Skip to main content
Top
Published in: Archive of Applied Mechanics 3/2021

13-10-2020 | Original

MHD peristaltic flow of non-Newtonian power-law nanofluid through a non-Darcy porous medium inside a non-uniform inclined channel

Published in: Archive of Applied Mechanics | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, we studied the peristaltic motion of steady non-Newtonian nanofluid flow with heat transfer through a non-uniform inclined channel. The flow in this discussion obeys the power law model through a non-Darcy porous medium. Moreover, the effects of thermal radiation, heat generation, Ohmic dissipation and a uniform external magnetic field are taken in consideration. The governing equations that describe the velocity, temperature and nanoparticles concentration are simplified under the assumptions of long wave length and low-Reynolds number. These equations have been solved numerically by using Runge–Kutta–Merson method with the help of shooting and matching technique. The solutions are obtained as functions of the physical parameters entering the problem. The effects of these parameters on the obtained solutions are discussed and illustrated graphically through a set of figures. It is found that as Brownian motion parameter increases, the axial velocity decreases, whereas the nanoparticles concentration increases and it has a dual effect on the temperature distribution. Moreover, the axial velocity and temperature increase as Prandtl number increases, while the nanoparticles decrease.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Choi, U.S.: Enhancing Thermal Conductivity of Fluids with Nanoparticles. ASME, New York (1995) Choi, U.S.: Enhancing Thermal Conductivity of Fluids with Nanoparticles. ASME, New York (1995)
2.
go back to reference Garmroodi, M.R.D., Ahmadpour, A., Talati, F.: MHD mixed convection of nanofluids in the presence of multiple rotating cylinders in different configurations: a two-phase numerical study. Int. J. Mech. Sci. 150, 247–264 (2019)CrossRef Garmroodi, M.R.D., Ahmadpour, A., Talati, F.: MHD mixed convection of nanofluids in the presence of multiple rotating cylinders in different configurations: a two-phase numerical study. Int. J. Mech. Sci. 150, 247–264 (2019)CrossRef
3.
go back to reference Wang, X.Q., Mujumdar, A.S.: A review on nanofluids-part 1: theoretical and numerical investigations. Braz. J. Chem. Eng. 25, 613–630 (2008)CrossRef Wang, X.Q., Mujumdar, A.S.: A review on nanofluids-part 1: theoretical and numerical investigations. Braz. J. Chem. Eng. 25, 613–630 (2008)CrossRef
4.
go back to reference Saidur, R., Leong, K.Y., Mohammad, H.A.: A review on applications and challenges of nanofluids. Renew. Sust. Eng. Rev. 15, 1646–1668 (2011)CrossRef Saidur, R., Leong, K.Y., Mohammad, H.A.: A review on applications and challenges of nanofluids. Renew. Sust. Eng. Rev. 15, 1646–1668 (2011)CrossRef
5.
go back to reference Eldabe, N.T.M., Abou-zeid, M.Y., Younis, Y.M.: Magnetohydrodynamic Peristaltic flow of Jeffry nanofluid with heat transfer through a porous medium in a vertical tube. Appl. Math. Inf. Sci. 11, 1097–1103 (2017)MathSciNetCrossRef Eldabe, N.T.M., Abou-zeid, M.Y., Younis, Y.M.: Magnetohydrodynamic Peristaltic flow of Jeffry nanofluid with heat transfer through a porous medium in a vertical tube. Appl. Math. Inf. Sci. 11, 1097–1103 (2017)MathSciNetCrossRef
6.
go back to reference Abou-zeid, M.: Effects of thermal-diffusion and viscous dissipation on peristaltic flow of micropolar non-Newtonian nanofluid: application of homotopy perturbation method. Results Phys. 6, 481–495 (2016)CrossRef Abou-zeid, M.: Effects of thermal-diffusion and viscous dissipation on peristaltic flow of micropolar non-Newtonian nanofluid: application of homotopy perturbation method. Results Phys. 6, 481–495 (2016)CrossRef
7.
go back to reference Abou-zeid, M.Y., Mohamed, M.A.A.: Homotopy perturbation method to creeping flow of non-Newtonian power-law nanofluid in a non-uniform inclined channel with peristalsis. Z. Naturforsch. A. 72, 899–907 (2017)CrossRef Abou-zeid, M.Y., Mohamed, M.A.A.: Homotopy perturbation method to creeping flow of non-Newtonian power-law nanofluid in a non-uniform inclined channel with peristalsis. Z. Naturforsch. A. 72, 899–907 (2017)CrossRef
8.
go back to reference Prakash, J., Siva, E.P., Tripathi, D., Kothandapani, M.: Nanofluids flow driven by peristaltic pumping in occurrence of magnetohydrodynamics and thermal radiation. Mater. Sci. Semicond. Process. 100, 290–300 (2019)CrossRef Prakash, J., Siva, E.P., Tripathi, D., Kothandapani, M.: Nanofluids flow driven by peristaltic pumping in occurrence of magnetohydrodynamics and thermal radiation. Mater. Sci. Semicond. Process. 100, 290–300 (2019)CrossRef
9.
go back to reference Ellahi, R., Sait, S.M., Shehzad, N., Ayaz, Z.: A hybrid investigation on numerical and analytical solutions of electro-magnetohydrodynamics flow of nanofluid through porous media with entropy generation. Int. J. Numer. Methods Heat Fluid Flow 30, 834–854 (2020)CrossRef Ellahi, R., Sait, S.M., Shehzad, N., Ayaz, Z.: A hybrid investigation on numerical and analytical solutions of electro-magnetohydrodynamics flow of nanofluid through porous media with entropy generation. Int. J. Numer. Methods Heat Fluid Flow 30, 834–854 (2020)CrossRef
10.
go back to reference Akram, S., Razia, A., Afzal, F.: Effects of velocity second slip model and induced magnetic field on peristaltic transport of non-Newtonian fluid in the presence of double-diffusivity convection in nanofluids. Arch. Appl. Mech. 90, 1583–1603 (2020)CrossRef Akram, S., Razia, A., Afzal, F.: Effects of velocity second slip model and induced magnetic field on peristaltic transport of non-Newtonian fluid in the presence of double-diffusivity convection in nanofluids. Arch. Appl. Mech. 90, 1583–1603 (2020)CrossRef
11.
go back to reference Khan, L.A., Raza, M., Mir, N.A., Ellahi, R.: Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. J. Therm. Anal. Calorim. 140, 879–890 (2020)CrossRef Khan, L.A., Raza, M., Mir, N.A., Ellahi, R.: Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. J. Therm. Anal. Calorim. 140, 879–890 (2020)CrossRef
12.
go back to reference Kataria, H.R., Patel, H.R.: Heat and mass transfer in magnetohydrodynamic (MHD) Casson fluid flow past over an oscillating vertical plate embedded in porous medium with ramped wall temperature. Propuls. Power Res. 7, 257–267 (2018)CrossRef Kataria, H.R., Patel, H.R.: Heat and mass transfer in magnetohydrodynamic (MHD) Casson fluid flow past over an oscillating vertical plate embedded in porous medium with ramped wall temperature. Propuls. Power Res. 7, 257–267 (2018)CrossRef
13.
go back to reference Kumar, N., Bansal, A., Gupta, R.: Shear rate and mass transfer coefficient in internal loop airlift reactors involving non-Newtonian fluids. Chem. Eng. Res. Des. 136, 315–323 (2018)CrossRef Kumar, N., Bansal, A., Gupta, R.: Shear rate and mass transfer coefficient in internal loop airlift reactors involving non-Newtonian fluids. Chem. Eng. Res. Des. 136, 315–323 (2018)CrossRef
14.
go back to reference Hayat, T., Yasmin, H., Alsaedi, A.: Convective heat transfer analysis for peristaltic flow of power-law fluid in a channel. J. Braz. Soc. Mech. Sci. Eng. 37, 463–477 (2015)CrossRef Hayat, T., Yasmin, H., Alsaedi, A.: Convective heat transfer analysis for peristaltic flow of power-law fluid in a channel. J. Braz. Soc. Mech. Sci. Eng. 37, 463–477 (2015)CrossRef
15.
go back to reference Eldabe, N.T.M., El-Sayed, M.F., Ghaly, A.Y., Sayed, H.M.: Mixed convective heat and mass transfer in a non-Newtonian fluid at a peristaltic surface with temperature-dependent viscosity. Arch. Appl. Mech. 78, 599–624 (2008)CrossRef Eldabe, N.T.M., El-Sayed, M.F., Ghaly, A.Y., Sayed, H.M.: Mixed convective heat and mass transfer in a non-Newtonian fluid at a peristaltic surface with temperature-dependent viscosity. Arch. Appl. Mech. 78, 599–624 (2008)CrossRef
16.
go back to reference Sayed, H.M., Aly, E.H., Vajravelu, K.: Influence of slip and convective boundary conditions on peristaltic transport of non-Newtonian nanofluids in an inclined asymmetric channel. Alex. Eng. J. 55, 2209–2220 (2016)CrossRef Sayed, H.M., Aly, E.H., Vajravelu, K.: Influence of slip and convective boundary conditions on peristaltic transport of non-Newtonian nanofluids in an inclined asymmetric channel. Alex. Eng. J. 55, 2209–2220 (2016)CrossRef
17.
go back to reference Ellahi, R., Zeeshan, R., Hussain, F., Abbas, T.: Thermally charged MHD Bi-phase flow coatings with non-Newtonian nanofluid and Hafnium particles along slippery walls. Coatings 9, 300 (2019)CrossRef Ellahi, R., Zeeshan, R., Hussain, F., Abbas, T.: Thermally charged MHD Bi-phase flow coatings with non-Newtonian nanofluid and Hafnium particles along slippery walls. Coatings 9, 300 (2019)CrossRef
18.
go back to reference Reddappa, B., Parandhama, A., Sreenadh, S.: Peristaltic transport of conducting Williamson fluid in a porous channel. J. Math. Comput. Sci. 10, 277–288 (2020) Reddappa, B., Parandhama, A., Sreenadh, S.: Peristaltic transport of conducting Williamson fluid in a porous channel. J. Math. Comput. Sci. 10, 277–288 (2020)
19.
go back to reference Hayat, T., Farooq, S., Ahmad, B., Alsaedi, A.: Effectiveness of entropy generation and energy transfer on peristaltic flow of Jeffrey material with Darcy resistance. Int. J. Heat Mass Transf. 106, 244–252 (2017)CrossRef Hayat, T., Farooq, S., Ahmad, B., Alsaedi, A.: Effectiveness of entropy generation and energy transfer on peristaltic flow of Jeffrey material with Darcy resistance. Int. J. Heat Mass Transf. 106, 244–252 (2017)CrossRef
20.
go back to reference Hayat, T., Ali, N.: On mechanism of peristaltic flows for power-law fluids. Physica A 371, 188–194 (2006)CrossRef Hayat, T., Ali, N.: On mechanism of peristaltic flows for power-law fluids. Physica A 371, 188–194 (2006)CrossRef
21.
go back to reference Rao, A.R., Mishra, M.: Peristaltic transport of a power-law fluid in a porous tube. J. Non Newton. Fluid Mech. 121, 163–174 (2004)CrossRef Rao, A.R., Mishra, M.: Peristaltic transport of a power-law fluid in a porous tube. J. Non Newton. Fluid Mech. 121, 163–174 (2004)CrossRef
22.
go back to reference Shaaban, A.A., Abou-zeid, M.Y.: Effects of heat and mass transfer on MHD peristaltic flow of a non-Newtonian fluid through a porous medium between Two Coaxial Cylinders. Math. Probl. Eng. 2013, 819683 (2013)MathSciNetCrossRef Shaaban, A.A., Abou-zeid, M.Y.: Effects of heat and mass transfer on MHD peristaltic flow of a non-Newtonian fluid through a porous medium between Two Coaxial Cylinders. Math. Probl. Eng. 2013, 819683 (2013)MathSciNetCrossRef
23.
go back to reference Chaube, M.K., Tripathi, D., Bég, O.A., Sharma, S., Pandey, V.S.: Peristaltic creeping flow of power law physiological fluids through a non uniform channel with slip effect. Appl. Bionics Biomech. 2015, ID 152802 (2015) Chaube, M.K., Tripathi, D., Bég, O.A., Sharma, S., Pandey, V.S.: Peristaltic creeping flow of power law physiological fluids through a non uniform channel with slip effect. Appl. Bionics Biomech. 2015, ID 152802 (2015)
25.
go back to reference Mohamed, M.A., Abou-zeid, M.Y.: MHD peristaltic flow of micropolar Casson nanofluid through a porous medium between two co-axial tubes. J. Porous Media 22(9), 1079–1093 (2019)CrossRef Mohamed, M.A., Abou-zeid, M.Y.: MHD peristaltic flow of micropolar Casson nanofluid through a porous medium between two co-axial tubes. J. Porous Media 22(9), 1079–1093 (2019)CrossRef
26.
go back to reference Hussain, T., Hussain, S., Hayat, T.: Impact of double stratification and magnetic field in mixed convective radiative flow of Maxwell nanofluid. J. Mol. Liq. 220, 870–878 (2016)CrossRef Hussain, T., Hussain, S., Hayat, T.: Impact of double stratification and magnetic field in mixed convective radiative flow of Maxwell nanofluid. J. Mol. Liq. 220, 870–878 (2016)CrossRef
27.
28.
go back to reference Ramesh, K., Devakar, M.: Effect of heat transfer on the peristaltic transport of a MHDsecond grade fluid through a porous medium in an inclined asymmetric channel. Chin. J. Phys. 55, 825–844 (2017)CrossRef Ramesh, K., Devakar, M.: Effect of heat transfer on the peristaltic transport of a MHDsecond grade fluid through a porous medium in an inclined asymmetric channel. Chin. J. Phys. 55, 825–844 (2017)CrossRef
29.
go back to reference Shehzad, S.A., Abbasi, F.M., Hayat, T., Alsaadi, F.: MHD mixed convective peristaltic motion of nanofluid with joule heating and thermophoresis effects. PLOS ONE 9, e111417 (2014)CrossRef Shehzad, S.A., Abbasi, F.M., Hayat, T., Alsaadi, F.: MHD mixed convective peristaltic motion of nanofluid with joule heating and thermophoresis effects. PLOS ONE 9, e111417 (2014)CrossRef
30.
go back to reference Willemsen, M.J., Wienken, C.J., Braun, D., Baaske, P., Duhr, S.: Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol. 9, 342–372 (2011)CrossRef Willemsen, M.J., Wienken, C.J., Braun, D., Baaske, P., Duhr, S.: Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol. 9, 342–372 (2011)CrossRef
31.
go back to reference Talbot, L., Cheng, R.K., Schefer, R.W., Willis, D.R.: Thermophoresis of particles in a heated boundary layer. J. Fluid Mech. 101, 737–758 (1980)CrossRef Talbot, L., Cheng, R.K., Schefer, R.W., Willis, D.R.: Thermophoresis of particles in a heated boundary layer. J. Fluid Mech. 101, 737–758 (1980)CrossRef
32.
go back to reference Ali, M., Alam, M.S., Alam, M.M., Alim, M.A.: Radiation and thermal diffusion effect on a steady MHD free convection heat and mass transfer flow past an inclined stretching sheet with Hall current and heat generation. IOSR-JM 9, 33–45 (2014)CrossRef Ali, M., Alam, M.S., Alam, M.M., Alim, M.A.: Radiation and thermal diffusion effect on a steady MHD free convection heat and mass transfer flow past an inclined stretching sheet with Hall current and heat generation. IOSR-JM 9, 33–45 (2014)CrossRef
Metadata
Title
MHD peristaltic flow of non-Newtonian power-law nanofluid through a non-Darcy porous medium inside a non-uniform inclined channel
Publication date
13-10-2020
Published in
Archive of Applied Mechanics / Issue 3/2021
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-020-01810-3

Other articles of this Issue 3/2021

Archive of Applied Mechanics 3/2021 Go to the issue

Premium Partners