Skip to main content
Top
Published in: Journal of Coatings Technology and Research 4/2019

13-02-2019

Methyltrichlorosilane functionalized silica nanoparticles-treated superhydrophobic cotton for oil–water separation

Authors: Love Dashairya, Dibya Darshan Barik, Partha Saha

Published in: Journal of Coatings Technology and Research | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Water pollution due to oil spills has become a significant concern in recent times for the marine ecosystem. The use of oleophilic/hydrophobic sorbents for oil–water separation has gained a lot of attention as an economical and environment-friendly solution. Herein, we developed a superhydrophobic/superoleophilic cotton by silica nanoparticles (~ 800 nm) treatment followed by surface functionalization with methyltrichlorosilane (MTCS). X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy studies reveal that the formation of pseudo-amorphous SiO2 NPs and a C–Si–O coverage on cotton fiber render it superhydrophobic with increased surface roughness. The MTCS/SiO2-treated cotton exhibited contact angles of ~ 173 ± 2° and 0° on the water–cotton and oil–cotton interface, respectively. Moreover, the MTCS/SiO2-treated cotton demonstrated superhydrophobicity over the entire pH range, with excellent absorption capacities for various oil–water mixtures ranging from ~ 30 to 40 times its weight.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Gundlach, ER, Hayes, MO, “Vulnerability of Coastal Environments to Oil Spill Impacts.” Marine Tech. Soc. J., 12 (4) 18–27 (1978) Gundlach, ER, Hayes, MO, “Vulnerability of Coastal Environments to Oil Spill Impacts.” Marine Tech. Soc. J., 12 (4) 18–27 (1978)
2.
go back to reference Saha, P, Dashairya, L, “Reduced Graphene Oxide Modified Melamine Formaldehyde (rGO@ MF) Superhydrophobic Sponge for Efficient Oil–Water Separation.” J. Porous Mater., 25 (5) 1475–1488 (2018)CrossRef Saha, P, Dashairya, L, “Reduced Graphene Oxide Modified Melamine Formaldehyde (rGO@ MF) Superhydrophobic Sponge for Efficient Oil–Water Separation.” J. Porous Mater., 25 (5) 1475–1488 (2018)CrossRef
3.
go back to reference Zhu, Q, Chu, Y, Wang, Z, Chen, N, Lin, L, Liu, F, Pan, Q, “Robust Superhydrophobic Polyurethane Sponge as a Highly Reusable Oil-Absorption Material.” J. Mater. Chem. A, 1 (17) 5386–5393 (2013)CrossRef Zhu, Q, Chu, Y, Wang, Z, Chen, N, Lin, L, Liu, F, Pan, Q, “Robust Superhydrophobic Polyurethane Sponge as a Highly Reusable Oil-Absorption Material.” J. Mater. Chem. A, 1 (17) 5386–5393 (2013)CrossRef
4.
go back to reference Jeyasubramanian, K, Hikku, G, Preethi, A, Benitha, V, Selvakumar, N, “Fabrication of Water Repellent Cotton Fabric by Coating Nano Particle Impregnated Hydrophobic Additives and Its Characterization.” J. Ind. Eng. Chem., 37 180–189 (2016)CrossRef Jeyasubramanian, K, Hikku, G, Preethi, A, Benitha, V, Selvakumar, N, “Fabrication of Water Repellent Cotton Fabric by Coating Nano Particle Impregnated Hydrophobic Additives and Its Characterization.” J. Ind. Eng. Chem., 37 180–189 (2016)CrossRef
5.
go back to reference Yin, F, Hayworth, JS, Clement, TP, “A Tale of Two Recent Spills—Comparison of 2014 Galveston Bay and 2010 Deepwater Horizon Oil Spill Residues.” PLoS One, 10 (2) e0118098 (2015)CrossRef Yin, F, Hayworth, JS, Clement, TP, “A Tale of Two Recent Spills—Comparison of 2014 Galveston Bay and 2010 Deepwater Horizon Oil Spill Residues.” PLoS One, 10 (2) e0118098 (2015)CrossRef
6.
go back to reference Dashairya, L, Rout, M, Saha, P, “Reduced Graphene Oxide-Coated Cotton as an Efficient Absorbent in Oil–Water Separation.” Adv. Comput. Hybrid Mater., 1 (1) 135–148 (2018)CrossRef Dashairya, L, Rout, M, Saha, P, “Reduced Graphene Oxide-Coated Cotton as an Efficient Absorbent in Oil–Water Separation.” Adv. Comput. Hybrid Mater., 1 (1) 135–148 (2018)CrossRef
7.
go back to reference Shang, Q, Liu, C, Zhou, Y, “One-Pot Fabrication of Robust Hydrophobia and Superoleophilic Cotton Fabrics for Effective Oil–Water Separation.” J. Coat. Technol. Res., 15 (1) 65–75 (2018)CrossRef Shang, Q, Liu, C, Zhou, Y, “One-Pot Fabrication of Robust Hydrophobia and Superoleophilic Cotton Fabrics for Effective Oil–Water Separation.” J. Coat. Technol. Res., 15 (1) 65–75 (2018)CrossRef
8.
go back to reference Wang, C-F, Huang, H-C, Chen, L-T, “Protonated Melamine Sponge for Effective Oil/Water Separation.” Sci. Rep., 5 14294 (2015)CrossRef Wang, C-F, Huang, H-C, Chen, L-T, “Protonated Melamine Sponge for Effective Oil/Water Separation.” Sci. Rep., 5 14294 (2015)CrossRef
9.
go back to reference Liu, F, Ma, M, Zang, D, Gao, Z, Wang, C, “Fabrication of Superhydrophobic/Superoleophilic Cotton for Application in the Field of Water/Oil Separation.” Carbohydr. Poly., 103 480–487 (2014)CrossRef Liu, F, Ma, M, Zang, D, Gao, Z, Wang, C, “Fabrication of Superhydrophobic/Superoleophilic Cotton for Application in the Field of Water/Oil Separation.” Carbohydr. Poly., 103 480–487 (2014)CrossRef
10.
go back to reference Wang, B, Lei, B, Tang, Y, Xiang, D, Li, H, Ma, Q, Zhao, C, Li, Y, “Facile Fabrication of Robust Superhydrophobic Cotton Fabrics Modified by Polysiloxane Nanowires for Oil/Water Separation.” J. Coat. Technol. Res., 15 (3) 611–621 (2018)CrossRef Wang, B, Lei, B, Tang, Y, Xiang, D, Li, H, Ma, Q, Zhao, C, Li, Y, “Facile Fabrication of Robust Superhydrophobic Cotton Fabrics Modified by Polysiloxane Nanowires for Oil/Water Separation.” J. Coat. Technol. Res., 15 (3) 611–621 (2018)CrossRef
11.
go back to reference Kwon, G, Kota, AK, Li, Y, Sohani, A, Mabry, JM, Tuteja, A, “On-Demand Separation of Oil–Water Mixtures.” Adv. Mater., 24 (27) 3666–3671 (2012)CrossRef Kwon, G, Kota, AK, Li, Y, Sohani, A, Mabry, JM, Tuteja, A, “On-Demand Separation of Oil–Water Mixtures.” Adv. Mater., 24 (27) 3666–3671 (2012)CrossRef
12.
go back to reference Jeevahan, J, Chandrasekaran, M, Joseph, GB, Durairaj, R, Mageshwaran, G, “Superhydrophobic Surfaces: A Review on Fundamentals, Applications, and Challenges.” J. Coat. Technol. Res., 15 231–250 (2018)CrossRef Jeevahan, J, Chandrasekaran, M, Joseph, GB, Durairaj, R, Mageshwaran, G, “Superhydrophobic Surfaces: A Review on Fundamentals, Applications, and Challenges.” J. Coat. Technol. Res., 15 231–250 (2018)CrossRef
13.
go back to reference Xue, C-H, Jia, S-T, Chen, H-Z, Wang, M, “Superhydrophobic Cotton Fabrics Prepared by Sol–Gel Coating of TiO2 and Surface Hydrophobization.” Sci. Technol. Adv. Mater., 9 (3) 035001 (2008)CrossRef Xue, C-H, Jia, S-T, Chen, H-Z, Wang, M, “Superhydrophobic Cotton Fabrics Prepared by Sol–Gel Coating of TiO2 and Surface Hydrophobization.” Sci. Technol. Adv. Mater., 9 (3) 035001 (2008)CrossRef
14.
go back to reference Yang, H-C, Pi, J-K, Liao, K-J, Huang, H, Wu, Q-Y, Huang, X-J, Xu, Z-K, “Silica-Decorated Polypropylene Microfiltration Membranes with a Mussel-Inspired Intermediate Layer for Oil-in-Water Emulsion Separation.” ACS Appl. Mater. Interfaces, 6 (15) 12566–12572 (2014)CrossRef Yang, H-C, Pi, J-K, Liao, K-J, Huang, H, Wu, Q-Y, Huang, X-J, Xu, Z-K, “Silica-Decorated Polypropylene Microfiltration Membranes with a Mussel-Inspired Intermediate Layer for Oil-in-Water Emulsion Separation.” ACS Appl. Mater. Interfaces, 6 (15) 12566–12572 (2014)CrossRef
15.
go back to reference Zulfiqar, U, Hussain, SZ, Awais, M, Khan, MMJ, Hussain, I, Husain, SW, Subhani, T, “In-Situ Synthesis of Bi-Modal Hydrophobic Silica Nanoparticles for Oil–Water Separation.” Colloid Surf. A Physicochem. Eng. Asp., 508 301–308 (2016)CrossRef Zulfiqar, U, Hussain, SZ, Awais, M, Khan, MMJ, Hussain, I, Husain, SW, Subhani, T, “In-Situ Synthesis of Bi-Modal Hydrophobic Silica Nanoparticles for Oil–Water Separation.” Colloid Surf. A Physicochem. Eng. Asp., 508 301–308 (2016)CrossRef
16.
go back to reference Gao, Q, Zhu, Q, Guo, Y, Yang, CQ, “Formation of Highly Hydrophobic Surfaces on Cotton and Polyester Fabrics Using Silica Sol Nanoparticles and Nonfluorinated Alkylsilane.” Ind. Eng. Chem. Res., 48 (22) 9797–9803 (2009)CrossRef Gao, Q, Zhu, Q, Guo, Y, Yang, CQ, “Formation of Highly Hydrophobic Surfaces on Cotton and Polyester Fabrics Using Silica Sol Nanoparticles and Nonfluorinated Alkylsilane.” Ind. Eng. Chem. Res., 48 (22) 9797–9803 (2009)CrossRef
17.
go back to reference Huang, J, Li, S, Ge, M, Wang, L, Xing, T, Chen, G, Liu, X, Al-Deyab, SS, Zhang, K, Chen, T, “Robust Superhydrophobic TiO2@ Fabrics for UV Shielding, Self-Cleaning and Oil–Water Separation.” J. Mater. Chem. A, 3 (6) 2825–2832 (2015)CrossRef Huang, J, Li, S, Ge, M, Wang, L, Xing, T, Chen, G, Liu, X, Al-Deyab, SS, Zhang, K, Chen, T, “Robust Superhydrophobic TiO2@ Fabrics for UV Shielding, Self-Cleaning and Oil–Water Separation.” J. Mater. Chem. A, 3 (6) 2825–2832 (2015)CrossRef
18.
go back to reference Mahltig, B, Böttcher, H, “Modified Silica Sol Coatings for Water-Repellent Textiles.” J. Sol–Gel Sci. Technol., 27 (1) 43–52 (2003)CrossRef Mahltig, B, Böttcher, H, “Modified Silica Sol Coatings for Water-Repellent Textiles.” J. Sol–Gel Sci. Technol., 27 (1) 43–52 (2003)CrossRef
19.
go back to reference Roe, B, Kotek, R, Zhang, X, “Durable Hydrophobic Cotton Surfaces Prepared Using Silica Nanoparticles and Multifunctional Silanes.” J. Text. Inst., 103 (4) 385–393 (2012)CrossRef Roe, B, Kotek, R, Zhang, X, “Durable Hydrophobic Cotton Surfaces Prepared Using Silica Nanoparticles and Multifunctional Silanes.” J. Text. Inst., 103 (4) 385–393 (2012)CrossRef
20.
go back to reference Arkles, B, Hydrophobicity, Hydrophilicity and Silane Surface Modification. Gelest Inc, Morris (2011) Arkles, B, Hydrophobicity, Hydrophilicity and Silane Surface Modification. Gelest Inc, Morris (2011)
21.
go back to reference Chen, N, Pan, Q, “Versatile Fabrication of Ultralight Magnetic Foams and Application for Oil–Water Separation.” ACS Nano, 7 (8) 6875–6883 (2013)CrossRef Chen, N, Pan, Q, “Versatile Fabrication of Ultralight Magnetic Foams and Application for Oil–Water Separation.” ACS Nano, 7 (8) 6875–6883 (2013)CrossRef
22.
go back to reference Khoo, HS, Tseng, F-G, “Engineering the 3D Architecture and Hydrophobicity of Methyltrichlorosilane Nanostructures.” Nanotechnology, 19 (34) 345603 (2008)CrossRef Khoo, HS, Tseng, F-G, “Engineering the 3D Architecture and Hydrophobicity of Methyltrichlorosilane Nanostructures.” Nanotechnology, 19 (34) 345603 (2008)CrossRef
23.
go back to reference Pan, Y, Shi, K, Peng, C, Wang, W, Liu, Z, Ji, X, “Evaluation of Hydrophobic Polyvinyl-Alcohol Formaldehyde Sponges as Absorbents for Oil Spill.” ACS Appl. Mater. Interfaces, 6 (11) 8651–8659 (2014)CrossRef Pan, Y, Shi, K, Peng, C, Wang, W, Liu, Z, Ji, X, “Evaluation of Hydrophobic Polyvinyl-Alcohol Formaldehyde Sponges as Absorbents for Oil Spill.” ACS Appl. Mater. Interfaces, 6 (11) 8651–8659 (2014)CrossRef
24.
go back to reference Peng, H, Wang, H, Wu, J, Meng, G, Wang, Y, Shi, Y, Liu, Z, Guo, X, “Preparation of Superhydrophobic Magnetic Cellulose Sponge for Removing Oil from Water.” Ind. Eng. Chem. Res., 55 (3) 832–838 (2016)CrossRef Peng, H, Wang, H, Wu, J, Meng, G, Wang, Y, Shi, Y, Liu, Z, Guo, X, “Preparation of Superhydrophobic Magnetic Cellulose Sponge for Removing Oil from Water.” Ind. Eng. Chem. Res., 55 (3) 832–838 (2016)CrossRef
25.
go back to reference Schmutz, A, Jenny, T, Ryser, U, “A Caffeoyl-Fatty Acid-Glycerol Ester from Wax Associated with Green Cotton Fibre Suberin.” Phytochemistry, 36 (6) 1343–1346 (1994)CrossRef Schmutz, A, Jenny, T, Ryser, U, “A Caffeoyl-Fatty Acid-Glycerol Ester from Wax Associated with Green Cotton Fibre Suberin.” Phytochemistry, 36 (6) 1343–1346 (1994)CrossRef
26.
go back to reference Wang, J, Zheng, Y, Wang, A, “Superhydrophobic Kapok Fiber Oil-Absorbent: Preparation and High Oil Absorbency.” Chem. Eng. J., 213 1–7 (2012)CrossRef Wang, J, Zheng, Y, Wang, A, “Superhydrophobic Kapok Fiber Oil-Absorbent: Preparation and High Oil Absorbency.” Chem. Eng. J., 213 1–7 (2012)CrossRef
27.
go back to reference Bae, GY, Min, BG, Jeong, YG, Lee, SC, Jang, JH, Koo, GH, “Superhydrophobicity of Cotton Fabrics Treated with Silica Nanoparticles and Water-Repellent Agent.” J. Colloid Interface Sci., 337 (1) 170–175 (2009)CrossRef Bae, GY, Min, BG, Jeong, YG, Lee, SC, Jang, JH, Koo, GH, “Superhydrophobicity of Cotton Fabrics Treated with Silica Nanoparticles and Water-Repellent Agent.” J. Colloid Interface Sci., 337 (1) 170–175 (2009)CrossRef
28.
go back to reference Wang, S, Liu, C, Liu, G, Zhang, M, Li, J, Wang, C, “Fabrication of Superhydrophobic Wood Surface by a Sol-Gel Process.” Appl. Surf. Sci., 258 (2) 806–810 (2011)CrossRef Wang, S, Liu, C, Liu, G, Zhang, M, Li, J, Wang, C, “Fabrication of Superhydrophobic Wood Surface by a Sol-Gel Process.” Appl. Surf. Sci., 258 (2) 806–810 (2011)CrossRef
29.
go back to reference Lim, T-T, Huang, X, “Evaluation of Kapok (Ceiba pentandra (L.) Gaertn.) as a Natural Hollow Hydrophobic–Oleophilic Fibrous Sorbent for Oil Spill Cleanup.” Chemosphere, 66 (5) 955–963 (2007)CrossRef Lim, T-T, Huang, X, “Evaluation of Kapok (Ceiba pentandra (L.) Gaertn.) as a Natural Hollow Hydrophobic–Oleophilic Fibrous Sorbent for Oil Spill Cleanup.” Chemosphere, 66 (5) 955–963 (2007)CrossRef
30.
go back to reference Vince, J, Orel, B, Vilčnik, A, Fir, M, Šurca Vuk, A, Jovanovski, V, Simoncic, B, “Structural and Water-Repellent Properties of a Urea/Poly (dimethylsiloxane) Sol–Gel Hybrid and Its Bonding to Cotton Fabric.” Langmuir, 22 (15) 6489–6497 (2006)CrossRef Vince, J, Orel, B, Vilčnik, A, Fir, M, Šurca Vuk, A, Jovanovski, V, Simoncic, B, “Structural and Water-Repellent Properties of a Urea/Poly (dimethylsiloxane) Sol–Gel Hybrid and Its Bonding to Cotton Fabric.” Langmuir, 22 (15) 6489–6497 (2006)CrossRef
31.
go back to reference Li, S, Zhang, S, Wang, X, “Fabrication of Superhydrophobic Cellulose-Based Materials Through a Solution-Immersion Process.” Langmuir, 24 (10) 5585–5590 (2008)CrossRef Li, S, Zhang, S, Wang, X, “Fabrication of Superhydrophobic Cellulose-Based Materials Through a Solution-Immersion Process.” Langmuir, 24 (10) 5585–5590 (2008)CrossRef
32.
go back to reference Shokri, B, Firouzjah, MA, Hosseini, S, “FTIR Analysis of Silicon Dioxide Thin Film Deposited By Metal Organic-Based PECVD.” Proc. Proceedings of 19th International Symposium on Plasma Chemistry Society, Bochum, Germany 2009 Shokri, B, Firouzjah, MA, Hosseini, S, “FTIR Analysis of Silicon Dioxide Thin Film Deposited By Metal Organic-Based PECVD.” Proc. Proceedings of 19th International Symposium on Plasma Chemistry Society, Bochum, Germany 2009
33.
go back to reference Hoai, NT, Sang, NN, Hoang, TD, “Thermal Reduction of Graphene-Oxide-Coated Cotton for Oil and Organic Solvent Removal.” Mater. Sci. Eng. B, 216 10–15 (2017)CrossRef Hoai, NT, Sang, NN, Hoang, TD, “Thermal Reduction of Graphene-Oxide-Coated Cotton for Oil and Organic Solvent Removal.” Mater. Sci. Eng. B, 216 10–15 (2017)CrossRef
34.
go back to reference Gholami, T, Salavati-Niasari, M, Bazarganipour, M, Noori, E, “Synthesis and Characterization of Spherical Silica Nanoparticles by Modified Stöber Process Assisted by Organic Ligand.” Superlattice Micro., 61 33–41 (2013)CrossRef Gholami, T, Salavati-Niasari, M, Bazarganipour, M, Noori, E, “Synthesis and Characterization of Spherical Silica Nanoparticles by Modified Stöber Process Assisted by Organic Ligand.” Superlattice Micro., 61 33–41 (2013)CrossRef
35.
go back to reference Guo, Q, Yang, G, Huang, D, Cao, W, Ge, L, Li, L, “Synthesis and Characterization of Spherical Silica Nanoparticles by Modified Stöber Process Assisted by Slow-Hydrolysis Catalyst.” Colloid Poly. Sci., 296 (2) 379–384 (2018)CrossRef Guo, Q, Yang, G, Huang, D, Cao, W, Ge, L, Li, L, “Synthesis and Characterization of Spherical Silica Nanoparticles by Modified Stöber Process Assisted by Slow-Hydrolysis Catalyst.” Colloid Poly. Sci., 296 (2) 379–384 (2018)CrossRef
36.
go back to reference Musić, S, Filipović-Vinceković, N, Sekovanić, L, “Precipitation of Amorphous SiO2 Particles and Their Properties.” Braz. J. Chem. Eng., 28 (1) 89–94 (2011)CrossRef Musić, S, Filipović-Vinceković, N, Sekovanić, L, “Precipitation of Amorphous SiO2 Particles and Their Properties.” Braz. J. Chem. Eng., 28 (1) 89–94 (2011)CrossRef
37.
go back to reference Nallathambi, G, Ramachandran, T, Rajendran, V, Palanivelu, R, “Effect of Silica Nanoparticles and BTCA on Physical Properties of Cotton Fabrics.” Mater. Res., 14 (4) 552–559 (2011)CrossRef Nallathambi, G, Ramachandran, T, Rajendran, V, Palanivelu, R, “Effect of Silica Nanoparticles and BTCA on Physical Properties of Cotton Fabrics.” Mater. Res., 14 (4) 552–559 (2011)CrossRef
38.
go back to reference Zheng, Q, Cai, Z, Gong, S, “Green Synthesis of Polyvinyl Alcohol (PVA)–Cellulose Nanofibril (CNF) Hybrid Aerogels and Their Use as Superabsorbents.” J. Mater. Chem. A, 2 (9) 3110–3118 (2014)CrossRef Zheng, Q, Cai, Z, Gong, S, “Green Synthesis of Polyvinyl Alcohol (PVA)–Cellulose Nanofibril (CNF) Hybrid Aerogels and Their Use as Superabsorbents.” J. Mater. Chem. A, 2 (9) 3110–3118 (2014)CrossRef
39.
go back to reference Duan, B, Gao, H, He, M, Zhang, L, “Hydrophobic Modification on Surface of Chitin Sponges for Highly Effective Separation of Oil.” ACS Appl. Mater. Interfaces, 6 (22) 19933–19942 (2014)CrossRef Duan, B, Gao, H, He, M, Zhang, L, “Hydrophobic Modification on Surface of Chitin Sponges for Highly Effective Separation of Oil.” ACS Appl. Mater. Interfaces, 6 (22) 19933–19942 (2014)CrossRef
40.
go back to reference Nakajima, A, Hashimoto, K, Watanabe, T, “Recent Studies on Super-Hydrophobic Films.” Monatshefte für Chemie/Chemical Monthly, 132 (1) 31–41 (2001)CrossRef Nakajima, A, Hashimoto, K, Watanabe, T, “Recent Studies on Super-Hydrophobic Films.” Monatshefte für Chemie/Chemical Monthly, 132 (1) 31–41 (2001)CrossRef
41.
go back to reference Hauner, IM, Deblais, A, Beattie, JK, Kellay, H, Bonn, D, “The Dynamic Surface Tension of Water.” J. Phy. Chem. Lett., 8 (7) 1599–1603 (2017)CrossRef Hauner, IM, Deblais, A, Beattie, JK, Kellay, H, Bonn, D, “The Dynamic Surface Tension of Water.” J. Phy. Chem. Lett., 8 (7) 1599–1603 (2017)CrossRef
42.
go back to reference Liu, F, Wang, S, Zhang, M, Ma, M, Wang, C, Li, J, “Improvement of Mechanical Robustness of the Superhydrophobic Wood Surface by Coating PVA/SiO2 Composite Polymer.” Appl. Surf. Sci., 280 686–692 (2013)CrossRef Liu, F, Wang, S, Zhang, M, Ma, M, Wang, C, Li, J, “Improvement of Mechanical Robustness of the Superhydrophobic Wood Surface by Coating PVA/SiO2 Composite Polymer.” Appl. Surf. Sci., 280 686–692 (2013)CrossRef
43.
go back to reference Ge, B, Zhang, Z, Zhu, X, Men, X, Zhou, X, Xue, Q, “A Graphene Coated Cotton for Oil/Water Separation.” Compo. Sci. Technol., 102 100–105 (2014)CrossRef Ge, B, Zhang, Z, Zhu, X, Men, X, Zhou, X, Xue, Q, “A Graphene Coated Cotton for Oil/Water Separation.” Compo. Sci. Technol., 102 100–105 (2014)CrossRef
44.
go back to reference Sun, H, Zhu, Z, Liang, W, Yang, B, Qin, X, Zhao, X, Pei, C, La, P, Li, A, “Reduced Graphene Oxide-Coated Cottons for Selective Absorption of Organic Solvents and Oils from Water.” RSC Adv., 4 (58) 30587–30591 (2014)CrossRef Sun, H, Zhu, Z, Liang, W, Yang, B, Qin, X, Zhao, X, Pei, C, La, P, Li, A, “Reduced Graphene Oxide-Coated Cottons for Selective Absorption of Organic Solvents and Oils from Water.” RSC Adv., 4 (58) 30587–30591 (2014)CrossRef
45.
go back to reference Zhu, T, Li, S, Huang, J, Mihailiasa, M, Lai, Y, “Rational Design of Multi-Layered Superhydrophobic Coating on Cotton Fabrics for UV Shielding, Self-Cleaning and Oil–Water Separation.” Mater. Des., 134 342–351 (2017)CrossRef Zhu, T, Li, S, Huang, J, Mihailiasa, M, Lai, Y, “Rational Design of Multi-Layered Superhydrophobic Coating on Cotton Fabrics for UV Shielding, Self-Cleaning and Oil–Water Separation.” Mater. Des., 134 342–351 (2017)CrossRef
46.
go back to reference Deschamps, G, Caruel, H, Borredon, M-E, Bonnin, C, Vignoles, C, “Oil Removal from Water by Selective Sorption on Hydrophobic Cotton Fibers. 1. Study of Sorption Properties and Comparison with Other Cotton Fiber-Based Sorbents.” Env. Sci. Tech., 37 (5) 1013–1015 (2003)CrossRef Deschamps, G, Caruel, H, Borredon, M-E, Bonnin, C, Vignoles, C, “Oil Removal from Water by Selective Sorption on Hydrophobic Cotton Fibers. 1. Study of Sorption Properties and Comparison with Other Cotton Fiber-Based Sorbents.” Env. Sci. Tech., 37 (5) 1013–1015 (2003)CrossRef
47.
go back to reference Lee, JH, Kim, DH, Kim, YD, “High-Performance, Recyclable and Superhydrophobic Oil Absorbents Consisting of Cotton with a Polydimethylsiloxane Shell.” J. Ind. Eng. Chem., 35 140–145 (2016)CrossRef Lee, JH, Kim, DH, Kim, YD, “High-Performance, Recyclable and Superhydrophobic Oil Absorbents Consisting of Cotton with a Polydimethylsiloxane Shell.” J. Ind. Eng. Chem., 35 140–145 (2016)CrossRef
48.
go back to reference Lu, Y, Yuan, W, “Superhydrophobic Three-Dimensional Porous Ethyl Cellulose Absorbent with Micro/Nano-Scale Hierarchical Structures for Highly Efficient Removal of Oily Contaminants from Water.” Carbohydr. Poly., 191 86–94 (2018)CrossRef Lu, Y, Yuan, W, “Superhydrophobic Three-Dimensional Porous Ethyl Cellulose Absorbent with Micro/Nano-Scale Hierarchical Structures for Highly Efficient Removal of Oily Contaminants from Water.” Carbohydr. Poly., 191 86–94 (2018)CrossRef
49.
go back to reference Gui, X, Li, H, Wang, K, Wei, J, Jia, Y, Li, Z, Fan, L, Cao, A, Zhu, H, Wu, D, “Recyclable Carbon Nanotube Sponges for Oil Absorption.” Acta Mater., 59 (12) 4798–4804 (2011)CrossRef Gui, X, Li, H, Wang, K, Wei, J, Jia, Y, Li, Z, Fan, L, Cao, A, Zhu, H, Wu, D, “Recyclable Carbon Nanotube Sponges for Oil Absorption.” Acta Mater., 59 (12) 4798–4804 (2011)CrossRef
50.
go back to reference Hu, H, Zhao, Z, Gogotsi, Y, Qiu, J, “Compressible carbon nanotube–graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption.” Environ. Sci. Tech. Lett., 1 (3) 214–220 (2014)CrossRef Hu, H, Zhao, Z, Gogotsi, Y, Qiu, J, “Compressible carbon nanotube–graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption.” Environ. Sci. Tech. Lett., 1 (3) 214–220 (2014)CrossRef
51.
go back to reference Park, JH, Aluru, N, “Temperature-Dependent Wettability on a Titanium Dioxide Surface.” Mol. Simu., 35 (1–2) 31–37 (2009)CrossRef Park, JH, Aluru, N, “Temperature-Dependent Wettability on a Titanium Dioxide Surface.” Mol. Simu., 35 (1–2) 31–37 (2009)CrossRef
52.
go back to reference Yaneva, Z, Koumanova, B, “Comparative Modelling of Mono-and Dinitrophenols Sorption on Yellow Bentonite from Aqueous Solutions.” J. Colloid Interface Sci., 293 (2) 303–311 (2006)CrossRef Yaneva, Z, Koumanova, B, “Comparative Modelling of Mono-and Dinitrophenols Sorption on Yellow Bentonite from Aqueous Solutions.” J. Colloid Interface Sci., 293 (2) 303–311 (2006)CrossRef
Metadata
Title
Methyltrichlorosilane functionalized silica nanoparticles-treated superhydrophobic cotton for oil–water separation
Authors
Love Dashairya
Dibya Darshan Barik
Partha Saha
Publication date
13-02-2019
Publisher
Springer US
Published in
Journal of Coatings Technology and Research / Issue 4/2019
Print ISSN: 1547-0091
Electronic ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-018-00177-z

Other articles of this Issue 4/2019

Journal of Coatings Technology and Research 4/2019 Go to the issue

Premium Partners