Deb, S.B. Talla, Control of flow using genetic algorithm for a circular cylinder executing rotary oscillation. Comput. Fluids 36, 578–600 (2007)MATHCrossRef T.K. Sengupta, K. Deb, S.B. Talla, Control of flow using genetic algorithm for a circular cylinder executing rotary oscillation. Comput. Fluids 36, 578–600 (2007)MATHCrossRef
79.
go back to reference T.K. Sengupta, A. Kasliwal, S. De, M. Nair, Temporal flow instability for Magnus-Robins effect at high rotation rate. J. Fluids Struct. 17, 941–953 (2003)CrossRef T.K. Sengupta, A. Kasliwal, S. De, M. Nair, Temporal flow instability for Magnus-Robins effect at high rotation rate. J. Fluids Struct. 17, 941–953 (2003)CrossRef
80.
go back to reference T.K. Sengupta, G. Kumar, Bluff-body flow control by aerodynamic tripping, in ASME PVT 2006/ICPVT-11 Conference on Flow-Induced Vibration, Vancouver, Canada (2006) T.K. Sengupta, G. Kumar, Bluff-body flow control by aerodynamic tripping, in ASME PVT 2006/ICPVT-11 Conference on Flow-Induced Vibration, Vancouver, Canada (2006)
81.
go back to reference T.K. Sengupta, N. Singh, V.K. Suman, Dynamical system approach to instability of flow past a circular cylinder. J. Fluid Mech. 656, 82–115 (2010)MathSciNetMATHCrossRef T.K. Sengupta, N. Singh, V.K. Suman, Dynamical system approach to instability of flow past a circular cylinder. J. Fluid Mech. 656, 82–115 (2010)MathSciNetMATHCrossRef
82.
go back to reference J.H. Seo, Y.J. Moon, Perurbed compressible equations for aeroacoustic noise prediction at low mach numbers. AIAA J. 43(8), 1716–1724 (2005)CrossRef J.H. Seo, Y.J. Moon, Perurbed compressible equations for aeroacoustic noise prediction at low mach numbers. AIAA J. 43(8), 1716–1724 (2005)CrossRef
83.
go back to reference J.H. Seo, Y.J. Moon, Linearized perturbed compressible equations for low mach number aeroacoustics. J. Comput. Phys. 218, 702–719 (2006)MathSciNetMATHCrossRef J.H. Seo, Y.J. Moon, Linearized perturbed compressible equations for low mach number aeroacoustics. J. Comput. Phys. 218, 702–719 (2006)MathSciNetMATHCrossRef
84.
go back to reference R.H. Schlinker, R. Fink, Vortex noise fron nonrotating cylinders and airfoils, in 14th Aerospace Sciences Meeting, Washington, DC, USA (1976) R.H. Schlinker, R. Fink, Vortex noise fron nonrotating cylinders and airfoils, in 14th Aerospace Sciences Meeting, Washington, DC, USA (1976)
85.
go back to reference T.K. Sengupta, V.V.S.N. Vijay, N. Singh, Universal instability modes in internal and external flows. Comput. Fluids 40(1), 221–235 (2011)MathSciNetMATHCrossRef T.K. Sengupta, V.V.S.N. Vijay, N. Singh, Universal instability modes in internal and external flows. Comput. Fluids 40(1), 221–235 (2011)MathSciNetMATHCrossRef
86.
go back to reference S. Shen, Calculated amplified oscillations in plane poiseuille and blasius flows. J. Aeronaut. Sci. 21, 222–224 (1954)MathSciNetCrossRef S. Shen, Calculated amplified oscillations in plane poiseuille and blasius flows. J. Aeronaut. Sci. 21, 222–224 (1954)MathSciNetCrossRef
87.
go back to reference W.Z. Shen, J.N. Sørensen, Comment on the aeroacoustic formulation of hardin and pope. AIAA J. 37, 141–143 (1999)CrossRef W.Z. Shen, J.N. Sørensen, Comment on the aeroacoustic formulation of hardin and pope. AIAA J. 37, 141–143 (1999)CrossRef
88.
go back to reference L. Sirovich, Turbulence and the dynamics of coherent structures, part I-III. Q. Appl. Math. 45 (1987) L. Sirovich, Turbulence and the dynamics of coherent structures, part I-III. Q. Appl. Math. 45 (1987)
89.
go back to reference S.R.L. Samion, M.S.M. Ali, A. Abu, C.J. Doolan, R.Z.-Y. Porteous, Aerodynamic sound from a square cylinder with a downstream wedge. Aerosp. Sci. Technol. 53, 85–94 (2016)CrossRef S.R.L. Samion, M.S.M. Ali, A. Abu, C.J. Doolan, R.Z.-Y. Porteous, Aerodynamic sound from a square cylinder with a downstream wedge. Aerosp. Sci. Technol. 53, 85–94 (2016)CrossRef
90.
go back to reference M. Sunyach, H. Arbey, D. Robert, J. Bataille, G. Comte-Bellot, Correlations between far field acoustic pressure and flow characteristics for a single airfoil 1974, 12 (1974) M. Sunyach, H. Arbey, D. Robert, J. Bataille, G. Comte-Bellot, Correlations between far field acoustic pressure and flow characteristics for a single airfoil 1974, 12 (1974)
91.
go back to reference S.A. Slimon, M.C. Soteriou, D.W. Davis, Computational aeroacoustics simulations using the expansion about incompressible flow approach. AIAA J. 37, 409–416 (1999)CrossRef S.A. Slimon, M.C. Soteriou, D.W. Davis, Computational aeroacoustics simulations using the expansion about incompressible flow approach. AIAA J. 37, 409–416 (1999)CrossRef
92.
go back to reference V. Strouhal, Ueber eine besondere art der tonerregung. Annu. Phys. Chem. (Wied. Annu. Phys.) 5, 216–251 (1878) V. Strouhal, Ueber eine besondere art der tonerregung. Annu. Phys. Chem. (Wied. Annu. Phys.) 5, 216–251 (1878)
93.
go back to reference B.M. Sumer, J. Freds$\phi $e, Hydrodynamics Around Cylindrical Structures (World Scientific, Singapore, 1997) B.M. Sumer, J. Freds$\phi $e, Hydrodynamics Around Cylindrical Structures (World Scientific, Singapore, 1997)
94.
go back to reference C.K.W. Tam, Discrete tones of isolated airfoils. J. Acoust. Soc. Am. 55(6), 1173–1177 (1974)CrossRef C.K.W. Tam, Discrete tones of isolated airfoils. J. Acoust. Soc. Am. 55(6), 1173–1177 (1974)CrossRef
95.
go back to reference C.K.W. Tam, J.C. Hardin, in Proceedings of Second Computational Aeroacoustics (CAA) Workshop on Benchmark Problems. NASA CP-3352 (1997) C.K.W. Tam, J.C. Hardin, in Proceedings of Second Computational Aeroacoustics (CAA) Workshop on Benchmark Problems. NASA CP-3352 (1997)
96.
go back to reference S. Taneda, Visual observations of the flow past a circular cylinder performing a rotary oscillation. J. Phys. Soc. Jpn. 45, 1038–1043 (1978)CrossRef S. Taneda, Visual observations of the flow past a circular cylinder performing a rotary oscillation. J. Phys. Soc. Jpn. 45, 1038–1043 (1978)CrossRef
97.
go back to reference B. Thiria, S. Goujon-Durand, J.E. Wesfreid, The wake of a cylinder performing rotary oscillations. J. Fluid Mech. 560, 123–147 (2006)MATHCrossRef B. Thiria, S. Goujon-Durand, J.E. Wesfreid, The wake of a cylinder performing rotary oscillations. J. Fluid Mech. 560, 123–147 (2006)MATHCrossRef
98.
go back to reference S. Unnikrishnan, D.V. Gaitonde, Acoustic, hydrodynamic and thermal modes in a supersonic cold jet. J. Fluid Mech. 800, 387–432 (2016)MathSciNetCrossRef S. Unnikrishnan, D.V. Gaitonde, Acoustic, hydrodynamic and thermal modes in a supersonic cold jet. J. Fluid Mech. 800, 387–432 (2016)MathSciNetCrossRef
99.
go back to reference M. Wang, S.K. Lele, P. Moin, Computation of quadrupole noise using acoustic analogy. AIAA J. 34, 2247–2254 (1996)MATHCrossRef M. Wang, S.K. Lele, P. Moin, Computation of quadrupole noise using acoustic analogy. AIAA J. 34, 2247–2254 (1996)MATHCrossRef
100.
go back to reference M. Wang, S.K. Lele, P. Moin, Sound radiation during local laminar breakdown in a low mach number boundary layer. J. Fluid Mech. 319, 197–218 (1996)MATHCrossRef M. Wang, S.K. Lele, P. Moin, Sound radiation during local laminar breakdown in a low mach number boundary layer. J. Fluid Mech. 319, 197–218 (1996)MATHCrossRef
102.
go back to reference G.A. Williamson, B.D. McGranahan, B.A. Broughton, R.W. Deters, J.B. Brandt, M.S. Selig, Department of Aerospace Engineering, University of Illinois at Urbana-Champaign. Summ. Low-Speed Airfoil Data 5 (2012) G.A. Williamson, B.D. McGranahan, B.A. Broughton, R.W. Deters, J.B. Brandt, M.S. Selig, Department of Aerospace Engineering, University of Illinois at Urbana-Champaign. Summ. Low-Speed Airfoil Data 5 (2012)
103.
go back to reference S.E. Wright, The acoustic spectrum of axial flow machines. J. Sound Vib. 45(2), 165–223 (1976)CrossRef S.E. Wright, The acoustic spectrum of axial flow machines. J. Sound Vib. 45(2), 165–223 (1976)CrossRef
Metadata
Title
Methodologies and Solutions of Computational Aeroacoustic Problems
Authors
Tapan K. Sengupta
Yogesh G. Bhumkar
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4284-8_8

Premium Partners