Skip to main content
Top

2016 | OriginalPaper | Chapter

Microalgae Applications in Wastewater Treatment

Authors : Ismail Rawat, Sanjay K. Gupta, Amritanshu Shriwastav, Poonam Singh, Sheena Kumari, Faizal Bux

Published in: Algae Biotechnology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Algal wastewater treatment is effective in the removal of nutrients (C, N and P), coliform bacteria, heavy metals and the reduction of chemical and biological oxygen demand, removal and/or degradation of xenobiotic compounds and other contaminants. Microalgae wastewater treatment technologies have long been in existence; however, uptake of the technology to date has been limited mainly due to considerations of land requirements and volumes of wastewater to be treated. This chapter gives an overview of algal applications in wastewater treatment with specific reference to nutrient removal, phycoremediation of heavy metals, high-rate algal ponds, symbiosis of algae with bacteria for wastewater treatment, and utilisation of wastewater-grown microalgae.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abdel-raouf, N., Al-homaidan, A. A., & Ibraheem, I. B. M. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19, 257–275.CrossRef Abdel-raouf, N., Al-homaidan, A. A., & Ibraheem, I. B. M. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19, 257–275.CrossRef
go back to reference Arbib, Z., Ruiz, J., Álvarez-díaz, P., Garrido-pérez, C., Barragan, J., & Perales, J. A. (2013). Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecological Engineering, 52, 143–153.CrossRef Arbib, Z., Ruiz, J., Álvarez-díaz, P., Garrido-pérez, C., Barragan, J., & Perales, J. A. (2013). Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecological Engineering, 52, 143–153.CrossRef
go back to reference Arceivala, S. J., & Asolekar, S. R. (2007). Wastewater treatment for pollution control and reuse. Noida: Tata McGraw-Hill. Arceivala, S. J., & Asolekar, S. R. (2007). Wastewater treatment for pollution control and reuse. Noida: Tata McGraw-Hill.
go back to reference Aziz, M. A., & Ng, W. J. (1992). Feasibility of wastewater treatment using the activated-algae process. Bioresource Technology, 40, 205–208. Aziz, M. A., & Ng, W. J. (1992). Feasibility of wastewater treatment using the activated-algae process. Bioresource Technology, 40, 205–208.
go back to reference Babu, B. V., & Gupta, S. (2008). Adsorption of Cr(VI) using activated neem leaves: kinetic studies. Adsorption, 14, 85–92.CrossRef Babu, B. V., & Gupta, S. (2008). Adsorption of Cr(VI) using activated neem leaves: kinetic studies. Adsorption, 14, 85–92.CrossRef
go back to reference Batista, A. P., Ambrosano, L., Graca, S., Sousa, C., Marques, P. A., Ribeiro, B., et al. (2015). Combining urban wastewater treatment with biohydrogen production—An integrated microalgae-based approach. Bioresource Technology, 184, 230–235. Batista, A. P., Ambrosano, L., Graca, S., Sousa, C., Marques, P. A., Ribeiro, B., et al. (2015). Combining urban wastewater treatment with biohydrogen production—An integrated microalgae-based approach. Bioresource Technology, 184, 230–235.
go back to reference Beer, L. L., Boyd, E. S., Peters, J. W., & Posewitz, M. C. (2009). Engineering algae for biohydrogen and biofuel production. Current Opinion in Biotechnology, 20, 264–271. Beer, L. L., Boyd, E. S., Peters, J. W., & Posewitz, M. C. (2009). Engineering algae for biohydrogen and biofuel production. Current Opinion in Biotechnology, 20, 264–271.
go back to reference Bell, W. H., Lang, J. M., & Mitchell, R. (1974). Selective stimulation of marine bacteria by algal extracellular products. Limnology and Oceanography, 19, 833–839.CrossRef Bell, W. H., Lang, J. M., & Mitchell, R. (1974). Selective stimulation of marine bacteria by algal extracellular products. Limnology and Oceanography, 19, 833–839.CrossRef
go back to reference Boelee, N. C., Temmink, H., Janssen, M., Buisman, C. J. N., & Wijffels, R. H. (2011). Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Research, 45, 5925–5933.CrossRef Boelee, N. C., Temmink, H., Janssen, M., Buisman, C. J. N., & Wijffels, R. H. (2011). Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Research, 45, 5925–5933.CrossRef
go back to reference Borowitzka, M. A. (2013). High-value products from microalgae—Their development and commercialisation. Journal of Applied Phycology, 25, 743–756.CrossRef Borowitzka, M. A. (2013). High-value products from microalgae—Their development and commercialisation. Journal of Applied Phycology, 25, 743–756.CrossRef
go back to reference Braissant, O. (2010). Ammonia toxicity to the brain: Effects on creatine metabolism and transport and protective roles of creatine. Molecular Genetics and Metabolism, 100, S53–S58.CrossRef Braissant, O. (2010). Ammonia toxicity to the brain: Effects on creatine metabolism and transport and protective roles of creatine. Molecular Genetics and Metabolism, 100, S53–S58.CrossRef
go back to reference Brockett, O. D. (1977). Nitrogenous compounds in facultative oxidation pond sediments. Water Research, 11, 317–321.CrossRef Brockett, O. D. (1977). Nitrogenous compounds in facultative oxidation pond sediments. Water Research, 11, 317–321.CrossRef
go back to reference Bryan, N. S., Alexander, D. D., Coughlin, J. R., Milkowski, A. L., & Boffetta, P. (2012). Ingested nitrate and nitrite and stomach cancer risk: An updated review. Food and Chemical Toxicology, 50, 3646–3665.CrossRef Bryan, N. S., Alexander, D. D., Coughlin, J. R., Milkowski, A. L., & Boffetta, P. (2012). Ingested nitrate and nitrite and stomach cancer risk: An updated review. Food and Chemical Toxicology, 50, 3646–3665.CrossRef
go back to reference Cabanelas, I. T. D., Arbib, Z., Chinalia, F. A., Souza, C. O., Perales, J. A., Almeida, P. F., et al. (2013). From waste to energy: Microalgae production in wastewater and glycerol. Applied Energy, 109, 283–290.CrossRef Cabanelas, I. T. D., Arbib, Z., Chinalia, F. A., Souza, C. O., Perales, J. A., Almeida, P. F., et al. (2013). From waste to energy: Microalgae production in wastewater and glycerol. Applied Energy, 109, 283–290.CrossRef
go back to reference Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369. Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369.
go back to reference Cardozo, K. H., GuaratinI, T., Barros, M. P., Falcao, V. R., Tonon, A. P., Lopes, N. P., CampoS, S., TorreS, M. A., Souza, A. O., Colepicolo, P. & PInto, E. 2007. Metabolites from algae with economical impact. Comp Biochem Physiol C Toxicol Pharmacol, 146, 60–78. Cardozo, K. H., GuaratinI, T., Barros, M. P., Falcao, V. R., Tonon, A. P., Lopes, N. P., CampoS, S., TorreS, M. A., Souza, A. O., Colepicolo, P. & PInto, E. 2007. Metabolites from algae with economical impact. Comp Biochem Physiol C Toxicol Pharmacol, 146, 60–78.
go back to reference Chiaramonti, D., Prussi, M., Casini, D., Tredici, M. R., Rodolfi, L., Bassi, N., et al. (2013). Review of energy balance in raceway ponds for microalgae cultivation: Re-thinking a traditional system is possible. Applied Energy, 102, 101–111.CrossRef Chiaramonti, D., Prussi, M., Casini, D., Tredici, M. R., Rodolfi, L., Bassi, N., et al. (2013). Review of energy balance in raceway ponds for microalgae cultivation: Re-thinking a traditional system is possible. Applied Energy, 102, 101–111.CrossRef
go back to reference Chinnasamy, S., Bhatnagar, A., Hunt, R. W., & Das, K. C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101(9), 3097–3105. Chinnasamy, S., Bhatnagar, A., Hunt, R. W., & Das, K. C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101(9), 3097–3105.
go back to reference Cho, D. Y., Lee, S. T., Park, S. W., & Chung, A. S. (1994). Studies on the biosorption of heavy metals onto Chlorella vulgaris. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering and Toxicology, 29, 389–409. Cho, D. Y., Lee, S. T., Park, S. W., & Chung, A. S. (1994). Studies on the biosorption of heavy metals onto Chlorella vulgaris. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering and Toxicology, 29, 389–409.
go back to reference Cho, S., Lee, N., park, S., Yu, J., Luong, T. T., Oh, Y. K., & Lee, T. (2013). Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources. Bioresource Technology, 131, 515–520. Cho, S., Lee, N., park, S., Yu, J., Luong, T. T., Oh, Y. K., & Lee, T. (2013). Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources. Bioresource Technology, 131, 515–520.
go back to reference Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., et al. (2009). Controlling eutrophication: Nitrogen and phosphorus. Science, 323, 1014–1015.CrossRef Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., et al. (2009). Controlling eutrophication: Nitrogen and phosphorus. Science, 323, 1014–1015.CrossRef
go back to reference De Philippis, R., Colica, G., & Micheletti, E. (2011). Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: Molecular basis and practical applicability of the biosorption process. Applied Microbiology and Biotechnology, 92, 697–708. De Philippis, R., Colica, G., & Micheletti, E. (2011). Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: Molecular basis and practical applicability of the biosorption process. Applied Microbiology and Biotechnology, 92, 697–708.
go back to reference De-Bashan, L. E., & Bashan, Y. (2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Research, 38, 4222–4246. De-Bashan, L. E., & Bashan, Y. (2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Research, 38, 4222–4246.
go back to reference Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321, 926–929.CrossRef Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321, 926–929.CrossRef
go back to reference Dortch, Q., Clayton, J. R., JR., Thoresen, S. S., & Ahmed, S. I. (1984). Species differences in accumulation of nitrogen pools in phytoplankton. Marine Biology, 81, 237–250. Dortch, Q., Clayton, J. R., JR., Thoresen, S. S., & Ahmed, S. I. (1984). Species differences in accumulation of nitrogen pools in phytoplankton. Marine Biology, 81, 237–250.
go back to reference Doshi, H., Ray, A., & Kothari, I. L. (2007). Biosorption of cadmium by live and dead Spirulina: IR spectroscopic, kinetics, and SEM studies. Current Microbiology, 54, 213–218. Doshi, H., Ray, A., & Kothari, I. L. (2007). Biosorption of cadmium by live and dead Spirulina: IR spectroscopic, kinetics, and SEM studies. Current Microbiology, 54, 213–218.
go back to reference Droop, M. R. (1968). Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis Lutheri. Journal of the Marine Biological Association of the United Kingdom, 48, 689–733.CrossRef Droop, M. R. (1968). Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis Lutheri. Journal of the Marine Biological Association of the United Kingdom, 48, 689–733.CrossRef
go back to reference Droop, M. R. (1974). The nutrient status of algal cells in continuous culture. Journal of the Marine Biological Association of the United Kingdom, 54, 825–855.CrossRef Droop, M. R. (1974). The nutrient status of algal cells in continuous culture. Journal of the Marine Biological Association of the United Kingdom, 54, 825–855.CrossRef
go back to reference Dueñas, J. F., Alonso, J. R., Rey, À. F., & Ferrer, A. S. (2003). Characterisation of phosphorous forms in wastewater treatment plants. Journal of Hazardous Materials, 97, 193–205.CrossRef Dueñas, J. F., Alonso, J. R., Rey, À. F., & Ferrer, A. S. (2003). Characterisation of phosphorous forms in wastewater treatment plants. Journal of Hazardous Materials, 97, 193–205.CrossRef
go back to reference Metcalf & Eddy, I., Tchobanoglous, G., & Burton, F. L. (1998). Wastewater engineering: Treatment, disposal and reuse. New Delhi: Tata McGraw-Hill Publishing Company Limited. Metcalf & Eddy, I., Tchobanoglous, G., & Burton, F. L. (1998). Wastewater engineering: Treatment, disposal and reuse. New Delhi: Tata McGraw-Hill Publishing Company Limited.
go back to reference Flynn, K. J., Fasham, M. J. R., & Hipkin, C. R. (1997). Modelling the interactions between ammonium and nitrate uptake in marine phytoplankton. Philosophical Transactions: Biological Sciences, 352, 1625–1645.CrossRef Flynn, K. J., Fasham, M. J. R., & Hipkin, C. R. (1997). Modelling the interactions between ammonium and nitrate uptake in marine phytoplankton. Philosophical Transactions: Biological Sciences, 352, 1625–1645.CrossRef
go back to reference Fourest, E., & Volesky, B. (1997). Alginate properties and heavy metal biosorption by marine algae. Applied Biochemistry and Biotechnology, 67, 215–226.CrossRef Fourest, E., & Volesky, B. (1997). Alginate properties and heavy metal biosorption by marine algae. Applied Biochemistry and Biotechnology, 67, 215–226.CrossRef
go back to reference Fukami, K., Nishijima, T., & Ishida, Y. (1997). Stimulative and inhibitory effects of bacteria on the growth of microalgae. Hydrobiologia, 358, 185–191.CrossRef Fukami, K., Nishijima, T., & Ishida, Y. (1997). Stimulative and inhibitory effects of bacteria on the growth of microalgae. Hydrobiologia, 358, 185–191.CrossRef
go back to reference García, J., Mujeriego, R., & Hernández-Mariné, M. (2000). High rate algal pond operating strategies for urban wastewater nitrogen removal. Journal of Applied Phycology, 12, 331–339.CrossRef García, J., Mujeriego, R., & Hernández-Mariné, M. (2000). High rate algal pond operating strategies for urban wastewater nitrogen removal. Journal of Applied Phycology, 12, 331–339.CrossRef
go back to reference Goldman, J. C. (1979). Outdoor algal mass cultures—I. Applications Water Research, 13, 1–19.CrossRef Goldman, J. C. (1979). Outdoor algal mass cultures—I. Applications Water Research, 13, 1–19.CrossRef
go back to reference Gonzalez, L. E., & Bashan, Y. (2000). Increased growth of the microalga chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense. Applied and Environmental Microbiology, 66, 1527–1531.CrossRef Gonzalez, L. E., & Bashan, Y. (2000). Increased growth of the microalga chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense. Applied and Environmental Microbiology, 66, 1527–1531.CrossRef
go back to reference Green, F. B., Lundquist, T. J., Quinn, N. W., Zarate, M. A., Zubieta, I. X., & Oswald, W. J. (2003). Selenium and nitrate removal from agricultural drainage using the AIWPS technology. Water Science and Technology, 48, 299–305. Green, F. B., Lundquist, T. J., Quinn, N. W., Zarate, M. A., Zubieta, I. X., & Oswald, W. J. (2003). Selenium and nitrate removal from agricultural drainage using the AIWPS technology. Water Science and Technology, 48, 299–305.
go back to reference Gupta, V. K., & Rastogi, A. (2008). Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—A comparative study. Colloids and Surfaces B: Biointerfaces, 64, 170–178.CrossRef Gupta, V. K., & Rastogi, A. (2008). Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—A comparative study. Colloids and Surfaces B: Biointerfaces, 64, 170–178.CrossRef
go back to reference Gupta, V. K., Rastogi, A., Saini, V. K., & Jain, N. (2006). Biosorption of copper(II) from aqueous solutions by Spirogyra species. Journal of Colloid and Interface Science, 296, 59–63.CrossRef Gupta, V. K., Rastogi, A., Saini, V. K., & Jain, N. (2006). Biosorption of copper(II) from aqueous solutions by Spirogyra species. Journal of Colloid and Interface Science, 296, 59–63.CrossRef
go back to reference Han, L., Pei, H., Hu, W., Han, F., Song, M., & Zhang, S. (2014). Nutrient removal and lipid accumulation properties of newly isolated microalgal strains. Bioresource Technology, 165, 38–41. Han, L., Pei, H., Hu, W., Han, F., Song, M., & Zhang, S. (2014). Nutrient removal and lipid accumulation properties of newly isolated microalgal strains. Bioresource Technology, 165, 38–41.
go back to reference Hongyang, S., Yalei, Z., Chunmin, Z., Xuefei, Z., & Jinpeng, L. (2011). Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresource Technology, 102(21), 9884–9890. Hongyang, S., Yalei, Z., Chunmin, Z., Xuefei, Z., & Jinpeng, L. (2011). Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresource Technology, 102(21), 9884–9890.
go back to reference Imase, M., WatanabE, K., Aoyagi, H., & Tanaka, H. (2008). Construction of an artificial symbiotic community using a Chlorella–symbiont association as a model. FEMS Microbiology Ecology, 63, 273–282.CrossRef Imase, M., WatanabE, K., Aoyagi, H., & Tanaka, H. (2008). Construction of an artificial symbiotic community using a Chlorella–symbiont association as a model. FEMS Microbiology Ecology, 63, 273–282.CrossRef
go back to reference Ke, H.-Y. D., Anderson, W. L., Moncrief, R. M., Rayson, G. D., & Jackson, P. J. (1994). Luminescence studies of metal ion-binding sites on datura innoxia biomaterial. Environmental Science and Technology, 28, 586–591.CrossRef Ke, H.-Y. D., Anderson, W. L., Moncrief, R. M., Rayson, G. D., & Jackson, P. J. (1994). Luminescence studies of metal ion-binding sites on datura innoxia biomaterial. Environmental Science and Technology, 28, 586–591.CrossRef
go back to reference Khin, T., & Annachhatre, A. P. (2004). Novel microbial nitrogen removal processes. Biotechnology Advances, 22, 519–532.CrossRef Khin, T., & Annachhatre, A. P. (2004). Novel microbial nitrogen removal processes. Biotechnology Advances, 22, 519–532.CrossRef
go back to reference Klausmeier, C. A., Litchman, E., & Levin, S. A. (2004). Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnology and Oceanography, 49, 1463–1470.CrossRef Klausmeier, C. A., Litchman, E., & Levin, S. A. (2004). Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnology and Oceanography, 49, 1463–1470.CrossRef
go back to reference Leadbeater, B. S. C. (2006). The ‘Droop Equation’-Michael droop and the legacy of the ‘Cell-Quota Model’ of phytoplankton growth. Protist, 157, 345–358.CrossRef Leadbeater, B. S. C. (2006). The ‘Droop Equation’-Michael droop and the legacy of the ‘Cell-Quota Model’ of phytoplankton growth. Protist, 157, 345–358.CrossRef
go back to reference Liu, J., Huang, J., Jiang, Y. & Chen, F. 2012. Molasses-based growth and production of oil and astaxanthin by Chlorella zofingiensis. Bioresour Technol, 107, 393–8. Liu, J., Huang, J., Jiang, Y. & Chen, F. 2012. Molasses-based growth and production of oil and astaxanthin by Chlorella zofingiensis. Bioresour Technol, 107, 393–8.
go back to reference Mahapatra, D., Chanakya, H. N., & Ramachandra, T. V. (2013). Treatment efficacy of algae-based sewage treatment plants. Environmental Monitoring and Assessment, 185, 7145–7164.CrossRef Mahapatra, D., Chanakya, H. N., & Ramachandra, T. V. (2013). Treatment efficacy of algae-based sewage treatment plants. Environmental Monitoring and Assessment, 185, 7145–7164.CrossRef
go back to reference Munoz, R., & Guieysse, B. (2006). Algal-bacterial processes for the treatment of hazardous contaminants: A review. Water Research, 40, 2799–2815.CrossRef Munoz, R., & Guieysse, B. (2006). Algal-bacterial processes for the treatment of hazardous contaminants: A review. Water Research, 40, 2799–2815.CrossRef
go back to reference Muñoz, R., Guieysse, B., & Mattiasson, B. (2003a). Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Applied Microbiology and Biotechnology, 61, 261–267.CrossRef Muñoz, R., Guieysse, B., & Mattiasson, B. (2003a). Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Applied Microbiology and Biotechnology, 61, 261–267.CrossRef
go back to reference Muñoz, R., Jacinto, M., GuieyssE, B., & Mattiasson, B. (2005). combined carbon and nitrogen removal from acetonitrile using algal-bacterial bioreactors. Applied Microbiology and Biotechnology, 67, 699–707.CrossRef Muñoz, R., Jacinto, M., GuieyssE, B., & Mattiasson, B. (2005). combined carbon and nitrogen removal from acetonitrile using algal-bacterial bioreactors. Applied Microbiology and Biotechnology, 67, 699–707.CrossRef
go back to reference Muñoz, R., Köllner, C., Guieysse, B., & Mattiasson, B. (2003b). Salicylate biodegradation by various algal-bacterial consortia under photosynthetic oxygenation. Biotechnology Letters, 25, 1905–1911.CrossRef Muñoz, R., Köllner, C., Guieysse, B., & Mattiasson, B. (2003b). Salicylate biodegradation by various algal-bacterial consortia under photosynthetic oxygenation. Biotechnology Letters, 25, 1905–1911.CrossRef
go back to reference Nambiar, K. R., & Bokil, S. D. (1981). Luxury uptake of nitrogen in flocculating algal-bacterial system. Water Research, 15, 667–669.CrossRef Nambiar, K. R., & Bokil, S. D. (1981). Luxury uptake of nitrogen in flocculating algal-bacterial system. Water Research, 15, 667–669.CrossRef
go back to reference Nurdogan, Y., & Oswald, W. J. (1995). Enhanced nutrient removal in high-rate ponds. Water Science and Technology, 31, 33–43.CrossRef Nurdogan, Y., & Oswald, W. J. (1995). Enhanced nutrient removal in high-rate ponds. Water Science and Technology, 31, 33–43.CrossRef
go back to reference Olguí, E. J. (2003). Phycoremediation: Key issues for cost-effective nutrient removal processes. Biotechnology Advances, 22, 81–91.CrossRef Olguí, E. J. (2003). Phycoremediation: Key issues for cost-effective nutrient removal processes. Biotechnology Advances, 22, 81–91.CrossRef
go back to reference Olguín, E. J. (2012). Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnology Advances, 30, 1031–1046.CrossRef Olguín, E. J. (2012). Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnology Advances, 30, 1031–1046.CrossRef
go back to reference Olguín, E. J., Galicia, S., Mercado, G., & Pérez, T. (2003). Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. Journal of Applied Phycology, 15, 249–257.CrossRef Olguín, E. J., Galicia, S., Mercado, G., & Pérez, T. (2003). Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. Journal of Applied Phycology, 15, 249–257.CrossRef
go back to reference Oswald, W. J. (1990). Advanced integrated wastewater pond systems. San Francisco, CA: ASCE Convention EE Div/ASCE. Oswald, W. J. (1990). Advanced integrated wastewater pond systems. San Francisco, CA: ASCE Convention EE Div/ASCE.
go back to reference Oswald, W. J., Gotaas, H. B., Golueke, C. G., Kellen, W. R., Gloyna, E. F., & Hermann, E. R. (1957). Algae in waste treatment. Sewage and Industrial Wastes, 29, 437–457. Oswald, W. J., Gotaas, H. B., Golueke, C. G., Kellen, W. R., Gloyna, E. F., & Hermann, E. R. (1957). Algae in waste treatment. Sewage and Industrial Wastes, 29, 437–457.
go back to reference Park, J. B. K., Craggs, R. J., & Shilton, A. N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102, 35–42.CrossRef Park, J. B. K., Craggs, R. J., & Shilton, A. N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102, 35–42.CrossRef
go back to reference Powell, N., Shilton, A., Chisti, Y., & Pratt, S. (2009). Towards a luxury uptake process via microalgae—Defining the polyphosphate dynamics. Water Research, 43, 4207–4213.CrossRef Powell, N., Shilton, A., Chisti, Y., & Pratt, S. (2009). Towards a luxury uptake process via microalgae—Defining the polyphosphate dynamics. Water Research, 43, 4207–4213.CrossRef
go back to reference Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65, 635–648. Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65, 635–648.
go back to reference Qin, S., Liu, G. X., & Hu, Z. Y. (2008). The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (chlorophyceae). Process biochemistry, 43, 795–802. Qin, S., Liu, G. X., & Hu, Z. Y. (2008). The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (chlorophyceae). Process biochemistry, 43, 795–802.
go back to reference Ramanna, L., Guldhe, A., Rawat, I., & Bux, F. (2014). The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresour Technol, 168, 127–35. Ramanna, L., Guldhe, A., Rawat, I., & Bux, F. (2014). The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresour Technol, 168, 127–35.
go back to reference Rasoul-amini, S., Montazeri-najafabady, N., Shaker, S., Safari, A., Kazemi, A., Mousavi, P., et al. (2014). Removal of nitrogen and phosphorus from wastewater using microalgae free cells in bath culture system. Biocatalysis and Agricultural Biotechnology, 3, 126–131.CrossRef Rasoul-amini, S., Montazeri-najafabady, N., Shaker, S., Safari, A., Kazemi, A., Mousavi, P., et al. (2014). Removal of nitrogen and phosphorus from wastewater using microalgae free cells in bath culture system. Biocatalysis and Agricultural Biotechnology, 3, 126–131.CrossRef
go back to reference Raungsomboon, S., Chidthaisong, A., Bunnag, B., Inthorn, D., & Harvey, N. W. (2008). Removal of lead (Pb2+) by the Cyanobacterium Gloeocapsa sp. Bioresource technology, 99, 5650–5658.CrossRef Raungsomboon, S., Chidthaisong, A., Bunnag, B., Inthorn, D., & Harvey, N. W. (2008). Removal of lead (Pb2+) by the Cyanobacterium Gloeocapsa sp. Bioresource technology, 99, 5650–5658.CrossRef
go back to reference Rawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88, 3411–3424.CrossRef Rawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88, 3411–3424.CrossRef
go back to reference Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist, 46(230A), 205–221. Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist, 46(230A), 205–221.
go back to reference Richmond, A. (1992). Open systems for the mass production of photoautotrophic microalgae outdoors: Physiological principles. Journal of Applied Phycology, 4, 281–286.CrossRef Richmond, A. (1992). Open systems for the mass production of photoautotrophic microalgae outdoors: Physiological principles. Journal of Applied Phycology, 4, 281–286.CrossRef
go back to reference Riquelme, C. E., Fukami, K., & Ishida, Y. (1987). Annual fluctuations of phytoplankton and bacterial communities in maizuru bay and their interrelationship. Nihon Biseibutsu Seitai Gakkaiho (Bulletin of Japanese Society of Microbial Ecology), 2, 29–37.CrossRef Riquelme, C. E., Fukami, K., & Ishida, Y. (1987). Annual fluctuations of phytoplankton and bacterial communities in maizuru bay and their interrelationship. Nihon Biseibutsu Seitai Gakkaiho (Bulletin of Japanese Society of Microbial Ecology), 2, 29–37.CrossRef
go back to reference Romero-González, M. E., WilliamS, C. J., & Gardiner, P. H. E. (2001). Study of the mechanisms of cadmium biosorption by dealginated seaweed waste. Environmental Science and Technology, 35, 3025–3030.CrossRef Romero-González, M. E., WilliamS, C. J., & Gardiner, P. H. E. (2001). Study of the mechanisms of cadmium biosorption by dealginated seaweed waste. Environmental Science and Technology, 35, 3025–3030.CrossRef
go back to reference Ryu, B.-G., kim, E., Kim, H.-S., Kim, J., Choi, Y.-E., & Yang, J.-W. (2014). Simultaneous treatment of municipal wastewater and biodiesel production by cultivation of Chlorella vulgaris with indigenous wastewater bacteria. Biotechnology and Bioprocess Engineering, 19, 201–210. Ryu, B.-G., kim, E., Kim, H.-S., Kim, J., Choi, Y.-E., & Yang, J.-W. (2014). Simultaneous treatment of municipal wastewater and biodiesel production by cultivation of Chlorella vulgaris with indigenous wastewater bacteria. Biotechnology and Bioprocess Engineering, 19, 201–210.
go back to reference Sandau, E., Sandau, P., & Pulz, O. (1996). Heavy metal sorption by microalgae. Acta Biotechnologica, 16, 227–235. Sandau, E., Sandau, P., & Pulz, O. (1996). Heavy metal sorption by microalgae. Acta Biotechnologica, 16, 227–235.
go back to reference Saqqar, M. M., & PescoD, M. B. (1996). Performance evaluation of anoxic and facultative wastewater stabilization ponds. Water Science and Technology, 33, 141–145.CrossRef Saqqar, M. M., & PescoD, M. B. (1996). Performance evaluation of anoxic and facultative wastewater stabilization ponds. Water Science and Technology, 33, 141–145.CrossRef
go back to reference SaradA, R., Pillai, M. G., & Ravishankar, G. A. (1999). Phycocyanin from Spirulina sp: Influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochemistry, 34, 795–801.CrossRef SaradA, R., Pillai, M. G., & Ravishankar, G. A. (1999). Phycocyanin from Spirulina sp: Influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochemistry, 34, 795–801.CrossRef
go back to reference Schiewer, S., & Volesky, B. (1995). Modeling of the proton-metal ion exchange in biosorption. Environmental Science and Technology, 29, 3049–3058.CrossRef Schiewer, S., & Volesky, B. (1995). Modeling of the proton-metal ion exchange in biosorption. Environmental Science and Technology, 29, 3049–3058.CrossRef
go back to reference Shi, Y., Sheng, J., Yang, F., & Hu, Q. (2007). Purification and identification of polysaccharide derived from Chlorella pyrenoidosa. Food Chemistry, 103, 101–105. Shi, Y., Sheng, J., Yang, F., & Hu, Q. (2007). Purification and identification of polysaccharide derived from Chlorella pyrenoidosa. Food Chemistry, 103, 101–105.
go back to reference Singh, B., Guldhe, A., Rawat, I., & bux, F. (2014). Towards a sustainable approach for development of biodiesel from plant and microalgae. Renewable and Sustainable Energy Reviews, 29, 216–245. Singh, B., Guldhe, A., Rawat, I., & bux, F. (2014). Towards a sustainable approach for development of biodiesel from plant and microalgae. Renewable and Sustainable Energy Reviews, 29, 216–245.
go back to reference Singh, B., Guldhe, A., Singh, P., Singh, A., Rawat, I., & Bux, F. (2015). Sustainable production of biofuels from microalgae using a biorefinary approach. In G. Kaushik (Ed.), Applied environmental biotechnology: Present scenario and future trends (pp. 115–128). India: Springer. Singh, B., Guldhe, A., Singh, P., Singh, A., Rawat, I., & Bux, F. (2015). Sustainable production of biofuels from microalgae using a biorefinary approach. In G. Kaushik (Ed.), Applied environmental biotechnology: Present scenario and future trends (pp. 115–128). India: Springer.
go back to reference Singh, R. N., & Sharma, S. (2012). Development of suitable photobioreactor for algae production—A Review. Renewable and Sustainable Energy Reviews, 16, 2347–2353. Singh, R. N., & Sharma, S. (2012). Development of suitable photobioreactor for algae production—A Review. Renewable and Sustainable Energy Reviews, 16, 2347–2353.
go back to reference Skjanes, K., RebourS, C., & Lindblad, P. (2013). Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Critical Reviews in Biotechnology, 33, 172–215.CrossRef Skjanes, K., RebourS, C., & Lindblad, P. (2013). Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Critical Reviews in Biotechnology, 33, 172–215.CrossRef
go back to reference Spolaore, P., Joannis-cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101, 87–96.CrossRef Spolaore, P., Joannis-cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101, 87–96.CrossRef
go back to reference Tadesse, I., Green, F. B., & Puhakka, J. A. (2004). Seasonal and diurnal variations of temperature, pH and dissolved oxygen in advanced integrated wastewater pond system® treating tannery effluent. Water Research, 38, 645–654.CrossRef Tadesse, I., Green, F. B., & Puhakka, J. A. (2004). Seasonal and diurnal variations of temperature, pH and dissolved oxygen in advanced integrated wastewater pond system® treating tannery effluent. Water Research, 38, 645–654.CrossRef
go back to reference Tadesse, I., Isoaho, S. A., Green, F. B., & puhakka, J. A. (2006). Lime enhanced chromium removal in advanced integrated wastewater pond system. Bioresource Technology, 97, 529–534. Tadesse, I., Isoaho, S. A., Green, F. B., & puhakka, J. A. (2006). Lime enhanced chromium removal in advanced integrated wastewater pond system. Bioresource Technology, 97, 529–534.
go back to reference Terry, P. A., & Stone, W. (2002). Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere, 47, 249–255. Terry, P. A., & Stone, W. (2002). Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere, 47, 249–255.
go back to reference Travies, O. L., Benítez, F., Sánchez, E., BorjA, R., Martín, A., & Colmenarejo, M. F. (2006). Batch mixed culture of chlorella vulgaris using settled and diluted piggery waste. Ecological Engineering, 28, 158–165. Travies, O. L., Benítez, F., Sánchez, E., BorjA, R., Martín, A., & Colmenarejo, M. F. (2006). Batch mixed culture of chlorella vulgaris using settled and diluted piggery waste. Ecological Engineering, 28, 158–165.
go back to reference Vanthoor-Koopmans, M., WIjffels, R. H., Barbosa, M. J., & Eppink, M. H. (2013). Biorefinery of microalgae for food and fuel. Bioresource Technology, 135, 142–149. Vanthoor-Koopmans, M., WIjffels, R. H., Barbosa, M. J., & Eppink, M. H. (2013). Biorefinery of microalgae for food and fuel. Bioresource Technology, 135, 142–149.
go back to reference Watanabe, K., Imase, M., AoyagI, H., OhmurA, N., saiki, H., & tanaka, H. (2008). Development of a novel artificial medium based on utilization of algal photosynthetic metabolites by symbiotic heterotrophs. Journal of Applied Microbiology, 105, 741–751. Watanabe, K., Imase, M., AoyagI, H., OhmurA, N., saiki, H., & tanaka, H. (2008). Development of a novel artificial medium based on utilization of algal photosynthetic metabolites by symbiotic heterotrophs. Journal of Applied Microbiology, 105, 741–751.
go back to reference Wayama, M., Ota, S., Matsuura, H., Nango, N., Hirata, A., & Kawano, S. (2013). Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis. PLoS One, 8, e53618. Wayama, M., Ota, S., Matsuura, H., Nango, N., Hirata, A., & Kawano, S. (2013). Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis. PLoS One, 8, e53618.
go back to reference Wilde, E. W., & Benemann, J. R. (1993). Bioremoval of heavy metals by the use of microalgae. Biotechnology Advances, 11, 781–812.CrossRef Wilde, E. W., & Benemann, J. R. (1993). Bioremoval of heavy metals by the use of microalgae. Biotechnology Advances, 11, 781–812.CrossRef
go back to reference Yen, H. W., Hu, I. C., Chen, C. Y., HO, S. H., Lee, D. J. et al. (2013). Microalgae-based biorefinery—From biofuels to natural products. Bioresource Technology, 135, 166–174. Yen, H. W., Hu, I. C., Chen, C. Y., HO, S. H., Lee, D. J. et al. (2013). Microalgae-based biorefinery—From biofuels to natural products. Bioresource Technology, 135, 166–174.
go back to reference Zhang, E., Wang, B., Wang, Q., ZhanG, S., & Zhao, B. (2008). Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp. Isolated from municipal wastewater for potential use in tertiary treatment. Bioresource Technology, 99, 3787–3793.CrossRef Zhang, E., Wang, B., Wang, Q., ZhanG, S., & Zhao, B. (2008). Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp. Isolated from municipal wastewater for potential use in tertiary treatment. Bioresource Technology, 99, 3787–3793.CrossRef
Metadata
Title
Microalgae Applications in Wastewater Treatment
Authors
Ismail Rawat
Sanjay K. Gupta
Amritanshu Shriwastav
Poonam Singh
Sheena Kumari
Faizal Bux
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-12334-9_13