Skip to main content
Top
Published in: Microsystem Technologies 3/2016

24-05-2015 | Technical Paper

Micro-mixer device with deep channels in silicon using modified RIE process: fabrication, packaging and characterization

Authors: Saakshi Dhanekar, Sudhir Chandra, R. Balasubramaniam

Published in: Microsystem Technologies | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present work, silicon based micromixer microfluidic devices have been fabricated in silicon substrates of 2-inch diameter. These devices are of 2-input and 1-output port configuration bearing channel depth in the range 80–280 µm. Conventional reactive ion etching (RIE) process used in integrated circuit fabrication was modified to get reasonably high silicon etch rate (~1.2 µm/min). It was anticipated that devices with channel depth in excess of 150 µm would become weak and susceptible to breakage. For such devices, a bonded pair of silicon having a 0.5 µm SiO2 at the bonded interface was used as the starting substrate. The processed silicon wafer bearing channels was anodically bonded to a Corning® 7740 glass plate of identical size for fluid confinement. Through-holes for input/output ports were made either in Si substrate or in glass plate before carrying out anodic bonding. Micro-channels were characterized using stylus and optical profiler. Surface roughness of the channel was observed to increase with increasing channel depth. The devices were packaged in a polycarbonate housing and pressure drop versus flow rate measurements were carried out. Reynolds number and friction factor were calculated for devices with 82 µm deep channels. It was observed that up to 25 sccm of gas and 10 ml/min of liquid, the flow was laminar in nature. It is envisaged that using bonded silicon wafer pair and combination of RIE and wet etching, it is possible to get an etch stop at the SiO2 layer of the bonded silicon interface with much smaller value of surface roughness rendering smooth channel surface.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Capretto L, Cheng W, Hill M, Zhang X (2011) Micromixing within microfluidic devices. Top Curr Chem 304:27–68CrossRef Capretto L, Cheng W, Hill M, Zhang X (2011) Micromixing within microfluidic devices. Top Curr Chem 304:27–68CrossRef
go back to reference Fujii T (2002) PDMS-based microfluidic devices for biomedical applications. Microelectron Eng 61–62:907–914CrossRef Fujii T (2002) PDMS-based microfluidic devices for biomedical applications. Microelectron Eng 61–62:907–914CrossRef
go back to reference Gravesen P, Branebjerg J, Jensen OS (1993) Microfluidics—a review. J Micromech Microeng 3:168–182CrossRef Gravesen P, Branebjerg J, Jensen OS (1993) Microfluidics—a review. J Micromech Microeng 3:168–182CrossRef
go back to reference Haestad Methods Engineering staff, Meadows ME, Walski TM, Barnard TE, Durrans SR (2002) Chapter 2: basic hydraulic principles In: Computer applications in hydraulic engineering, 5th edn, Haestad Methods, Waterbury, pp 1–30 Haestad Methods Engineering staff, Meadows ME, Walski TM, Barnard TE, Durrans SR (2002) Chapter 2: basic hydraulic principles In: Computer applications in hydraulic engineering, 5th edn, Haestad Methods, Waterbury, pp 1–30
go back to reference Jansen H, Gardeniers H, Boer M, Elwenspoek M, Fluitman J (1996) A survey on the reactive ion etching of silicon in microtechnology. J Micromech Microeng 6:14–28CrossRef Jansen H, Gardeniers H, Boer M, Elwenspoek M, Fluitman J (1996) A survey on the reactive ion etching of silicon in microtechnology. J Micromech Microeng 6:14–28CrossRef
go back to reference Jeong GS, Chung S, Kim C, Lee S (2010) Applications of micromixing technology. Analyst 135:460–473CrossRef Jeong GS, Chung S, Kim C, Lee S (2010) Applications of micromixing technology. Analyst 135:460–473CrossRef
go back to reference Lee C, Chang C, Wang Y, Fu L (2011) Microfluidic mixing—a review. Int J Mol Sci 12:3263–3287CrossRef Lee C, Chang C, Wang Y, Fu L (2011) Microfluidic mixing—a review. Int J Mol Sci 12:3263–3287CrossRef
go back to reference Lo RC (2013) Application of microfluidics in chemical engineering. Chem Eng Process Technol 442:368–373 Lo RC (2013) Application of microfluidics in chemical engineering. Chem Eng Process Technol 442:368–373
go back to reference McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40CrossRef McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40CrossRef
go back to reference Nguyen N, Wu Z (2005) Micromixers—a review. J Micromech Microeng 15:R1–R16CrossRef Nguyen N, Wu Z (2005) Micromixers—a review. J Micromech Microeng 15:R1–R16CrossRef
go back to reference Pal P, Sato K, Chandra S (2007) Fabrication techniques of convex corners in a (1 0 0)-silicon wafer using bulk micromachining: a review. J Micromech Microeng 17:R111–R133CrossRef Pal P, Sato K, Chandra S (2007) Fabrication techniques of convex corners in a (1 0 0)-silicon wafer using bulk micromachining: a review. J Micromech Microeng 17:R111–R133CrossRef
go back to reference Pfund D, Rector D, Shekarriz A, Popescu A, Weity J (2000) Pressure drop measurements in a microchannel, fluid mechanics and transport phenomena. AIChE J 46:1496–1507CrossRef Pfund D, Rector D, Shekarriz A, Popescu A, Weity J (2000) Pressure drop measurements in a microchannel, fluid mechanics and transport phenomena. AIChE J 46:1496–1507CrossRef
go back to reference Suh YK, Kang S (2010) A review on mixing in microfluidics. Micromachines 1:82–111CrossRef Suh YK, Kang S (2010) A review on mixing in microfluidics. Micromachines 1:82–111CrossRef
go back to reference Tang SKY, Whitesides GM (2009) Chapter 2: Basic microfluidic and soft lithographic techniques in optofluidics. In: Fainman Y, Lee L, Psaltis D, Yang C (eds) Fundamentals, devices and applications, 1st edn. McGraw-Hill, New York Tang SKY, Whitesides GM (2009) Chapter 2: Basic microfluidic and soft lithographic techniques in optofluidics. In: Fainman Y, Lee L, Psaltis D, Yang C (eds) Fundamentals, devices and applications, 1st edn. McGraw-Hill, New York
go back to reference Tuomikoski S, Franssila S (2005) Free-standing SU-8 microfluidic chips by adhesive bonding and release etching. Sens Actuators A 120:408–415CrossRef Tuomikoski S, Franssila S (2005) Free-standing SU-8 microfluidic chips by adhesive bonding and release etching. Sens Actuators A 120:408–415CrossRef
go back to reference Weilen Q, Mala GhM, Dongquing L (2000) Pressure-driven water flows in trapezoidal silicon microchannels. Int J Heat Mass Transf 43:353–364CrossRef Weilen Q, Mala GhM, Dongquing L (2000) Pressure-driven water flows in trapezoidal silicon microchannels. Int J Heat Mass Transf 43:353–364CrossRef
Metadata
Title
Micro-mixer device with deep channels in silicon using modified RIE process: fabrication, packaging and characterization
Authors
Saakshi Dhanekar
Sudhir Chandra
R. Balasubramaniam
Publication date
24-05-2015
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 3/2016
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-015-2579-3

Other articles of this Issue 3/2016

Microsystem Technologies 3/2016 Go to the issue