Skip to main content
Top

2021 | OriginalPaper | Chapter

8. Microbial Lipid Production from Lignocellulosic Biomass Pretreated by Effective Pretreatment

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To date, much attention has been paid on developing new strategies for the valorization of abundant, inexpensive, and renewable lignocellulosic biomass into liquid biofuels and chemicals. Lipids are one kind of value-added energy-rich compounds, which can produce by oleaginous microorganisms using biomass and/or biomass-hydrolysates. Recently, the conversion of lignocellulosic biomass into microbial lipid has received significant attention replacing fossil fuels. However, biomass is highly recalcitrant due to its complex structure with cellulose, hemicellulose, and lignin. Pretreatment of biomass is a critical process in the conversion due to the nature and structure of the biomass cell wall that is complex. Although green technologies for microbial production are advancing, the productivity and yield from these techniques are low. Over the past years, various biomass pretreatment techniques have been developed to disrupt the plant cell-wall structure of lignocellulosic biomass, facilitate subsequent enzymatic hydrolysis and microbial lipid fermentation, and successfully employed to improve biomass-to-lipid technology. In this chapter, the progress of pretreatment for enhancing the enzymatic digestion of lignocellulosic material is introduced. In addition, microbial lipid production from lignocellulosic biomass pretreated by effective pretreatment is discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jin, M. J., Sousa, L. D., Schwartz, C., He, Y. X., Sarks, C., Gunawan, C., Balan, V., & Dale, B. E. (2016). Toward lower cost cellulosic biofuel production using ammonia based pretreatment technologies. Green Chemistry, 18, 957–966.CrossRef Jin, M. J., Sousa, L. D., Schwartz, C., He, Y. X., Sarks, C., Gunawan, C., Balan, V., & Dale, B. E. (2016). Toward lower cost cellulosic biofuel production using ammonia based pretreatment technologies. Green Chemistry, 18, 957–966.CrossRef
2.
go back to reference Yang, B., & Wyman, C. E. (2004). Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnology and Bioengineering, 86, 88–98.CrossRef Yang, B., & Wyman, C. E. (2004). Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnology and Bioengineering, 86, 88–98.CrossRef
3.
go back to reference Gu, X. H., Dong, W., & He, Y. C. (2011). Detoxification of rapeseed meals by steam explosion. Journal of the American Oil Chemists, 88, 1831–1838.CrossRef Gu, X. H., Dong, W., & He, Y. C. (2011). Detoxification of rapeseed meals by steam explosion. Journal of the American Oil Chemists, 88, 1831–1838.CrossRef
4.
go back to reference Qin, L., Qian, H., & He, Y. (2017). Microbial lipid production from enzymatic hydrolysate of Pecan nutshell pretreated by combined pretreatment. Applied Biochemistry and Biotechnology, 183, 1336–1350.CrossRef Qin, L., Qian, H., & He, Y. (2017). Microbial lipid production from enzymatic hydrolysate of Pecan nutshell pretreated by combined pretreatment. Applied Biochemistry and Biotechnology, 183, 1336–1350.CrossRef
5.
go back to reference Zhang, P., Liao, X., Ma, C., Li, Q., Li, A., & He, Y. (2019). Chemoenzymatic conversion of corncob to furfurylamine via tandem catalysis with tin-based solid acid and transaminase biocatalyst. ACS Sustainable Chemistry &. Engineering, 7, 17636–17642.CrossRef Zhang, P., Liao, X., Ma, C., Li, Q., Li, A., & He, Y. (2019). Chemoenzymatic conversion of corncob to furfurylamine via tandem catalysis with tin-based solid acid and transaminase biocatalyst. ACS Sustainable Chemistry &. Engineering, 7, 17636–17642.CrossRef
6.
go back to reference Zheng, Y., Shi, J., Tu, M., & Cheng, Y. S. (2017). Principles and development of Lignocellulosic biomass pretreatment for biofuels. Advance in Biotechnology, 2, 1–68. Zheng, Y., Shi, J., Tu, M., & Cheng, Y. S. (2017). Principles and development of Lignocellulosic biomass pretreatment for biofuels. Advance in Biotechnology, 2, 1–68.
7.
go back to reference Balat, M., Balat, H., & Öz, C. (2008). Progress in bioethanol processing. Progress in Energy and Combustion Science, 34, 551–573.CrossRef Balat, M., Balat, H., & Öz, C. (2008). Progress in bioethanol processing. Progress in Energy and Combustion Science, 34, 551–573.CrossRef
8.
go back to reference Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—The US department of energy’s “top 10” revisited. Green Chemistry, 12, 539–554.CrossRef Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—The US department of energy’s “top 10” revisited. Green Chemistry, 12, 539–554.CrossRef
9.
go back to reference Di, J., Ma, C., Qian, J., Liao, X., Peng, B., & He, Y. (2018). Chemo-enzymatic synthesis of furfuralcohol from chestnut shell hydrolysate by a sequential acid-catalyzed dehydration under microwave and Escherichia coli CCZU-Y10 whole-cells conversion. Bioresource Technology, 262, 52–58.CrossRef Di, J., Ma, C., Qian, J., Liao, X., Peng, B., & He, Y. (2018). Chemo-enzymatic synthesis of furfuralcohol from chestnut shell hydrolysate by a sequential acid-catalyzed dehydration under microwave and Escherichia coli CCZU-Y10 whole-cells conversion. Bioresource Technology, 262, 52–58.CrossRef
10.
go back to reference Gu, T., Wang, B., Zhang, Z., Wang, Z., Chong, G., Ma, C., Tang, Y. J., & He, Y. (2019). Sequential pretreatment of bamboo shoot shell and biosynthesis of ethyl (R)-4-chloro-3-hydroxybutanoate in aqueous-butyl acetate media. Process Biochemistry, 80, 112–118.CrossRef Gu, T., Wang, B., Zhang, Z., Wang, Z., Chong, G., Ma, C., Tang, Y. J., & He, Y. (2019). Sequential pretreatment of bamboo shoot shell and biosynthesis of ethyl (R)-4-chloro-3-hydroxybutanoate in aqueous-butyl acetate media. Process Biochemistry, 80, 112–118.CrossRef
11.
go back to reference Hallac, B. B., & Ragauskas, A. J. (2011). Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 5, 215–225.CrossRef Hallac, B. B., & Ragauskas, A. J. (2011). Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 5, 215–225.CrossRef
12.
go back to reference Hamelinck, C. N., Hooijdonk, G. V., & Faaij, A. P. C. (2005). Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy, 28, 384–410.CrossRef Hamelinck, C. N., Hooijdonk, G. V., & Faaij, A. P. C. (2005). Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy, 28, 384–410.CrossRef
13.
go back to reference He, Y., Jiang, C., Chong, G., Di, J., Wu, Y., Wang, B., Xue, X., & Ma, C. (2017). Chemical-enzymatic conversion of corncob-derived xylose to furfuralcohol by the tandem catalysis with SO42−/SnO2-Kaoline and E. coli CCZU-T15 cells in toluene–water media. Bioresource Technology, 245, 841–849.CrossRef He, Y., Jiang, C., Chong, G., Di, J., Wu, Y., Wang, B., Xue, X., & Ma, C. (2017). Chemical-enzymatic conversion of corncob-derived xylose to furfuralcohol by the tandem catalysis with SO42−/SnO2-Kaoline and E. coli CCZU-T15 cells in toluene–water media. Bioresource Technology, 245, 841–849.CrossRef
14.
go back to reference Huang, Y., Liao, X., Deng, Y., & He, Y. (2019). Co-catalysis of corncob with dilute formic acid plus solid acid SO42−/SnO2-montmorillonite under the microwave for enhancing the biosynthesis of furfuralcohol. Catalysis Communication, 120, 38–41.CrossRef Huang, Y., Liao, X., Deng, Y., & He, Y. (2019). Co-catalysis of corncob with dilute formic acid plus solid acid SO42−/SnO2-montmorillonite under the microwave for enhancing the biosynthesis of furfuralcohol. Catalysis Communication, 120, 38–41.CrossRef
15.
go back to reference Jiang, C. X., Di, J. H., Su, C., Yang, S. Y., & He, Y. C. (2018). One-pot co-catalysis of corncob with dilute hydrochloric acid and tin-based solid acid for the enhancement of furfural production. Bioresource Technology, 268, 315–322.CrossRef Jiang, C. X., Di, J. H., Su, C., Yang, S. Y., & He, Y. C. (2018). One-pot co-catalysis of corncob with dilute hydrochloric acid and tin-based solid acid for the enhancement of furfural production. Bioresource Technology, 268, 315–322.CrossRef
16.
go back to reference Kurosawa, K., Wewetzer, S. J., & Sinskey, A. J. (2013). Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnology for Biofuels, 6(1), 1.CrossRef Kurosawa, K., Wewetzer, S. J., & Sinskey, A. J. (2013). Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnology for Biofuels, 6(1), 1.CrossRef
18.
go back to reference Xue, X. X., Di, J. H., He, Y. C., Wang, B. Q., & Ma, C. L. (2018). Effective utilization of carbohydrate in corncob to synthesize furfuralcohol by chemical–enzymatic catalysis in toluene–water media. Applied Biochemistry and Biotechnology, 185, 42–54.CrossRef Xue, X. X., Di, J. H., He, Y. C., Wang, B. Q., & Ma, C. L. (2018). Effective utilization of carbohydrate in corncob to synthesize furfuralcohol by chemical–enzymatic catalysis in toluene–water media. Applied Biochemistry and Biotechnology, 185, 42–54.CrossRef
19.
go back to reference Zhang, R. Q., Ma, C. L., Shen, Y. F., Sun, J. F., Jiang, K., Jiang, Z. B., Dai, Y. J., & He, Y. C. (2020). Enhanced biosynthesis of furoic acid via the effective pretreatment of corncob into furfural in the biphasic media. Catalysis Letters. https://doi.org/10.1007/s10562-020-03152-9. Zhang, R. Q., Ma, C. L., Shen, Y. F., Sun, J. F., Jiang, K., Jiang, Z. B., Dai, Y. J., & He, Y. C. (2020). Enhanced biosynthesis of furoic acid via the effective pretreatment of corncob into furfural in the biphasic media. Catalysis Letters. https://​doi.​org/​10.​1007/​s10562-020-03152-9.
20.
go back to reference Zhu, H., Kong, Q., Cao, X., He, H., Wang, J., & He, Y. (2016). Adsorption of Cr(VI) from aqueous solution by chemically modified natural cellulose. Desalination and Water Treatment, 57, 20368–20376.CrossRef Zhu, H., Kong, Q., Cao, X., He, H., Wang, J., & He, Y. (2016). Adsorption of Cr(VI) from aqueous solution by chemically modified natural cellulose. Desalination and Water Treatment, 57, 20368–20376.CrossRef
21.
go back to reference Zhu, H. X., Cao, X. J., He, Y. C., Kong, Q. P., He, H., & Wang, J. (2015). Removal of Cu2+ from aqueous solutions by the novel modified bagasse pulp cellulose: Kinetics, isotherm and mechanism. Carbohydrate Polymers, 129, 115–126.CrossRef Zhu, H. X., Cao, X. J., He, Y. C., Kong, Q. P., He, H., & Wang, J. (2015). Removal of Cu2+ from aqueous solutions by the novel modified bagasse pulp cellulose: Kinetics, isotherm and mechanism. Carbohydrate Polymers, 129, 115–126.CrossRef
22.
go back to reference Baral, N. R., & Shah, A. (2017). Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn Stover. Bioresource Technology, 232, 331–343.CrossRef Baral, N. R., & Shah, A. (2017). Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn Stover. Bioresource Technology, 232, 331–343.CrossRef
23.
go back to reference Bryant, D. N., Firth, E., Kaderbhai, N., Taylor, S., Morris, S. M., Logan, D., Garcia, N., Ellis, A., Martin, S. M., & Gallagher, J. A. (2013). Monitoring real-time enzymatic hydrolysis of Distillers Dried Grains with Solubles (DDGS) by dielectric spectroscopy following hydrothermal pre-treatment by steam explosion. Bioresource Technology, 12, 765–768.CrossRef Bryant, D. N., Firth, E., Kaderbhai, N., Taylor, S., Morris, S. M., Logan, D., Garcia, N., Ellis, A., Martin, S. M., & Gallagher, J. A. (2013). Monitoring real-time enzymatic hydrolysis of Distillers Dried Grains with Solubles (DDGS) by dielectric spectroscopy following hydrothermal pre-treatment by steam explosion. Bioresource Technology, 12, 765–768.CrossRef
24.
go back to reference Hallac, B. B., Sannigrahi, P., Pu, Y., Ray, M., Murphy, R. J., & Ragauskas, A. J. (2010). Effect of ethanol Organosolv pretreatment on enzymatic hydrolysis of Buddleja davidii stem biomass. Industrial & Engineering Chemistry Research, 49, 1467–1472.CrossRef Hallac, B. B., Sannigrahi, P., Pu, Y., Ray, M., Murphy, R. J., & Ragauskas, A. J. (2010). Effect of ethanol Organosolv pretreatment on enzymatic hydrolysis of Buddleja davidii stem biomass. Industrial & Engineering Chemistry Research, 49, 1467–1472.CrossRef
25.
go back to reference He, Y., Jiang, C., Chong, G., Di, J., & Ma, C. (2018). Biological synthesis of 2,5-bis(hydroxymethyl)furan from biomass-derived 5-hydroxymethylfurfural by E. coli CCZU-K14 whole cells. Bioresource Technology, 247, 1215–1220.CrossRef He, Y., Jiang, C., Chong, G., Di, J., & Ma, C. (2018). Biological synthesis of 2,5-bis(hydroxymethyl)furan from biomass-derived 5-hydroxymethylfurfural by E. coli CCZU-K14 whole cells. Bioresource Technology, 247, 1215–1220.CrossRef
26.
go back to reference He, Y., Li, X., Xue, X., Swita, M. S., Schmidt, A. J., & Yang, B. (2017). Biological conversion of the aqueous wastes from hydrothermal liquefaction of algae and pine wood by Rhodococci. Bioresource Technology, 224, 457–464.CrossRef He, Y., Li, X., Xue, X., Swita, M. S., Schmidt, A. J., & Yang, B. (2017). Biological conversion of the aqueous wastes from hydrothermal liquefaction of algae and pine wood by Rhodococci. Bioresource Technology, 224, 457–464.CrossRef
27.
go back to reference Peng, B., Ma, C. L., Zhang, P. Q., Wu, C. Q., Wang, Z. W., Li, A. T., He, Y. C., & Yang, B. (2019). An effective hybrid strategy for converting rice straw to furoic acid by tandem catalysis via Sn-sepiolite combined with recombinant E. coli whole cells harboring horse liver alcohol dehydrogenase. Green Chemistry, 21, 5914–5923.CrossRef Peng, B., Ma, C. L., Zhang, P. Q., Wu, C. Q., Wang, Z. W., Li, A. T., He, Y. C., & Yang, B. (2019). An effective hybrid strategy for converting rice straw to furoic acid by tandem catalysis via Sn-sepiolite combined with recombinant E. coli whole cells harboring horse liver alcohol dehydrogenase. Green Chemistry, 21, 5914–5923.CrossRef
28.
go back to reference Wang, Z. W., Gong, C. J., & He, C. J. (2020). Improved biosynthesis of 5-hydroxymethyl-2-furancarboxylic acid and furoic acid from biomass-derived furans with high substrate tolerance of recombinant Escherichia coli HMFOMUT whole-cells. Bioresource Technology, 303, 122930. Wang, Z. W., Gong, C. J., & He, C. J. (2020). Improved biosynthesis of 5-hydroxymethyl-2-furancarboxylic acid and furoic acid from biomass-derived furans with high substrate tolerance of recombinant Escherichia coli HMFOMUT whole-cells. Bioresource Technology, 303, 122930.
29.
go back to reference Xue, X. X., Ma, C. L., Di, J. H., Huo, X. Y., & He, Y. C. (2018). One-pot chemo-enzymatic conversion of D-xylose to furfuralcohol by sequential dehydration with oxalic acid plus tin-based solid acid and bioreduction with whole-cells. Bioresource Technology, 268, 292–299.CrossRef Xue, X. X., Ma, C. L., Di, J. H., Huo, X. Y., & He, Y. C. (2018). One-pot chemo-enzymatic conversion of D-xylose to furfuralcohol by sequential dehydration with oxalic acid plus tin-based solid acid and bioreduction with whole-cells. Bioresource Technology, 268, 292–299.CrossRef
30.
go back to reference Zhang, J., Zhuang, J., Lin, L., Liu, S., & Zhang, Z. (2012). Conversion of D-xylose into furfural with mesoporous molecular sieve MCM-41 as catalyst and butanol as the extraction phase. Biomass and Bioenergy, 39, 73–77.CrossRef Zhang, J., Zhuang, J., Lin, L., Liu, S., & Zhang, Z. (2012). Conversion of D-xylose into furfural with mesoporous molecular sieve MCM-41 as catalyst and butanol as the extraction phase. Biomass and Bioenergy, 39, 73–77.CrossRef
31.
go back to reference Zhou, Z., Ju, X., Zhou, M., Xu, X., & Li, L. (2019). An enhanced ionic liquid-tolerant immobilized cellulase system via hydrogel microsphere for improving in situ saccharification of biomass. Bioresource Technology, 294, 122146.CrossRef Zhou, Z., Ju, X., Zhou, M., Xu, X., & Li, L. (2019). An enhanced ionic liquid-tolerant immobilized cellulase system via hydrogel microsphere for improving in situ saccharification of biomass. Bioresource Technology, 294, 122146.CrossRef
32.
go back to reference Kosa, M., & Ragauskas, A. J. (2012). Bioconversion of lignin model compounds with oleaginous Rhodococci. Applied Microbiology and Biotechnology, 93(2), 891–900.CrossRef Kosa, M., & Ragauskas, A. J. (2012). Bioconversion of lignin model compounds with oleaginous Rhodococci. Applied Microbiology and Biotechnology, 93(2), 891–900.CrossRef
33.
go back to reference Wang, B., Rezenom, Y. H., Cho, K. C., Tran, J. L., Lee, D. G., Russell, D. H., Gill, J. J., Young, R., & Chu, K. H. (2014). Cultivation of lipid-producing bacteria with lignocellulosic biomass: Effects of inhibitory compounds of lignocellulosic hydrolysates. Bioresource Technology, 161, 162–170.CrossRef Wang, B., Rezenom, Y. H., Cho, K. C., Tran, J. L., Lee, D. G., Russell, D. H., Gill, J. J., Young, R., & Chu, K. H. (2014). Cultivation of lipid-producing bacteria with lignocellulosic biomass: Effects of inhibitory compounds of lignocellulosic hydrolysates. Bioresource Technology, 161, 162–170.CrossRef
34.
go back to reference Ye, S., & Cheng, J. (2002). Hydrolysis of Lignocellulosic materials for ethanol production: A review. ChemInform, 83, 1–11. Ye, S., & Cheng, J. (2002). Hydrolysis of Lignocellulosic materials for ethanol production: A review. ChemInform, 83, 1–11.
35.
go back to reference Zhao, C., Xie, S., Pu, Y., Zhang, R., Huang, F., Ragauskas, A. J., & Yuan, J. S. (2016). Synergistic enzymatic and microbial lignin conversion. Green Chemistry, 18(5), 1306–1312.CrossRef Zhao, C., Xie, S., Pu, Y., Zhang, R., Huang, F., Ragauskas, A. J., & Yuan, J. S. (2016). Synergistic enzymatic and microbial lignin conversion. Green Chemistry, 18(5), 1306–1312.CrossRef
36.
go back to reference Huang, C., Chen, X.F., Lian, X., Chen, X.D., & Ma, L.L. (2012). Oil production by the yeast Trichosporon dermatis cultured in enzymatic hydrolysates of corncobs. Bioresource Technology, 110, 711–714. Huang, C., Chen, X.F., Lian, X., Chen, X.D., & Ma, L.L. (2012). Oil production by the yeast Trichosporon dermatis cultured in enzymatic hydrolysates of corncobs. Bioresource Technology, 110, 711–714.
37.
go back to reference Karmakar, A., Karmakar, S., & Mukherjee, S. (2010). Properties of various plants and animals feedstocks for biodiesel production. Bioresource Technology, 101, 7201–7210.CrossRef Karmakar, A., Karmakar, S., & Mukherjee, S. (2010). Properties of various plants and animals feedstocks for biodiesel production. Bioresource Technology, 101, 7201–7210.CrossRef
38.
go back to reference Li, X., He, Y., Zhang, L., Xu, Z., Ben, H., Gaffrey, M. J., Yang, Y., Yang, S., Yuan, J. S., Qian, W. J., & Yang. (2019). Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of Rhodococci strains. Biotechnology for Biofuels, 12, 1856.CrossRef Li, X., He, Y., Zhang, L., Xu, Z., Ben, H., Gaffrey, M. J., Yang, Y., Yang, S., Yuan, J. S., Qian, W. J., & Yang. (2019). Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of Rhodococci strains. Biotechnology for Biofuels, 12, 1856.CrossRef
39.
go back to reference Chong, G. G., Huang, X. J., Di, J. H., Xu, D. Z., He, Y. C., Pei, Y. N., Tang, Y. J., & Ma, C. L. (2018). Biodegradation of alkali lignin by a newly isolated Rhodococcus pyridinivorans CCZU-B16. Bioprocess and Biosystems Engineering, 41, 501–510.CrossRef Chong, G. G., Huang, X. J., Di, J. H., Xu, D. Z., He, Y. C., Pei, Y. N., Tang, Y. J., & Ma, C. L. (2018). Biodegradation of alkali lignin by a newly isolated Rhodococcus pyridinivorans CCZU-B16. Bioprocess and Biosystems Engineering, 41, 501–510.CrossRef
40.
go back to reference Huang, X., Ding, Y., Liao, X., Peng, B., He, Y., & Ma, C. (2018). Microbial lipid production from enzymatic hydrolysate of corn stover pretreated by combining with biological pretreatment and alkalic salt soaking. Industrial Crops and Products, 2018(124), 487–494.CrossRef Huang, X., Ding, Y., Liao, X., Peng, B., He, Y., & Ma, C. (2018). Microbial lipid production from enzymatic hydrolysate of corn stover pretreated by combining with biological pretreatment and alkalic salt soaking. Industrial Crops and Products, 2018(124), 487–494.CrossRef
41.
go back to reference He, Y. C., Ding, Y., Ma, C. L., Di, J. H., Jiang, C. L., & Li, A. T. (2017). One-pot conversion of biomass-derived xylose to furfuralcohol by a chemo-enzymatic sequential acid-catalyzed dehydration and bioreduction. Green Chemistry, 19, 3844–3850.CrossRef He, Y. C., Ding, Y., Ma, C. L., Di, J. H., Jiang, C. L., & Li, A. T. (2017). One-pot conversion of biomass-derived xylose to furfuralcohol by a chemo-enzymatic sequential acid-catalyzed dehydration and bioreduction. Green Chemistry, 19, 3844–3850.CrossRef
42.
go back to reference He, Y., Li, X., Ben, H., Xue, X., & Yang, B. (2017). Lipid production from dilute alkali corn stover lignin by Rhodococcus strains. ACS Sustainable Chemistry & Engineering, 5, 2302–2311.CrossRef He, Y., Li, X., Ben, H., Xue, X., & Yang, B. (2017). Lipid production from dilute alkali corn stover lignin by Rhodococcus strains. ACS Sustainable Chemistry & Engineering, 5, 2302–2311.CrossRef
43.
go back to reference Yu, Y., Xu, Z., Chen, S., & Jin, M. (2020). Microbial lipid production from dilute acid and dilute alkali pretreated corn stover via Trichosporon dermatis. Bioresource Technology, 295, 122253.CrossRef Yu, Y., Xu, Z., Chen, S., & Jin, M. (2020). Microbial lipid production from dilute acid and dilute alkali pretreated corn stover via Trichosporon dermatis. Bioresource Technology, 295, 122253.CrossRef
44.
go back to reference Achinas, S., & Euverink, G. J. W. (2016). Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electronic Journal of Biotechnology, 23, 44–53.CrossRef Achinas, S., & Euverink, G. J. W. (2016). Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electronic Journal of Biotechnology, 23, 44–53.CrossRef
45.
go back to reference Chong, G., Di, J., Ma, C., Wang, D., Zhang, P., Zhu, J., & He, Y. (2018). Enhanced bioreduction synthesis of ethyl (R)-4-chloro-3-hydroybutanoate by alkalic salt pretreatment. Bioresource Technology, 261, 196–205.CrossRef Chong, G., Di, J., Ma, C., Wang, D., Zhang, P., Zhu, J., & He, Y. (2018). Enhanced bioreduction synthesis of ethyl (R)-4-chloro-3-hydroybutanoate by alkalic salt pretreatment. Bioresource Technology, 261, 196–205.CrossRef
46.
go back to reference Yu, I. K. M., & Tsang, D. C. W. (2017). Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresource Technology, 238, 716–732.CrossRef Yu, I. K. M., & Tsang, D. C. W. (2017). Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresource Technology, 238, 716–732.CrossRef
47.
go back to reference Dias, M. O. S., Ensinas, A. V., Nebra, S. A., Maciel Filho, R., Rossell, C. E. V., & Maciel, M. R. W. (2009). Production of bioethanol and other bio-based materials from sugarcane bagasse: Integration to conventional bioethanol production process. Chemical Engineering Research and Design, 87, 1206–1216.CrossRef Dias, M. O. S., Ensinas, A. V., Nebra, S. A., Maciel Filho, R., Rossell, C. E. V., & Maciel, M. R. W. (2009). Production of bioethanol and other bio-based materials from sugarcane bagasse: Integration to conventional bioethanol production process. Chemical Engineering Research and Design, 87, 1206–1216.CrossRef
48.
go back to reference Fatih Demirbas, M. (2009). Biorefineries for biofuel upgrading: A critical review. Applied Energy, 86, S151–S161.CrossRef Fatih Demirbas, M. (2009). Biorefineries for biofuel upgrading: A critical review. Applied Energy, 86, S151–S161.CrossRef
49.
go back to reference Foston, M., Katahira, R., Gjersing, E., Davis, M. F., & Ragauskas, A. J. (2012). Solid-state selective 13C excitation and spin diffusion NMR to resolve spatial dimensions in plant cell walls. Journal of Agricultural and Food Chemistry, 60, 1419–1427.CrossRef Foston, M., Katahira, R., Gjersing, E., Davis, M. F., & Ragauskas, A. J. (2012). Solid-state selective 13C excitation and spin diffusion NMR to resolve spatial dimensions in plant cell walls. Journal of Agricultural and Food Chemistry, 60, 1419–1427.CrossRef
50.
go back to reference Kim, J. Y., Lee, H. W., Lee, S. M., Jae, J., & Park, Y. K. (2019). Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals. Bioresource Technology, 279, 373–384.CrossRef Kim, J. Y., Lee, H. W., Lee, S. M., Jae, J., & Park, Y. K. (2019). Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals. Bioresource Technology, 279, 373–384.CrossRef
51.
go back to reference Le, R. K., Das, P., Mahan, K. M., Anderson, S. A., Wells, T., Yuan, J. S., & Ragauskas, A. J. (2017). Utilization of simultaneous saccharification and fermentation residues as feedstock for lipid accumulation in Rhodococcus opacus. AMB Express, 7, 185.CrossRef Le, R. K., Das, P., Mahan, K. M., Anderson, S. A., Wells, T., Yuan, J. S., & Ragauskas, A. J. (2017). Utilization of simultaneous saccharification and fermentation residues as feedstock for lipid accumulation in Rhodococcus opacus. AMB Express, 7, 185.CrossRef
52.
go back to reference Taherzadeh, M. J., & Keikhosro, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9, 1621.CrossRef Taherzadeh, M. J., & Keikhosro, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9, 1621.CrossRef
53.
go back to reference Yan, L., Zhang, L., & Yang, B. (2014). Enhancement of total sugar and lignin yields through dissolution of poplar wood by hot water and dilute acid flowthrough pretreatment. Biotechnology for Biofuels, 7(1), 76.CrossRef Yan, L., Zhang, L., & Yang, B. (2014). Enhancement of total sugar and lignin yields through dissolution of poplar wood by hot water and dilute acid flowthrough pretreatment. Biotechnology for Biofuels, 7(1), 76.CrossRef
54.
go back to reference Abdullah, R., Ueda, K., & Saka, S. (2014). Hydrothermal decomposition of various crystalline celluloses as treated by semi-flow hot-compressed water. Journal of Wood Science, 60, 278–286.CrossRef Abdullah, R., Ueda, K., & Saka, S. (2014). Hydrothermal decomposition of various crystalline celluloses as treated by semi-flow hot-compressed water. Journal of Wood Science, 60, 278–286.CrossRef
55.
go back to reference He, Y. C., Zhang, D. P., Di, J. H., Wu, Y. Q., Tao, Z. C., Liu, F., Zhang, Z. J., Chong, G. G., Ding, Y., & Ma, C. L. (2016). Effective pretreatment of sugarcane bagasse with combination pretreatment and its hydrolyzates as reaction media for the biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate by whole cells of E. coli CCZU-K14. Bioresource Technology, 211, 720–726.CrossRef He, Y. C., Zhang, D. P., Di, J. H., Wu, Y. Q., Tao, Z. C., Liu, F., Zhang, Z. J., Chong, G. G., Ding, Y., & Ma, C. L. (2016). Effective pretreatment of sugarcane bagasse with combination pretreatment and its hydrolyzates as reaction media for the biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate by whole cells of E. coli CCZU-K14. Bioresource Technology, 211, 720–726.CrossRef
56.
go back to reference He, Y. C., Ding, Y., Xue, Y. F., Yang, B., Liu, F., Wang, C., Zhu, Z. Z., Qing, Q., Wu, H., Zhu, C., Tao, Z. C., & Zhang, D. P. (2015). Enhancement of enzymatic saccharification of corn stover with sequential Fenton pretreatment and dilute NaOH extraction. Bioresource Technology, 193, 324–330.CrossRef He, Y. C., Ding, Y., Xue, Y. F., Yang, B., Liu, F., Wang, C., Zhu, Z. Z., Qing, Q., Wu, H., Zhu, C., Tao, Z. C., & Zhang, D. P. (2015). Enhancement of enzymatic saccharification of corn stover with sequential Fenton pretreatment and dilute NaOH extraction. Bioresource Technology, 193, 324–330.CrossRef
57.
go back to reference Ramesh, D., Muniraj, I. K., Thangavelu, K., & Karthikeyan, S. (2018). Chapter 2 Pretreatment of lignocellulosic Biomass feedstocks for biofuel production. IGI Global. Ramesh, D., Muniraj, I. K., Thangavelu, K., & Karthikeyan, S. (2018). Chapter 2 Pretreatment of lignocellulosic Biomass feedstocks for biofuel production. IGI Global.
58.
go back to reference Rosgaard, L., Pedersen, S., & Meyer, A. S. (2007). Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw. Applied Biochemistry and Biotechnology, 143, 284–296.CrossRef Rosgaard, L., Pedersen, S., & Meyer, A. S. (2007). Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw. Applied Biochemistry and Biotechnology, 143, 284–296.CrossRef
59.
go back to reference Bhatt, S. M., & Shilpa. (2014). Lignocellulosic feedstock conversion, inhibitor detoxification and cellulosic hydrolysis – A review. Biofuels, 5, 633–649.CrossRef Bhatt, S. M., & Shilpa. (2014). Lignocellulosic feedstock conversion, inhibitor detoxification and cellulosic hydrolysis – A review. Biofuels, 5, 633–649.CrossRef
60.
go back to reference He, Y., Jiang, C., Jiang, J., Di, J., Liu, F., Ding, Y., Qing, Q., & Ma, C. (2017). One-pot chemo-enzymatic synthesis of furfuralcohol from xylose. Bioresource Technology, 238, 698–705.CrossRef He, Y., Jiang, C., Jiang, J., Di, J., Liu, F., Ding, Y., Qing, Q., & Ma, C. (2017). One-pot chemo-enzymatic synthesis of furfuralcohol from xylose. Bioresource Technology, 238, 698–705.CrossRef
61.
go back to reference Bhatia, L., Johri, S., & Ahmad R. (2012). An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express 2, 65. Bhatia, L., Johri, S., & Ahmad R. (2012). An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express 2, 65.
62.
go back to reference Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.CrossRef Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.CrossRef
63.
go back to reference Anwar, Z., Gulfraz, M., & Irshad, M. (2014). Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Science, 7(2), 163–173.CrossRef Anwar, Z., Gulfraz, M., & Irshad, M. (2014). Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Science, 7(2), 163–173.CrossRef
64.
go back to reference Pu, Y., Kosa, M., Kalluri, U. C., Tuskan, G. A., & Ragauskas, A. J. (2011). Challenges of the utilization of wood polymers: How can they be overcome? Applied Microbiology and Biotechnology, 91, 1525–1536.CrossRef Pu, Y., Kosa, M., Kalluri, U. C., Tuskan, G. A., & Ragauskas, A. J. (2011). Challenges of the utilization of wood polymers: How can they be overcome? Applied Microbiology and Biotechnology, 91, 1525–1536.CrossRef
65.
go back to reference Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P. F., Marita, J. M., Hatfield, R. D., Ralph, S. A., Christensen, J. H., & Boerjan, W. (2004). Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. Phytochemistry Reviews, 3, 29–60.CrossRef Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P. F., Marita, J. M., Hatfield, R. D., Ralph, S. A., Christensen, J. H., & Boerjan, W. (2004). Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. Phytochemistry Reviews, 3, 29–60.CrossRef
66.
go back to reference Chandra, R., Takeuchi, H., & Hasegawa, T. (2012). Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews, 16, 1462–1476.CrossRef Chandra, R., Takeuchi, H., & Hasegawa, T. (2012). Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews, 16, 1462–1476.CrossRef
67.
go back to reference Dai, Y., Zhang, H. S., Huan, B., & He, Y. C. (2017). Enhancing the enzymatic saccharification of bamboo shoot shell by sequential biological pretreatment with Galactomyces sp. CCZU11-1 and deep eutectic solvent extraction. Bioprocess and Biosystems Engineering, 40, 1427–1436.CrossRef Dai, Y., Zhang, H. S., Huan, B., & He, Y. C. (2017). Enhancing the enzymatic saccharification of bamboo shoot shell by sequential biological pretreatment with Galactomyces sp. CCZU11-1 and deep eutectic solvent extraction. Bioprocess and Biosystems Engineering, 40, 1427–1436.CrossRef
68.
go back to reference Jørgensen, H., Kristensen, J. B., & Felby, C. (2007). Enzymatic conversion of lignocellulose into fermentable sugars: Challenges and opportunities. Biofuels, Bioproducts and Biorefining, 1, 119–134.CrossRef Jørgensen, H., Kristensen, J. B., & Felby, C. (2007). Enzymatic conversion of lignocellulose into fermentable sugars: Challenges and opportunities. Biofuels, Bioproducts and Biorefining, 1, 119–134.CrossRef
69.
go back to reference Kaparaju, P., Serrano, M., Thomsen, A. B., Kongjan, P., & Angelidaki, I. (2009). Bioethanol, biohydrogen and biogas production from wheat straw in a bio refifinery concept. Journal of Bioresource Technology, 100, 2562–2568.CrossRef Kaparaju, P., Serrano, M., Thomsen, A. B., Kongjan, P., & Angelidaki, I. (2009). Bioethanol, biohydrogen and biogas production from wheat straw in a bio refifinery concept. Journal of Bioresource Technology, 100, 2562–2568.CrossRef
70.
go back to reference Mahvi, A. H., Maleki, A., & Eslami, A. (2004). Potential of rice husk and rice husk ash for phenol removal in aqueous systems. American Journal of Applied Sciences, 1(4), 321–326.CrossRef Mahvi, A. H., Maleki, A., & Eslami, A. (2004). Potential of rice husk and rice husk ash for phenol removal in aqueous systems. American Journal of Applied Sciences, 1(4), 321–326.CrossRef
71.
go back to reference Nigam, P. S., Gupta, N., & Anthwal, A. (2009). Pre-treatment of agro-industrial residues. In P. S. Nigam & A. Pandey (Eds.), Biotechnology for agro-industrial residues utilization (1st ed., pp. 13–33). Dordrecht: Springer.CrossRef Nigam, P. S., Gupta, N., & Anthwal, A. (2009). Pre-treatment of agro-industrial residues. In P. S. Nigam & A. Pandey (Eds.), Biotechnology for agro-industrial residues utilization (1st ed., pp. 13–33). Dordrecht: Springer.CrossRef
72.
go back to reference Saha, B. C., & Cotta, M. A. (2006). Ethanol production from alkaline peroxide pretreated enzymatically saccharifified wheat straw. Biotechnology Progress, 22, 449–453.CrossRef Saha, B. C., & Cotta, M. A. (2006). Ethanol production from alkaline peroxide pretreated enzymatically saccharifified wheat straw. Biotechnology Progress, 22, 449–453.CrossRef
73.
go back to reference Saini, J. K., Saini, R., & Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. 3 Biotech, 5, 337–353.CrossRef Saini, J. K., Saini, R., & Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. 3 Biotech, 5, 337–353.CrossRef
74.
go back to reference Tye, Y. Y., Lee, K. T., Abdullah, W. N. W., & Leh, C. P. (2016). The world availability of nonwood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification. Renewable Sustainable Energy Reviews, 60, 155–172.CrossRef Tye, Y. Y., Lee, K. T., Abdullah, W. N. W., & Leh, C. P. (2016). The world availability of nonwood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification. Renewable Sustainable Energy Reviews, 60, 155–172.CrossRef
75.
go back to reference Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29, 675–685.CrossRef Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29, 675–685.CrossRef
76.
go back to reference Alvira, P., Tomáspejó, E., Ballesteros, M., Negro, M. J., & Pandey, A. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource technology, 101, 4851–4861.CrossRef Alvira, P., Tomáspejó, E., Ballesteros, M., Negro, M. J., & Pandey, A. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource technology, 101, 4851–4861.CrossRef
77.
go back to reference Lawoko, M., Henriksson, G., & Gellerstedt, G. (2005). Structural differences between the lignin−carbohydrate complexes present in wood and in chemical pulps. Biomacromolecules, 6, 3467–3473.CrossRef Lawoko, M., Henriksson, G., & Gellerstedt, G. (2005). Structural differences between the lignin−carbohydrate complexes present in wood and in chemical pulps. Biomacromolecules, 6, 3467–3473.CrossRef
78.
go back to reference Ayyachamy, M., Cliffe, F. E., Coyne, J. M., Collier, J., & Tuohy, M. G. (2013). Lignin: Untapped biopolymers in biomass conversion technologies. Biomass Conversion and Biorefinery, 3(3), 255–269.CrossRef Ayyachamy, M., Cliffe, F. E., Coyne, J. M., Collier, J., & Tuohy, M. G. (2013). Lignin: Untapped biopolymers in biomass conversion technologies. Biomass Conversion and Biorefinery, 3(3), 255–269.CrossRef
79.
go back to reference Yang, B., Tao, L., & Wyman, C. E. (2018). Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries. Biofuels, Bioproducts and Biorefining, 12(1), 125–138.CrossRef Yang, B., Tao, L., & Wyman, C. E. (2018). Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries. Biofuels, Bioproducts and Biorefining, 12(1), 125–138.CrossRef
80.
go back to reference Kosa, M., & Ragauskas, A. J. (2013). Lignin to lipid bioconversion by oleaginous Rhodococci. Green Chemistry, 15(8), 2070–2074.CrossRef Kosa, M., & Ragauskas, A. J. (2013). Lignin to lipid bioconversion by oleaginous Rhodococci. Green Chemistry, 15(8), 2070–2074.CrossRef
81.
go back to reference Laskar, D. D., Yang, B., Wang, H., & Lee, J. (2013). Pathways for biomass-derived lignin to hydrocarbon fuels. Biofuels, Bioproducts and Biorefining, 7(5), 602–626.CrossRef Laskar, D. D., Yang, B., Wang, H., & Lee, J. (2013). Pathways for biomass-derived lignin to hydrocarbon fuels. Biofuels, Bioproducts and Biorefining, 7(5), 602–626.CrossRef
82.
go back to reference Bitra, V. S. P., Womac, A. R., Igathinathane, C., Miu, P. I., Yang, Y. T., Smith, D. R., Chevanan, N., & Sokhansanj, S. (2009). Direct measures of mechanical energy for knife mill size reduction of switchgrass, wheat straw, and corn stover. Bioresource Technology, 100, 6578–6585.CrossRef Bitra, V. S. P., Womac, A. R., Igathinathane, C., Miu, P. I., Yang, Y. T., Smith, D. R., Chevanan, N., & Sokhansanj, S. (2009). Direct measures of mechanical energy for knife mill size reduction of switchgrass, wheat straw, and corn stover. Bioresource Technology, 100, 6578–6585.CrossRef
83.
go back to reference Case, P. A., Truong, C., Wheeler, M. C., & DeSisto, W. J. (2015). Calcium-catalyzed pyrolysis of lignocellulosic biomass components. Bioresource Technology, 192, 247–252.CrossRef Case, P. A., Truong, C., Wheeler, M. C., & DeSisto, W. J. (2015). Calcium-catalyzed pyrolysis of lignocellulosic biomass components. Bioresource Technology, 192, 247–252.CrossRef
84.
go back to reference Chang, V. S., Burr, B., & Holtzapple, M. T. (1997). Lime pretreatment of Switchgrass. Clifton: Humana Press. Chang, V. S., Burr, B., & Holtzapple, M. T. (1997). Lime pretreatment of Switchgrass. Clifton: Humana Press.
85.
go back to reference Lin, Z., Huang, H., Zhang, H., Zhang, L., Yan, L., & Chen, J. (2010). Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 162, 1872–1880.CrossRef Lin, Z., Huang, H., Zhang, H., Zhang, L., Yan, L., & Chen, J. (2010). Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 162, 1872–1880.CrossRef
86.
go back to reference Millett, M. A., Baker, A. J., & Satter, L. D. (1976). Physical and chemical pretreatments for enhancing cellulose saccharification. Biotechnology & Bioengineering Symposium, 6, 125. Millett, M. A., Baker, A. J., & Satter, L. D. (1976). Physical and chemical pretreatments for enhancing cellulose saccharification. Biotechnology & Bioengineering Symposium, 6, 125.
87.
go back to reference Paudel, S. R., Banjara, S. P., Choi, O. K., Park, K. Y., Kim, Y. M., & Lee, J. W. (2017). Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges. Bioresource Technology, 245, 1194–1205.CrossRef Paudel, S. R., Banjara, S. P., Choi, O. K., Park, K. Y., Kim, Y. M., & Lee, J. W. (2017). Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges. Bioresource Technology, 245, 1194–1205.CrossRef
88.
go back to reference Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83, 1–11.CrossRef Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83, 1–11.CrossRef
89.
go back to reference Yang, C. P., Shen, Z. Q., Yu, G. C., et al. (2008). Effect and aftereffect of gamma radiation pretreatment on enzymatic hydrolysis of wheat straw. Bioresourc Technology, 99, 6240–6245.CrossRef Yang, C. P., Shen, Z. Q., Yu, G. C., et al. (2008). Effect and aftereffect of gamma radiation pretreatment on enzymatic hydrolysis of wheat straw. Bioresourc Technology, 99, 6240–6245.CrossRef
90.
go back to reference Zakaria, M. R., Fujimoto, S., Hirata, S., & Hassan, M. A. (2014). Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 173, 1778–1789.CrossRef Zakaria, M. R., Fujimoto, S., Hirata, S., & Hassan, M. A. (2014). Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 173, 1778–1789.CrossRef
91.
go back to reference Bali, G., Meng, X., Deneff, J. I., Sun, Q., & Ragauskas, A. J. (2015). The effect of alkaline pretreatment methods on cellulose structure and accessibility. ChemSusChem, 8, 275–279.CrossRef Bali, G., Meng, X., Deneff, J. I., Sun, Q., & Ragauskas, A. J. (2015). The effect of alkaline pretreatment methods on cellulose structure and accessibility. ChemSusChem, 8, 275–279.CrossRef
92.
go back to reference Elgharbawy, A. A., Alam, M. Z., Moniruzzaman, M., & Goto, M. (2016). Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochemical Engineering Journal, 109, 252–267.CrossRef Elgharbawy, A. A., Alam, M. Z., Moniruzzaman, M., & Goto, M. (2016). Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochemical Engineering Journal, 109, 252–267.CrossRef
93.
go back to reference Kuo, C. H., & Lee, C. K. (2009). Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment. Bioresource Technology, 100, 866–871.CrossRef Kuo, C. H., & Lee, C. K. (2009). Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment. Bioresource Technology, 100, 866–871.CrossRef
94.
go back to reference Quesada, J., Rubio, M., & Gómez, D. (1999). Ozonation of lignin rich solid fractions from corn stalks. Journal of Wood Chemistry & Technology, 19, 115–137.CrossRef Quesada, J., Rubio, M., & Gómez, D. (1999). Ozonation of lignin rich solid fractions from corn stalks. Journal of Wood Chemistry & Technology, 19, 115–137.CrossRef
95.
go back to reference Rabemanolontsoa, H., & Saka, S. (2016). Various pretreatments of lignocellulosics. Bioresource Technology, 199, 83–91.CrossRef Rabemanolontsoa, H., & Saka, S. (2016). Various pretreatments of lignocellulosics. Bioresource Technology, 199, 83–91.CrossRef
96.
go back to reference Silverstein, R. A., Chen, Y., Sharma-Shivappa, R. R., Boyette, M. D., & Osborne, J. (2007). A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technology, 98, 3000–3011.CrossRef Silverstein, R. A., Chen, Y., Sharma-Shivappa, R. R., Boyette, M. D., & Osborne, J. (2007). A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technology, 98, 3000–3011.CrossRef
97.
go back to reference Veluchamy, C., & Kalamdhad, A. S. (2017). Influence of pretreatment techniques on anaerobic digestion of pulp and paper mill sludge: A review. Bioresource Technology, 245, 1206–1219.CrossRef Veluchamy, C., & Kalamdhad, A. S. (2017). Influence of pretreatment techniques on anaerobic digestion of pulp and paper mill sludge: A review. Bioresource Technology, 245, 1206–1219.CrossRef
98.
go back to reference Grous, W. R., Converse, A. O., & Grethlein, H. E. (1986). Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme & Microbial Technology, 8, 274–280.CrossRef Grous, W. R., Converse, A. O., & Grethlein, H. E. (1986). Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme & Microbial Technology, 8, 274–280.CrossRef
99.
go back to reference Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18.CrossRef Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18.CrossRef
100.
go back to reference Idrees, M., Adnan, A., & Qureshi, F. A. (2013). Optimization of sulfide/sulfite pretreatment of lignocellulosic biomass for lactic acid production. BioMed Research International, 2013, 934171.CrossRef Idrees, M., Adnan, A., & Qureshi, F. A. (2013). Optimization of sulfide/sulfite pretreatment of lignocellulosic biomass for lactic acid production. BioMed Research International, 2013, 934171.CrossRef
101.
go back to reference Jacquet, N., Vanderghem, C., Danthine, S., Quiévy, N., Blecker, C., Devaux, J., & Paquot, M. (2012). Influence of steam explosion on physicochemical properties and hydrolysis rate of pure cellulose fibers. Bioresource Technology, 121, 221–227.CrossRef Jacquet, N., Vanderghem, C., Danthine, S., Quiévy, N., Blecker, C., Devaux, J., & Paquot, M. (2012). Influence of steam explosion on physicochemical properties and hydrolysis rate of pure cellulose fibers. Bioresource Technology, 121, 221–227.CrossRef
102.
go back to reference Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresources and Bioprocessing, 4, 7.CrossRef Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresources and Bioprocessing, 4, 7.CrossRef
103.
go back to reference Stanmore, B. R. (2010). Generation of energy from sugarcane bagasse by thermal treatment. J Waste Biomass Valoriz, 1, 77–89.CrossRef Stanmore, B. R. (2010). Generation of energy from sugarcane bagasse by thermal treatment. J Waste Biomass Valoriz, 1, 77–89.CrossRef
104.
go back to reference Aguiar, A., & Ferraz, A. (2008). Relevance of extractives and wood transformation products on the biodegradation of Pinus taeda by Ceriporiopsis subvermispora. International Biodeterioration & Biodegradation, 61, 182–188.CrossRef Aguiar, A., & Ferraz, A. (2008). Relevance of extractives and wood transformation products on the biodegradation of Pinus taeda by Ceriporiopsis subvermispora. International Biodeterioration & Biodegradation, 61, 182–188.CrossRef
105.
go back to reference Ge, X., Matsumoto, T., Keith, L., & Li, Y. (2015). Fungal pretreatment of Albizia chips for enhanced Biogas production by solid-state anaerobic digestion. Energy & Fuels, 29, 200–204.CrossRef Ge, X., Matsumoto, T., Keith, L., & Li, Y. (2015). Fungal pretreatment of Albizia chips for enhanced Biogas production by solid-state anaerobic digestion. Energy & Fuels, 29, 200–204.CrossRef
106.
go back to reference Kandhola, G., Djioleu, A., Carrier, D. J., & Kim, J. W. (2017). Pretreatments for enhanced enzymatic hydrolysis of Pinewood: A review. BioEnergy Research, 10, 1138–1154.CrossRef Kandhola, G., Djioleu, A., Carrier, D. J., & Kim, J. W. (2017). Pretreatments for enhanced enzymatic hydrolysis of Pinewood: A review. BioEnergy Research, 10, 1138–1154.CrossRef
107.
go back to reference Kandhola, G., Djioleu, A., Carrier, D. J., & Kim, J.-W. (2017). Pretreatments for enhanced enzymatic hydrolysis of pinewood: A review. BioEnergy Research, 5, 1–17. Kandhola, G., Djioleu, A., Carrier, D. J., & Kim, J.-W. (2017). Pretreatments for enhanced enzymatic hydrolysis of pinewood: A review. BioEnergy Research, 5, 1–17.
108.
go back to reference Mäkelä, M. R., Donofrio, N., & de Vries, R. P. (2014). Plant biomass degradation by fungi. Fungal Genetics and Biology, 72, 2–9.CrossRef Mäkelä, M. R., Donofrio, N., & de Vries, R. P. (2014). Plant biomass degradation by fungi. Fungal Genetics and Biology, 72, 2–9.CrossRef
109.
go back to reference Ryu, S.-H., Cho, M.-K., Kim, M., Jung, S.-M., & Seo, J.-H. (2013). Enhanced lignin biodegradation by a laccase-overexpressed white-rot fungus Polyporus brumalis in the pretreatment of Wood chips. Applied Biochemistry and Biotechnology, 171, 1525–1534.CrossRef Ryu, S.-H., Cho, M.-K., Kim, M., Jung, S.-M., & Seo, J.-H. (2013). Enhanced lignin biodegradation by a laccase-overexpressed white-rot fungus Polyporus brumalis in the pretreatment of Wood chips. Applied Biochemistry and Biotechnology, 171, 1525–1534.CrossRef
110.
go back to reference Sindu, R., Binod, P., & Pandey, A. (2016). Biological pretreatment of lignocellulosic biomass – An overview. Bioresource Technology, 199, 76–82.CrossRef Sindu, R., Binod, P., & Pandey, A. (2016). Biological pretreatment of lignocellulosic biomass – An overview. Bioresource Technology, 199, 76–82.CrossRef
111.
go back to reference Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K. B., & Ramakrishnan, S. (2011). Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzyme Research, 2011, 787–532.CrossRef Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K. B., & Ramakrishnan, S. (2011). Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzyme Research, 2011, 787–532.CrossRef
112.
go back to reference He, Y. C., Tao, Z. C., Di, J. H., Chen, L., Zhang, L. B., Zhang, D. P., Chong, G. G., Liu, F., Ding, Y., Jiang, C. X., & Ma, C. L. (2016). Effective asymmetric bioreduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate by recombinant E. coli CCZU-A13 in [Bmim]PF6–hydrolyzate media. Bioresource Technology, 214, 414–418.CrossRef He, Y. C., Tao, Z. C., Di, J. H., Chen, L., Zhang, L. B., Zhang, D. P., Chong, G. G., Liu, F., Ding, Y., Jiang, C. X., & Ma, C. L. (2016). Effective asymmetric bioreduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate by recombinant E. coli CCZU-A13 in [Bmim]PF6–hydrolyzate media. Bioresource Technology, 214, 414–418.CrossRef
113.
go back to reference Sun, F., Wang, L., Hong, J., Ren, J., Du, F., Hu, J., Zhang, Z., & Zhou, B. (2015). The impact of glycerol organosolv pretreatment on the chemistry and enzymatic hydrolyzability of wheat straw. Bioresource Technology, 187, 354–361.CrossRef Sun, F., Wang, L., Hong, J., Ren, J., Du, F., Hu, J., Zhang, Z., & Zhou, B. (2015). The impact of glycerol organosolv pretreatment on the chemistry and enzymatic hydrolyzability of wheat straw. Bioresource Technology, 187, 354–361.CrossRef
114.
go back to reference Cadoche, L., & López, G. D. (1989). Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biological Wastes, 30, 153–157.CrossRef Cadoche, L., & López, G. D. (1989). Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biological Wastes, 30, 153–157.CrossRef
115.
go back to reference Kim, H. J., Chang, J. H., Jeong, B. Y., & Jin, H. L. (2013). Comparison of milling modes as a pretreatment method for cellulosic biofuel production. Journal of Clean Energy Technologies, 1, 45–48.CrossRef Kim, H. J., Chang, J. H., Jeong, B. Y., & Jin, H. L. (2013). Comparison of milling modes as a pretreatment method for cellulosic biofuel production. Journal of Clean Energy Technologies, 1, 45–48.CrossRef
116.
go back to reference Himmel, M., Tucker, M., Baker, J., Rivard, C., Oh, K., & Grohmann, K. (1985). Comminution of biomass: Hammer and knife mills. In Biotechnology and bioengineering (symposium no 15) (pp. 39–57). New York: Wiley. Himmel, M., Tucker, M., Baker, J., Rivard, C., Oh, K., & Grohmann, K. (1985). Comminution of biomass: Hammer and knife mills. In Biotechnology and bioengineering (symposium no 15) (pp. 39–57). New York: Wiley.
117.
go back to reference Kim, H., & Ralph, J. (2010). Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5. Organic and Biomolecular Chemistry, 8, 576–591.CrossRef Kim, H., & Ralph, J. (2010). Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5. Organic and Biomolecular Chemistry, 8, 576–591.CrossRef
118.
go back to reference Maier, G., Zipper, P., Stubicar, M., & Schurz, J. (2005). Amorphization of different cellulose samples by ball milling. Cellulose Chemistry and Technology, 39, 167–177. Maier, G., Zipper, P., Stubicar, M., & Schurz, J. (2005). Amorphization of different cellulose samples by ball milling. Cellulose Chemistry and Technology, 39, 167–177.
119.
go back to reference Millett, M. A., Baker, A. J., Feist, W. C., Mellenberger, R. W., & Satter, L. D. (1970). Modifying wood to increase its in vitro digestibility. Journal of Animal Science, 31, 781–788.CrossRef Millett, M. A., Baker, A. J., Feist, W. C., Mellenberger, R. W., & Satter, L. D. (1970). Modifying wood to increase its in vitro digestibility. Journal of Animal Science, 31, 781–788.CrossRef
120.
go back to reference Tassinari, T., Macy, C., Spano, L., & Ryu, D. D. Y. (1980). Energy requirements and process design considerations in compression-milling pretreatment of cellulosic wastes for enzymic hydrolysis. Biotechnology and Bioengineering, 22, 1689–1705.CrossRef Tassinari, T., Macy, C., Spano, L., & Ryu, D. D. Y. (1980). Energy requirements and process design considerations in compression-milling pretreatment of cellulosic wastes for enzymic hydrolysis. Biotechnology and Bioengineering, 22, 1689–1705.CrossRef
121.
go back to reference Wu, Z. H., Sumimoto, M., & Tanaka, H. (1995). Mechanochemistry of lignin. XIII. Generation of oxygen-containing radicals in the aqueous media of mechanical pulping. Journal of Wood Chemistry and Technology, 15, 27–42.CrossRef Wu, Z. H., Sumimoto, M., & Tanaka, H. (1995). Mechanochemistry of lignin. XIII. Generation of oxygen-containing radicals in the aqueous media of mechanical pulping. Journal of Wood Chemistry and Technology, 15, 27–42.CrossRef
122.
go back to reference Yu, M., Womac, A. R., Igathinathane, C., Ayers, P. D., & Buschermohle, M. (2006). Switchgrass ultimate stresses at typical biomass conditions available for processing. Biomass & Bioenergy, 30, 214–219.CrossRef Yu, M., Womac, A. R., Igathinathane, C., Ayers, P. D., & Buschermohle, M. (2006). Switchgrass ultimate stresses at typical biomass conditions available for processing. Biomass & Bioenergy, 30, 214–219.CrossRef
123.
go back to reference Hideno, A., Inoue, H., Tsukahara, K., Fujimoto, S., Minowa, T., Inoue, S., Endo, T., & Sawayama, S. (2009). Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresource Technology, 100, 2706–2711.CrossRef Hideno, A., Inoue, H., Tsukahara, K., Fujimoto, S., Minowa, T., Inoue, S., Endo, T., & Sawayama, S. (2009). Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresource Technology, 100, 2706–2711.CrossRef
124.
go back to reference Silva, A. S. D., Inoue, H., Endo, T., Yano, S., & Bon, E. P. S. (2010). Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresource Technology, 101, 7402–7409.CrossRef Silva, A. S. D., Inoue, H., Endo, T., Yano, S., & Bon, E. P. S. (2010). Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresource Technology, 101, 7402–7409.CrossRef
125.
go back to reference Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315, 804–807.CrossRef Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315, 804–807.CrossRef
126.
go back to reference Mani, S., Tabil, L. G., & Sokhansanj, S. (2004). Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass & Bioenergy, 27, 339–352.CrossRef Mani, S., Tabil, L. G., & Sokhansanj, S. (2004). Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass & Bioenergy, 27, 339–352.CrossRef
127.
go back to reference Lee, J. E., Vadlani, P. V., & Min, D. (2017). Sustainable production of microbial lipids from lignocellulosicbiomass using Oleaginous yeast cultures. Journal of Sustainable Bioenergy Systems, 7, 74871.CrossRef Lee, J. E., Vadlani, P. V., & Min, D. (2017). Sustainable production of microbial lipids from lignocellulosicbiomass using Oleaginous yeast cultures. Journal of Sustainable Bioenergy Systems, 7, 74871.CrossRef
128.
go back to reference Bak, J. S., Ko, J. K., Han, Y. H., Lee, B. C., Choi, I. G., & Kim, K. H. (2009). Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresource Technology, 100, 1285–1290.CrossRef Bak, J. S., Ko, J. K., Han, Y. H., Lee, B. C., Choi, I. G., & Kim, K. H. (2009). Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresource Technology, 100, 1285–1290.CrossRef
129.
go back to reference Dunlap, C. E., & Chiang, L. C. (1980). Cellulose degradation-a common link. In M. L. Shuler (Ed.), Utilization and recycle of agricultural wastes and residues (pp. 19–65). Boca Raton: CRC Press. Dunlap, C. E., & Chiang, L. C. (1980). Cellulose degradation-a common link. In M. L. Shuler (Ed.), Utilization and recycle of agricultural wastes and residues (pp. 19–65). Boca Raton: CRC Press.
130.
go back to reference Kapoor, K., Garg, N., Garg, R. K., Varshney, L., & Tyagi, A. K. (2017). Study the effect of gamma radiation pretreatment of sugarcane bagasse on its physcio-chemical morphological and structural properties. Radiation Physics and Chemistry, 141, 190–195.CrossRef Kapoor, K., Garg, N., Garg, R. K., Varshney, L., & Tyagi, A. K. (2017). Study the effect of gamma radiation pretreatment of sugarcane bagasse on its physcio-chemical morphological and structural properties. Radiation Physics and Chemistry, 141, 190–195.CrossRef
131.
go back to reference Ma, H., Liu, W. W., Chen, X., Wu, Y., & Yu, Z. (2009). Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresource Technology, 100, 1279–1284.CrossRef Ma, H., Liu, W. W., Chen, X., Wu, Y., & Yu, Z. (2009). Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresource Technology, 100, 1279–1284.CrossRef
132.
go back to reference Velmurugan, R., & Muthukumar, K. (2011). Utilization of sugarcane bagasse for bioethanol production: Sono-assisted acid hydrolysis approach. Bioresource Technology, 102, 7119–7123.CrossRef Velmurugan, R., & Muthukumar, K. (2011). Utilization of sugarcane bagasse for bioethanol production: Sono-assisted acid hydrolysis approach. Bioresource Technology, 102, 7119–7123.CrossRef
133.
go back to reference Takács, E., Wojnárovits, L., Földváry, C., Hargittai, P., Borsa, J., & Sajó, I. (2000). Effect of combined gamma-irradiation and alkali treatment on cotton–cellulose. Radiation Physics & Chemistry, 57, 399–403.CrossRef Takács, E., Wojnárovits, L., Földváry, C., Hargittai, P., Borsa, J., & Sajó, I. (2000). Effect of combined gamma-irradiation and alkali treatment on cotton–cellulose. Radiation Physics & Chemistry, 57, 399–403.CrossRef
134.
go back to reference Galbe, M., & Zacchi, G. (2007). Pretreatment of Lignocellulosic materials for efficient bioethanol production. Berlin/Heidelberg: Springer.CrossRef Galbe, M., & Zacchi, G. (2007). Pretreatment of Lignocellulosic materials for efficient bioethanol production. Berlin/Heidelberg: Springer.CrossRef
135.
go back to reference Singh, R., Krishna, B. B., Kumar, J., & Bhaskar, T. (2016). Opportunities for utilization of non-conventional energy sources for biomass pretreatment. Bioresource Technology, 199, 398–407.CrossRef Singh, R., Krishna, B. B., Kumar, J., & Bhaskar, T. (2016). Opportunities for utilization of non-conventional energy sources for biomass pretreatment. Bioresource Technology, 199, 398–407.CrossRef
136.
go back to reference Chen, X., Yu, J., Zhang, Z., & Lu, C. (2011). Study on structure and thermal stability properties of cellulose fibres from rice straw. Journal of Carbohydrate Polymers, 85, 245–250.CrossRef Chen, X., Yu, J., Zhang, Z., & Lu, C. (2011). Study on structure and thermal stability properties of cellulose fibres from rice straw. Journal of Carbohydrate Polymers, 85, 245–250.CrossRef
137.
go back to reference Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M., & Hai, Y. (2011). Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers, 83, 1804–1811.CrossRef Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M., & Hai, Y. (2011). Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers, 83, 1804–1811.CrossRef
138.
go back to reference Lu, X., Bo, X., Zhang, Y., & Angelidaki, I. (2011). Microwave pretreatment of rape straw for bioethanol production: Focus on energy efficiency. Bioresource Technology, 102, 7937.CrossRef Lu, X., Bo, X., Zhang, Y., & Angelidaki, I. (2011). Microwave pretreatment of rape straw for bioethanol production: Focus on energy efficiency. Bioresource Technology, 102, 7937.CrossRef
139.
go back to reference Wahidin, A. I., & Shaleh, S. R. M. (2014). Rapid biodiesel production using wet microalgae via microwave irradiation. Energy Conversion and Management, 84, 227–233.CrossRef Wahidin, A. I., & Shaleh, S. R. M. (2014). Rapid biodiesel production using wet microalgae via microwave irradiation. Energy Conversion and Management, 84, 227–233.CrossRef
140.
go back to reference Hu, Z., & Wen, Z. (2008). Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochemical Engineering Journal, 38, 369–378.CrossRef Hu, Z., & Wen, Z. (2008). Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochemical Engineering Journal, 38, 369–378.CrossRef
141.
go back to reference Keshwani, D. R., & Cheng, J. J. (2010). Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production. Biotechnology Progress, 26, 644–652.CrossRef Keshwani, D. R., & Cheng, J. J. (2010). Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production. Biotechnology Progress, 26, 644–652.CrossRef
142.
go back to reference Gogate, P. R., Sutkar, V. S., & Pandit, A. B. (2011). Sonochemical reactors: Important design and scale up considerations with a special emphasis on heterogeneous systems. Chemical Engineering Journal, 166, 1066–1082.CrossRef Gogate, P. R., Sutkar, V. S., & Pandit, A. B. (2011). Sonochemical reactors: Important design and scale up considerations with a special emphasis on heterogeneous systems. Chemical Engineering Journal, 166, 1066–1082.CrossRef
143.
go back to reference Montalbo-Lomboy, M., Johnson, L., Khanal, S. K., Leeuwen, J. V., & Grewell, D. (2010). Sonication of sugary-2 corn: A potential pretreatment to enhance sugar release. Bioresource Technology, 101, 351–358.CrossRef Montalbo-Lomboy, M., Johnson, L., Khanal, S. K., Leeuwen, J. V., & Grewell, D. (2010). Sonication of sugary-2 corn: A potential pretreatment to enhance sugar release. Bioresource Technology, 101, 351–358.CrossRef
144.
go back to reference Rehman, M. S. U., Kim, I., Chisti, Y., & Han, J. I. (2013). Use of ultrasound in the production of bioethanol from lignocellulosic biomass. Energy Education Science & Technology, 30, 1391–1410. Rehman, M. S. U., Kim, I., Chisti, Y., & Han, J. I. (2013). Use of ultrasound in the production of bioethanol from lignocellulosic biomass. Energy Education Science & Technology, 30, 1391–1410.
145.
go back to reference Tang, A., Zhang, H., Gang, C., Xie, G., & Liang, W. (2005). Influence of ultrasound treatment on accessibility and regioselective oxidation reactivity of cellulose. Ultrasonics Sonochemistry, 12, 467.CrossRef Tang, A., Zhang, H., Gang, C., Xie, G., & Liang, W. (2005). Influence of ultrasound treatment on accessibility and regioselective oxidation reactivity of cellulose. Ultrasonics Sonochemistry, 12, 467.CrossRef
146.
go back to reference Yachmenev, V., Condon, B., Klasson, T., & Lambert, A. (2009). Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. Journal of Biobased Materials & Bioenergy, 3, 25–31.CrossRef Yachmenev, V., Condon, B., Klasson, T., & Lambert, A. (2009). Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. Journal of Biobased Materials & Bioenergy, 3, 25–31.CrossRef
147.
go back to reference Balasubramanian, J. D. A., Kanitkar, A., & Boldor, D. (2011). Oil extraction from Scenedesmus obliquus using a continuous microwave system – Design, optimization, and quality characterization. Bioresource Technology, 102, 3396–3403.CrossRef Balasubramanian, J. D. A., Kanitkar, A., & Boldor, D. (2011). Oil extraction from Scenedesmus obliquus using a continuous microwave system – Design, optimization, and quality characterization. Bioresource Technology, 102, 3396–3403.CrossRef
148.
go back to reference Keris-Sen, U. D., Sen, U., Soydemir, G., & Gurol, M. D. (2014). An investigation of ultrasound effect on microalgal cell integrity and lipid extraction efficiency. Bioresource Technology, 152, 407–413.CrossRef Keris-Sen, U. D., Sen, U., Soydemir, G., & Gurol, M. D. (2014). An investigation of ultrasound effect on microalgal cell integrity and lipid extraction efficiency. Bioresource Technology, 152, 407–413.CrossRef
149.
go back to reference Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48, 3713–3729.CrossRef Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48, 3713–3729.CrossRef
150.
go back to reference Roy, P., & Dias, G. (2017). Prospects for pyrolysis technologies in the bioenergy sector: A review. Renewable and Sustainable Energy Reviews, 77, 59–69.CrossRef Roy, P., & Dias, G. (2017). Prospects for pyrolysis technologies in the bioenergy sector: A review. Renewable and Sustainable Energy Reviews, 77, 59–69.CrossRef
151.
go back to reference Fan, L. T., Gharpuray, M. M., & Lee, Y. H. (1987). Cellulose hydrolysis (Biotechnology monographs. Volume 3). New York: Springer.CrossRef Fan, L. T., Gharpuray, M. M., & Lee, Y. H. (1987). Cellulose hydrolysis (Biotechnology monographs. Volume 3). New York: Springer.CrossRef
152.
go back to reference Lian, J., Garcia-Perez, M., Coates, R., Wu, H., & Chen, S. (2012). Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production. Bioresource Technology, 118, 177–186.CrossRef Lian, J., Garcia-Perez, M., Coates, R., Wu, H., & Chen, S. (2012). Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production. Bioresource Technology, 118, 177–186.CrossRef
153.
go back to reference Janu, K. U., Sindhu, R., Binod, P., Kuttiraja, M., Sukumaran, R. K., & Pandey, A. (2011). Studies on physicochemical changes during alkali pretreatment and optimization of hydrolysis conditions to improve sugar yield from bagasse. Journal Ofentific & Industrial Research, 70, 952–958. Janu, K. U., Sindhu, R., Binod, P., Kuttiraja, M., Sukumaran, R. K., & Pandey, A. (2011). Studies on physicochemical changes during alkali pretreatment and optimization of hydrolysis conditions to improve sugar yield from bagasse. Journal Ofentific & Industrial Research, 70, 952–958.
154.
go back to reference McMillan, J. D. (1994). Pretreatment of lignocellulosic biomass. In Enzymatic conversion of biomass for fuels production (Vol. 566, pp. 292–324). Washington, DC: American Chemical Society.CrossRef McMillan, J. D. (1994). Pretreatment of lignocellulosic biomass. In Enzymatic conversion of biomass for fuels production (Vol. 566, pp. 292–324). Washington, DC: American Chemical Society.CrossRef
155.
go back to reference Teramoto, Y., Lee, S. H., & Endo, T. (2008). Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresource Technology, 99, 8856–8863.CrossRef Teramoto, Y., Lee, S. H., & Endo, T. (2008). Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresource Technology, 99, 8856–8863.CrossRef
156.
go back to reference Gong, Z., Wang, X., Yuan, W., Wang, Y., Zhou, W., Wang, G., & Liu, Y. (2020). Fed-batch enzymatic hydrolysis of alkaline organosolv-pretreated corn stover facilitating high concentrations and yields of fermentable sugars for microbial lipid production. Biotechnology for Biofuels, 13, 613.CrossRef Gong, Z., Wang, X., Yuan, W., Wang, Y., Zhou, W., Wang, G., & Liu, Y. (2020). Fed-batch enzymatic hydrolysis of alkaline organosolv-pretreated corn stover facilitating high concentrations and yields of fermentable sugars for microbial lipid production. Biotechnology for Biofuels, 13, 613.CrossRef
157.
go back to reference Aita, G. A., Salvi, D. A., & Walker, M. S. (2011). Enzyme hydrolysis and ethanol fermentation of dilute ammonia pretreated energy cane. Bioresource Technology, 102, 4444–4448.CrossRef Aita, G. A., Salvi, D. A., & Walker, M. S. (2011). Enzyme hydrolysis and ethanol fermentation of dilute ammonia pretreated energy cane. Bioresource Technology, 102, 4444–4448.CrossRef
158.
go back to reference Chong, G. G., He, Y. C., Liu, Q. X., Kou, X. Q., & Qing, Q. (2017). Sequential aqueous ammonia extraction and LiCl/N,N-Dimethyl formamide pretreatment for enhancing enzymatic saccharification of winterbamboo shoot shell. Applied Biochemistry and Biotechnology, 182, 1341–1357. Chong, G. G., He, Y. C., Liu, Q. X., Kou, X. Q., & Qing, Q. (2017). Sequential aqueous ammonia extraction and LiCl/N,N-Dimethyl formamide pretreatment for enhancing enzymatic saccharification of winterbamboo shoot shell. Applied Biochemistry and Biotechnology182, 1341–1357.
159.
go back to reference Chong, G. G., He, Y. C., Liu, Q. X., Kou, X. Q., Huang, X. J., Di, J. H., & Ma, C. L. (2017). Effective enzymatic in situ saccharification of bamboo shoot shell pretreated by dilute alkalic salts sodium hypochlorite/sodium sulfide pretreatment under the autoclave system. Bioresource Technology, 241, 726–734.CrossRef Chong, G. G., He, Y. C., Liu, Q. X., Kou, X. Q., Huang, X. J., Di, J. H., & Ma, C. L. (2017). Effective enzymatic in situ saccharification of bamboo shoot shell pretreated by dilute alkalic salts sodium hypochlorite/sodium sulfide pretreatment under the autoclave system. Bioresource Technology, 241, 726–734.CrossRef
160.
go back to reference Gupta, R., & Lee, Y. Y. (2010). Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide. Bioresource Technology, 101, 8185.CrossRef Gupta, R., & Lee, Y. Y. (2010). Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide. Bioresource Technology, 101, 8185.CrossRef
161.
go back to reference Yoo, C. G., Nghiem, N. P., Hicks, K. B., & Kim, T. H. (2011). Pretreatment of corn stover using low-moisture anhydrous ammonia (LMAA) process. Bioresource Technology, 102, 10028–10034.CrossRef Yoo, C. G., Nghiem, N. P., Hicks, K. B., & Kim, T. H. (2011). Pretreatment of corn stover using low-moisture anhydrous ammonia (LMAA) process. Bioresource Technology, 102, 10028–10034.CrossRef
162.
go back to reference Liu, Z., Padmanabhan, S., Cheng, K., Schwyter, P., Pauly, M., Bell, A. T., & Prausnitz, J. M. (2013). Aqueous-ammonia delignification of miscanthus followed by enzymatic hydrolysis to sugars. Bioresource Technology, 135, 23–29.CrossRef Liu, Z., Padmanabhan, S., Cheng, K., Schwyter, P., Pauly, M., Bell, A. T., & Prausnitz, J. M. (2013). Aqueous-ammonia delignification of miscanthus followed by enzymatic hydrolysis to sugars. Bioresource Technology, 135, 23–29.CrossRef
163.
go back to reference Pryor, S. W., Karki, B., & Nahar, N. (2012). Effect of hemicellulase addition during enzymatic hydrolysis of switchgrass pretreated by soaking in aqueous ammonia. Bioresource Technology, 123, 620–626.CrossRef Pryor, S. W., Karki, B., & Nahar, N. (2012). Effect of hemicellulase addition during enzymatic hydrolysis of switchgrass pretreated by soaking in aqueous ammonia. Bioresource Technology, 123, 620–626.CrossRef
164.
go back to reference Kumar, L., Chandra, R., & Saddler, J. (2011). Influence of steam pretreatment severity on post-treatments used to enhance the enzymatic hydrolysis of pretreated softwoods at low enzyme loadings. Biotechnology and Bioengineering, 108, 2300–2311.CrossRef Kumar, L., Chandra, R., & Saddler, J. (2011). Influence of steam pretreatment severity on post-treatments used to enhance the enzymatic hydrolysis of pretreated softwoods at low enzyme loadings. Biotechnology and Bioengineering, 108, 2300–2311.CrossRef
165.
go back to reference Liu, H., Pang, B., Zhou, J., Han, Y., Lu, J., Li, H., & Wang, H. (2016). Comparative study of pretreated corn stover for sugar production using cotton pulping black liquor (CPBL) instead of sodium hydroxide. Industrial Crops and Products, 84, 97–103.CrossRef Liu, H., Pang, B., Zhou, J., Han, Y., Lu, J., Li, H., & Wang, H. (2016). Comparative study of pretreated corn stover for sugar production using cotton pulping black liquor (CPBL) instead of sodium hydroxide. Industrial Crops and Products, 84, 97–103.CrossRef
166.
go back to reference Mendes, F. M., Siqueira, G., Carvalho, W., Ferraz, A., & Milagres, A. M. (2011). Enzymatic hydrolysis of Chemithermomechanically pretreated sugarcane bagasse and samples with reduced initial lignin content. Biotechnology Progress, 27, 395–401.CrossRef Mendes, F. M., Siqueira, G., Carvalho, W., Ferraz, A., & Milagres, A. M. (2011). Enzymatic hydrolysis of Chemithermomechanically pretreated sugarcane bagasse and samples with reduced initial lignin content. Biotechnology Progress, 27, 395–401.CrossRef
167.
go back to reference Mendes, F. M., Heikkilä, E., Fonseca, M. B., Milagres, A. M. F., Ferraz, A., & Fardim, P. (2015). Topochemical characterization of sugar cane pretreated with alkaline sulfite. Industrial Crops and Products, 69, 60–67.CrossRef Mendes, F. M., Heikkilä, E., Fonseca, M. B., Milagres, A. M. F., Ferraz, A., & Fardim, P. (2015). Topochemical characterization of sugar cane pretreated with alkaline sulfite. Industrial Crops and Products, 69, 60–67.CrossRef
168.
go back to reference Xu, H., Li, B., & Mu, X. (2016). Review of alkali-based pretreatment to enhance enzymatic Saccharification for Lignocellulosic biomass conversion. Industrial & Engineering Chemistry Research, 55, 8691–8705.CrossRef Xu, H., Li, B., & Mu, X. (2016). Review of alkali-based pretreatment to enhance enzymatic Saccharification for Lignocellulosic biomass conversion. Industrial & Engineering Chemistry Research, 55, 8691–8705.CrossRef
169.
go back to reference Zhang, D. S., Yang, Q., Zhu, J. Y., & Pan, X. J. (2013). Sulfite (SPORL) pretreatment of switchgrass for enzymatic saccharification. Bioresource Technology, 129, 127–134.CrossRef Zhang, D. S., Yang, Q., Zhu, J. Y., & Pan, X. J. (2013). Sulfite (SPORL) pretreatment of switchgrass for enzymatic saccharification. Bioresource Technology, 129, 127–134.CrossRef
170.
go back to reference Yang, L., Cao, J., Mao, J., & Jin, Y. (2013). Sodium carbonate–sodium sulfite pretreatment for improving the enzymatic hydrolysis of rice straw. Industrial Crops and Products, 43, 711–717.CrossRef Yang, L., Cao, J., Mao, J., & Jin, Y. (2013). Sodium carbonate–sodium sulfite pretreatment for improving the enzymatic hydrolysis of rice straw. Industrial Crops and Products, 43, 711–717.CrossRef
171.
go back to reference Gong, W., Liu, C., Mu, X., Du, H., Lv, D., Li, B., & Han, S. (2015). Hydrogen peroxide-assisted sodium carbonate pretreatment for the enhancement of enzymatic saccharification of corn stover. ACS Sustainable Chemistry & Engineering, 3, 3477–3485.CrossRef Gong, W., Liu, C., Mu, X., Du, H., Lv, D., Li, B., & Han, S. (2015). Hydrogen peroxide-assisted sodium carbonate pretreatment for the enhancement of enzymatic saccharification of corn stover. ACS Sustainable Chemistry & Engineering, 3, 3477–3485.CrossRef
172.
go back to reference Qing, Q., Zhou, L. L., Guo, Q., Huang, M. Z., He, Y. C., Wang, L. Q., & Zhang, Y. (2016). A combined sodium phosphate and sodium sulfide pretreatment for enhanced enzymatic digestibility and delignification of corn stover. Bioresource Technology, 218, 209–216.CrossRef Qing, Q., Zhou, L. L., Guo, Q., Huang, M. Z., He, Y. C., Wang, L. Q., & Zhang, Y. (2016). A combined sodium phosphate and sodium sulfide pretreatment for enhanced enzymatic digestibility and delignification of corn stover. Bioresource Technology, 218, 209–216.CrossRef
173.
go back to reference Jiang, C. X., He, Y. C., Chong, G. G., Di, J. H., Tang, Y. J., & Ma, C. L. (2017). Enzymatic in situ saccharification of sugarcane bagasse pretreated with low loading of alkalic salts Na2SO3/Na3PO4 by autoclaving. Journal of Biotechnology, 259, 73–82.CrossRef Jiang, C. X., He, Y. C., Chong, G. G., Di, J. H., Tang, Y. J., & Ma, C. L. (2017). Enzymatic in situ saccharification of sugarcane bagasse pretreated with low loading of alkalic salts Na2SO3/Na3PO4 by autoclaving. Journal of Biotechnology, 259, 73–82.CrossRef
174.
go back to reference Liang, Y., Jarosz, K., Wardlow, A. T., Zhang, J., & Cui, Y. (2014). Lipid production by Cryptococcus curvatus on hydrolysates derived from corn fiber and sweet sorghum bagasse following dilute acid pretreatment. Applied Biochemistry and Biotechnology, 173, 2086–2098.CrossRef Liang, Y., Jarosz, K., Wardlow, A. T., Zhang, J., & Cui, Y. (2014). Lipid production by Cryptococcus curvatus on hydrolysates derived from corn fiber and sweet sorghum bagasse following dilute acid pretreatment. Applied Biochemistry and Biotechnology, 173, 2086–2098.CrossRef
175.
go back to reference Cai, D., Dong, Z., Wang, Y., Chen, C., Li, P., Qin, P., Wang, Z., & Tan, T. W. (2016). Biorefinery of corn cob for microbial lipid and bio-ethanol production: An environmental friendly process. Bioresource Technology, 211, 677–684.CrossRef Cai, D., Dong, Z., Wang, Y., Chen, C., Li, P., Qin, P., Wang, Z., & Tan, T. W. (2016). Biorefinery of corn cob for microbial lipid and bio-ethanol production: An environmental friendly process. Bioresource Technology, 211, 677–684.CrossRef
176.
go back to reference Andanson, J. M., & Costa Gomes, M. F. (2015). Thermodynamics of cellulose dissolution in an imidazolium acetate ionic liquid. Chemical Communications, 51, 4485–4487.CrossRef Andanson, J. M., & Costa Gomes, M. F. (2015). Thermodynamics of cellulose dissolution in an imidazolium acetate ionic liquid. Chemical Communications, 51, 4485–4487.CrossRef
177.
go back to reference Li, Q., He, Y. C. X., Jun, G., Xu, X., Yang, J. M., & Li, L. Z. (2009). Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresource Technology, 100, 3570–3575.CrossRef Li, Q., He, Y. C. X., Jun, G., Xu, X., Yang, J. M., & Li, L. Z. (2009). Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresource Technology, 100, 3570–3575.CrossRef
178.
go back to reference Brandt, A., Ray, M. J., To, T. Q., Leak, D. J., Murphy, R. J., & Welton, T. (2011). Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chemistry, 13, 2489–2499.CrossRef Brandt, A., Ray, M. J., To, T. Q., Leak, D. J., Murphy, R. J., & Welton, T. (2011). Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chemistry, 13, 2489–2499.CrossRef
179.
go back to reference He, Y. C., Liu, F., Gong, L., Di, J. H., Ding, Y., Ma, C. L., Zhang, D. P., Tao, Z. C., Wang, C., & Yang, B. (2016). Enzymatic in situ saccharification of chestnut shell with high ionic liquid-tolerant cellulases from Galactomyces sp. CCZU11-1 in a biocompatible ionic liquid-cellulase media. Bioresource Technology, 201, 133–139.CrossRef He, Y. C., Liu, F., Gong, L., Di, J. H., Ding, Y., Ma, C. L., Zhang, D. P., Tao, Z. C., Wang, C., & Yang, B. (2016). Enzymatic in situ saccharification of chestnut shell with high ionic liquid-tolerant cellulases from Galactomyces sp. CCZU11-1 in a biocompatible ionic liquid-cellulase media. Bioresource Technology, 201, 133–139.CrossRef
180.
go back to reference Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H. V., Auer, M., et al. (2010). Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology, 101, 4900–4906.CrossRef Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H. V., Auer, M., et al. (2010). Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology, 101, 4900–4906.CrossRef
181.
go back to reference Li, X., Kim, T. H., & Nghiem, N. P. (2010). Bioethanol production from corn stover using aqueous ammonia pretreatment and two-phase simultaneous saccharifification and fermentation (TPSSF). Bioresource Technology, 101, 5910–5916.CrossRef Li, X., Kim, T. H., & Nghiem, N. P. (2010). Bioethanol production from corn stover using aqueous ammonia pretreatment and two-phase simultaneous saccharifification and fermentation (TPSSF). Bioresource Technology, 101, 5910–5916.CrossRef
182.
go back to reference Pinkert, A., Marsh, K. N., Pang, S. S., & Staiger, M. P. (2009). Ionic liquids and their interaction with cellulose. Chemical Reviews, 109, 6712–6728.CrossRef Pinkert, A., Marsh, K. N., Pang, S. S., & Staiger, M. P. (2009). Ionic liquids and their interaction with cellulose. Chemical Reviews, 109, 6712–6728.CrossRef
183.
go back to reference Shill, K., Padmanabhan, S., Xin, Q., Prausnitz, J. M., Clark, D. S., & Blanch, H. W. (2011). Ionic liquid pretreatment of cellulosic biomass: Enzymatic hydrolysis and ionic liquid recycle. Biotechnology and Bioengineering, 108, 511–520.CrossRef Shill, K., Padmanabhan, S., Xin, Q., Prausnitz, J. M., Clark, D. S., & Blanch, H. W. (2011). Ionic liquid pretreatment of cellulosic biomass: Enzymatic hydrolysis and ionic liquid recycle. Biotechnology and Bioengineering, 108, 511–520.CrossRef
184.
go back to reference Singh, S., Simmons, B. A., & Vogel, K. P. (2009). Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnology and Bioengineering, 104, 68–75.CrossRef Singh, S., Simmons, B. A., & Vogel, K. P. (2009). Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnology and Bioengineering, 104, 68–75.CrossRef
185.
go back to reference Silva, S. S., Mano, J. F., & Reis, R. L. (2017). Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chemistry, 19, 1208–1220.CrossRef Silva, S. S., Mano, J. F., & Reis, R. L. (2017). Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chemistry, 19, 1208–1220.CrossRef
186.
go back to reference Xu, J. X., Xiong, P., & He, B. F. (2016). Advances in improving the performance of cellulase in ionic liquids for lignocellulose biorefinery. Bioresource Technology, 200, 961–970.CrossRef Xu, J. X., Xiong, P., & He, B. F. (2016). Advances in improving the performance of cellulase in ionic liquids for lignocellulose biorefinery. Bioresource Technology, 200, 961–970.CrossRef
187.
go back to reference Zhang, Q., Hu, J., & Lee, D. J. (2017). Pretreatment of biomass using ionic liquids: Research updates. Renewable Energy, 11, 77–84.CrossRef Zhang, Q., Hu, J., & Lee, D. J. (2017). Pretreatment of biomass using ionic liquids: Research updates. Renewable Energy, 11, 77–84.CrossRef
188.
go back to reference Swatloski, R. P., Spear, S. K., Holbrey, J. D., & Rogers, R. D. (2002). Dissolution of cellose with ionic liquids. Journal of the American Chemical Society, 124, 4974–4975.CrossRef Swatloski, R. P., Spear, S. K., Holbrey, J. D., & Rogers, R. D. (2002). Dissolution of cellose with ionic liquids. Journal of the American Chemical Society, 124, 4974–4975.CrossRef
189.
go back to reference Gurau, G., Wang, H., Qiao, Y., Lu, X., Zhang, S., & Rogers Robin, D. (2012). Chlorine-free alternatives to the synthesis of ionic liquids for biomass processing. Pure and Applied Chemistry, 84(3), 745.CrossRef Gurau, G., Wang, H., Qiao, Y., Lu, X., Zhang, S., & Rogers Robin, D. (2012). Chlorine-free alternatives to the synthesis of ionic liquids for biomass processing. Pure and Applied Chemistry, 84(3), 745.CrossRef
190.
go back to reference Kosan, B., Michels, C., & Meister, F. (2008). Dissolution and forming of cellulose with ionic liquids. Cellulose, 15(1), 59–66.CrossRef Kosan, B., Michels, C., & Meister, F. (2008). Dissolution and forming of cellulose with ionic liquids. Cellulose, 15(1), 59–66.CrossRef
191.
go back to reference Aid, T., Hyvarinen, S., Vaher, M., Koel, M., & Mikkola, J. P. (2016). Saccharification of lignocellulosic biomasses via ionic liquid pretreatment. Industrial Crops and Products, 92, 336–341.CrossRef Aid, T., Hyvarinen, S., Vaher, M., Koel, M., & Mikkola, J. P. (2016). Saccharification of lignocellulosic biomasses via ionic liquid pretreatment. Industrial Crops and Products, 92, 336–341.CrossRef
192.
go back to reference Chang, K. L., Chen, X. M., Wang, X. Q., Han, Y. J., Potprommanee, L., Liu, J. Y., Liao, Y. L., Ning, X. A., Sun, S. Y., & Huang, Q. (2017). Impact of surfactant type for ionic liquid pretreatment on enhancing delignification of rice straw. Bioresource Technology, 227, 388–392.CrossRef Chang, K. L., Chen, X. M., Wang, X. Q., Han, Y. J., Potprommanee, L., Liu, J. Y., Liao, Y. L., Ning, X. A., Sun, S. Y., & Huang, Q. (2017). Impact of surfactant type for ionic liquid pretreatment on enhancing delignification of rice straw. Bioresource Technology, 227, 388–392.CrossRef
193.
go back to reference Clough, M. T., Geyer, K., Hunt, P. A., Son, S., Vagt, U., & Welton, T. (2015). Ionic liquids: Not always innocent solvents for cellulose. Green Chemistry, 17, 231–243.CrossRef Clough, M. T., Geyer, K., Hunt, P. A., Son, S., Vagt, U., & Welton, T. (2015). Ionic liquids: Not always innocent solvents for cellulose. Green Chemistry, 17, 231–243.CrossRef
194.
go back to reference Sun, N., Rahman, M., Qin, Y., Maxim, M. L., Rodriguez, H., & Rogers, R. D. (2009). Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chemistry, 11, 646–655.CrossRef Sun, N., Rahman, M., Qin, Y., Maxim, M. L., Rodriguez, H., & Rogers, R. D. (2009). Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chemistry, 11, 646–655.CrossRef
195.
go back to reference Zhao, H., Jones, C. L., Baker, G. A., Xia, S., Olubajo, O., & Person, V. N. (2009). Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. Journal of Biotechnology, 139, 47–54.CrossRef Zhao, H., Jones, C. L., Baker, G. A., Xia, S., Olubajo, O., & Person, V. N. (2009). Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. Journal of Biotechnology, 139, 47–54.CrossRef
196.
go back to reference Zhao, X., Cheng, K., & Liu, D. (2009). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology & Biotechnology, 82, 815.CrossRef Zhao, X., Cheng, K., & Liu, D. (2009). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology & Biotechnology, 82, 815.CrossRef
197.
go back to reference He, Y. C., Liu, F., Gong, L., Zhu, Z. Z., Ding, Y., Wang, C., Xue, Y. F., Rui, H., Tao, Z. C., Zhang, D. P., & Ma, C. L. (2015). Significantly improving enzymatic saccharification of high crystallinity index’s corn stover by combining ionic liquid [Bmim]Cl–HCl–water media with dilute NaOH pretreatment. Bioresource Technology, 189, 421–425.CrossRef He, Y. C., Liu, F., Gong, L., Zhu, Z. Z., Ding, Y., Wang, C., Xue, Y. F., Rui, H., Tao, Z. C., Zhang, D. P., & Ma, C. L. (2015). Significantly improving enzymatic saccharification of high crystallinity index’s corn stover by combining ionic liquid [Bmim]Cl–HCl–water media with dilute NaOH pretreatment. Bioresource Technology, 189, 421–425.CrossRef
198.
go back to reference Zhang, J., Feng, L., Wang, D., Zhang, R., Liu, G., & Cheng, G. (2014). Thermogravimetric analysis of lignocellulosic biomass with ionic liquid pretreatment. Bioresource Technology, 153, 379–382.CrossRef Zhang, J., Feng, L., Wang, D., Zhang, R., Liu, G., & Cheng, G. (2014). Thermogravimetric analysis of lignocellulosic biomass with ionic liquid pretreatment. Bioresource Technology, 153, 379–382.CrossRef
199.
go back to reference de Oliveira, H. F., & Rinaldi, R. (2015). Understanding cellulose dissolution: Energetics of interactions of ionic liquids and cellobiose revealed by solution microcalorimetry. ChemSusChem, 8, 1577.CrossRef de Oliveira, H. F., & Rinaldi, R. (2015). Understanding cellulose dissolution: Energetics of interactions of ionic liquids and cellobiose revealed by solution microcalorimetry. ChemSusChem, 8, 1577.CrossRef
200.
go back to reference Kanbayashi, T., & Miyafuji, H. (2015). Topochemical and morphological characterization of wood cell wall treated with the ionic liquid, 1-ethylpyridinium bromide. Planta, 242, 509–518.CrossRef Kanbayashi, T., & Miyafuji, H. (2015). Topochemical and morphological characterization of wood cell wall treated with the ionic liquid, 1-ethylpyridinium bromide. Planta, 242, 509–518.CrossRef
201.
go back to reference Gong, Z., Shen, H., Wang, Q., Yang, X., Xie, H., & Zhao, Z. K. (2013). Efficient conversion of biomass into lipids by using the simultaneous saccharification and enhanced lipid production process. Biotechnology for Biofuels, 6, 36.CrossRef Gong, Z., Shen, H., Wang, Q., Yang, X., Xie, H., & Zhao, Z. K. (2013). Efficient conversion of biomass into lipids by using the simultaneous saccharification and enhanced lipid production process. Biotechnology for Biofuels, 6, 36.CrossRef
202.
go back to reference Xie, H., Shen, H., Gong, Z., Wang, Q., & Zhao, Z. K. (2012). Enzymatic hydrolysates of corn stover pretreated by a N-methylpyrrolidone–ionic liquid solution for microbial lipid production. Green Chemistry, 14, 1202–1210.CrossRef Xie, H., Shen, H., Gong, Z., Wang, Q., & Zhao, Z. K. (2012). Enzymatic hydrolysates of corn stover pretreated by a N-methylpyrrolidone–ionic liquid solution for microbial lipid production. Green Chemistry, 14, 1202–1210.CrossRef
203.
go back to reference Procentese, A., Johnson, E., Orr, V., Campanile, A. G., Wood, J. A., Marzocchella, A., & Rehmann, F. (2015). Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresource Technology, 92, 31–36.CrossRef Procentese, A., Johnson, E., Orr, V., Campanile, A. G., Wood, J. A., Marzocchella, A., & Rehmann, F. (2015). Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresource Technology, 92, 31–36.CrossRef
204.
go back to reference Xu, G. C., Ding, J. C., Han, R. Z., Dong, J. J., & Ni, Y. (2016). Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresource Technology, 203, 364–369.CrossRef Xu, G. C., Ding, J. C., Han, R. Z., Dong, J. J., & Ni, Y. (2016). Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresource Technology, 203, 364–369.CrossRef
205.
go back to reference Zhang, W. C., Xia, S. Q., & Ma, P. S. (2016). Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresource Technology, 219, 1–5.CrossRef Zhang, W. C., Xia, S. Q., & Ma, P. S. (2016). Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresource Technology, 219, 1–5.CrossRef
206.
go back to reference Sundstrom, E., Yaegashi, J., Yan, J., Masson, F., Papa, G., Rodriguez, A., Mirsiaghi, M., Liang, L., He, Q., Tanjore, D., Pray, T. R., Singh, S., Simmons, B., Sun, N., Magnuson, J., & Gladden, J. (2018). Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with Rhodosporidium toruloides to produce advanced biofuels. Green Chemistry, 20, 2870–2879.CrossRef Sundstrom, E., Yaegashi, J., Yan, J., Masson, F., Papa, G., Rodriguez, A., Mirsiaghi, M., Liang, L., He, Q., Tanjore, D., Pray, T. R., Singh, S., Simmons, B., Sun, N., Magnuson, J., & Gladden, J. (2018). Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with Rhodosporidium toruloides to produce advanced biofuels. Green Chemistry, 20, 2870–2879.CrossRef
207.
go back to reference Koo, B. W., Min, B. C., Gwak, K. S., Lee, S. M., Choi, J. W., Yeo, H., & Choi, I. G. (2012). Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass & Bioenergy, 42, 24–32.CrossRef Koo, B. W., Min, B. C., Gwak, K. S., Lee, S. M., Choi, J. W., Yeo, H., & Choi, I. G. (2012). Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass & Bioenergy, 42, 24–32.CrossRef
208.
go back to reference Mesa, L., González, E., Cara, C., González, M., Castro, E., & Mussatto, S. I. (2011). The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chemical Engineering Journal, 168, 1157–1162.CrossRef Mesa, L., González, E., Cara, C., González, M., Castro, E., & Mussatto, S. I. (2011). The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chemical Engineering Journal, 168, 1157–1162.CrossRef
209.
go back to reference Qing, Q., Zhou, L. L., Guo, Q., Gao, X. H., Zhang, Y., He, Y. C., & Zhang, Y. (2017). Mild alkaline presoaking and organosolv pretreatment of corn stover and their impacts on corn stover composition, structure, and digestibility. Bioresource Technology, 233, 284–290.CrossRef Qing, Q., Zhou, L. L., Guo, Q., Gao, X. H., Zhang, Y., He, Y. C., & Zhang, Y. (2017). Mild alkaline presoaking and organosolv pretreatment of corn stover and their impacts on corn stover composition, structure, and digestibility. Bioresource Technology, 233, 284–290.CrossRef
210.
go back to reference Ostovareh, S., Karimi, K., & Zamani, A. (2015). Efficient conversion of sweet sorghum stalks to biogas and ethanol using organosolv pretreatment. Industrial Crops and Products, 66, 170–177.CrossRef Ostovareh, S., Karimi, K., & Zamani, A. (2015). Efficient conversion of sweet sorghum stalks to biogas and ethanol using organosolv pretreatment. Industrial Crops and Products, 66, 170–177.CrossRef
211.
go back to reference He, Y. C., Liu, F., Gong, L., Lu, T., Ding, Y., Zhang, D. P., Qing, Q., & Zhang, Y. (2015). Improving enzymatic hydrolysis of corn stover pretreated by ethylene glycol-perchloric acid-water mixture. Applied Biochemistry and Biotechnology, 175, 1306–1317.CrossRef He, Y. C., Liu, F., Gong, L., Lu, T., Ding, Y., Zhang, D. P., Qing, Q., & Zhang, Y. (2015). Improving enzymatic hydrolysis of corn stover pretreated by ethylene glycol-perchloric acid-water mixture. Applied Biochemistry and Biotechnology, 175, 1306–1317.CrossRef
212.
go back to reference Liu, J., Takada, R., Karita, S., Watanabe, T., Honda, Y., & Watanabe, T. (2010). Microwave-assisted pretreatment of recalcitrant softwood in aqueous glycerol. Bioresource Technology, 101, 9355–9360.CrossRef Liu, J., Takada, R., Karita, S., Watanabe, T., Honda, Y., & Watanabe, T. (2010). Microwave-assisted pretreatment of recalcitrant softwood in aqueous glycerol. Bioresource Technology, 101, 9355–9360.CrossRef
213.
go back to reference He, Y. C., Liu, F., Di, J. H., Ding, Y., Tao, Z. C., Zhu, Z. Z., Wu, Y. Q., Chen, L., Wang, C., Xue, Y. F., Chong, G. G., & Ma, C. L. (2016). Effective enzymatic saccharification of dilute NaOH extraction of chestnut shell pretreated by acidified aqueous ethylene glycol media. Industrial Crops and Products, 81, 129–138.CrossRef He, Y. C., Liu, F., Di, J. H., Ding, Y., Tao, Z. C., Zhu, Z. Z., Wu, Y. Q., Chen, L., Wang, C., Xue, Y. F., Chong, G. G., & Ma, C. L. (2016). Effective enzymatic saccharification of dilute NaOH extraction of chestnut shell pretreated by acidified aqueous ethylene glycol media. Industrial Crops and Products, 81, 129–138.CrossRef
214.
go back to reference Novo, L. P., Gurgel, L. V. A., Marabezi, K., & da Silva Curvelo, A. A. (2011). Delignification of sugarcane bagasse using glycerol-water mixtures to produce pulps for saccharification. Bioresource Technology, 102, 10040–10046.CrossRef Novo, L. P., Gurgel, L. V. A., Marabezi, K., & da Silva Curvelo, A. A. (2011). Delignification of sugarcane bagasse using glycerol-water mixtures to produce pulps for saccharification. Bioresource Technology, 102, 10040–10046.CrossRef
215.
go back to reference Zhang, T., Zhou, Y. J., Liu, D. L., & Petrus, L. (2007). Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol. Bioresource Technology, 98, 1454–1459.CrossRef Zhang, T., Zhou, Y. J., Liu, D. L., & Petrus, L. (2007). Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol. Bioresource Technology, 98, 1454–1459.CrossRef
216.
go back to reference Biganska, O., & Navard, P. (2009). Morphology of cellulose objects regenerated from cellulose-N-methy morpholine N-oxide-water solutions. Cellulose, 16, 179–188.CrossRef Biganska, O., & Navard, P. (2009). Morphology of cellulose objects regenerated from cellulose-N-methy morpholine N-oxide-water solutions. Cellulose, 16, 179–188.CrossRef
217.
go back to reference Li, Q., Ji, G. S., Tang, Y. B., Gu, X. D., Fei, J. J., & Jiang, H. Q. (2012). Ultrasound-assisted compatible in situ hydrolysis of sugarcane bagasse in cellulase-aqueous–N-methylmorpholine-N-oxide system for improved saccharification. Bioresource Technology, 107, 251–257.CrossRef Li, Q., Ji, G. S., Tang, Y. B., Gu, X. D., Fei, J. J., & Jiang, H. Q. (2012). Ultrasound-assisted compatible in situ hydrolysis of sugarcane bagasse in cellulase-aqueous–N-methylmorpholine-N-oxide system for improved saccharification. Bioresource Technology, 107, 251–257.CrossRef
218.
go back to reference He, Y. C., Xia, D. Q., Ma, C. L., Gong, L., Gong, T., Wu, M. X., Zhang, Y., Tang, Y. J., Xu, J. H., & Liu, Y. Y. (2013). Enzymatic saccharification of sugarcane baggage by N-methylmorpholine-N-oxide-tolerant cellulase from a newly isolated Galactomyces sp. CCZU11-1. Bioresource Technology, 135, 18–22.CrossRef He, Y. C., Xia, D. Q., Ma, C. L., Gong, L., Gong, T., Wu, M. X., Zhang, Y., Tang, Y. J., Xu, J. H., & Liu, Y. Y. (2013). Enzymatic saccharification of sugarcane baggage by N-methylmorpholine-N-oxide-tolerant cellulase from a newly isolated Galactomyces sp. CCZU11-1. Bioresource Technology, 135, 18–22.CrossRef
219.
go back to reference Alizadeh, H., Teymouri, F., Gilbert, T. I., & Dale, B. E. (2005). Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Applied Biochemistry and Biotechnology, 121–124, 1133.CrossRef Alizadeh, H., Teymouri, F., Gilbert, T. I., & Dale, B. E. (2005). Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Applied Biochemistry and Biotechnology, 121–124, 1133.CrossRef
220.
go back to reference Bals, B., Wedding, C., Balan, V., Sendich, E., & Dale, B. (2011). Evaluating the impact of ammonia fibre expansion (AFEX) pretreatment conditions on the cost of ethanol production. Bioresource Technology, 102, 1277–1283.CrossRef Bals, B., Wedding, C., Balan, V., Sendich, E., & Dale, B. (2011). Evaluating the impact of ammonia fibre expansion (AFEX) pretreatment conditions on the cost of ethanol production. Bioresource Technology, 102, 1277–1283.CrossRef
221.
go back to reference Kim, T. H., & Lee, Y. Y. (2005). Pretreatment of corn stover by soaking in aqueous ammonia. Applied Biochemistry and Biotechnology, 124, 1119–1131.CrossRef Kim, T. H., & Lee, Y. Y. (2005). Pretreatment of corn stover by soaking in aqueous ammonia. Applied Biochemistry and Biotechnology, 124, 1119–1131.CrossRef
222.
go back to reference Xue, Y. P., Jin, M., Orjuela, A., Slininger, P. J., Dien, B. S., Dale, B. E., & Balan, V. (2015). Microbial lipid production from AFEX™ pretreated corn stover. RSC Advances, 5, 28725–28734.CrossRef Xue, Y. P., Jin, M., Orjuela, A., Slininger, P. J., Dien, B. S., Dale, B. E., & Balan, V. (2015). Microbial lipid production from AFEX™ pretreated corn stover. RSC Advances, 5, 28725–28734.CrossRef
223.
go back to reference Kyoungheon, K., & Hong, J. (2001). Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresource Technology, 77, 139–144.CrossRef Kyoungheon, K., & Hong, J. (2001). Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresource Technology, 77, 139–144.CrossRef
224.
go back to reference Gu, T., Held, M. A., & Faik, A. (2013). Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production. Environ Technol (United Kingdom), 34, 1735–1749. Gu, T., Held, M. A., & Faik, A. (2013). Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production. Environ Technol (United Kingdom), 34, 1735–1749.
225.
go back to reference Duarte, S. H., dos Santos, P., Michelon, M., de Pinho Oliveira, S. M., Martínez, J., & Maugeri, F. (2017). Recovery of yeast lipids using different cell disruption techniques and supercritical CO2 extraction. Biochemical Engineering Journal, 125, 230–237.CrossRef Duarte, S. H., dos Santos, P., Michelon, M., de Pinho Oliveira, S. M., Martínez, J., & Maugeri, F. (2017). Recovery of yeast lipids using different cell disruption techniques and supercritical CO2 extraction. Biochemical Engineering Journal, 125, 230–237.CrossRef
226.
go back to reference Zheng, Y., Lin, H. M., Wen, J., Cao, N., Yu, X., & Tsao, G. T. (1995). Supercritical carbon dioxide explosion as a pretreatment for cellulose hydrolysis. Biotechnology Letters, 17, 845–850.CrossRef Zheng, Y., Lin, H. M., Wen, J., Cao, N., Yu, X., & Tsao, G. T. (1995). Supercritical carbon dioxide explosion as a pretreatment for cellulose hydrolysis. Biotechnology Letters, 17, 845–850.CrossRef
227.
go back to reference Srinivasan, N., & Ju, L. K. (2010). Pretreatment of guayule biomass using supercritical carbon dioxide-based method. Bioresource Technology, 101, 9785–9791.CrossRef Srinivasan, N., & Ju, L. K. (2010). Pretreatment of guayule biomass using supercritical carbon dioxide-based method. Bioresource Technology, 101, 9785–9791.CrossRef
228.
go back to reference Howlader, M. S., French, W. T., Shields-Menard, S. A., Amirsadeghi, M., Green, M., & Rai, N. (2017). Microbial cell disruption for improving lipid recovery using pressurized CO2: Role of CO2 solubility in cell suspension, sugar broth, and spent media. Biotechnology Progress, 33, 737–748.CrossRef Howlader, M. S., French, W. T., Shields-Menard, S. A., Amirsadeghi, M., Green, M., & Rai, N. (2017). Microbial cell disruption for improving lipid recovery using pressurized CO2: Role of CO2 solubility in cell suspension, sugar broth, and spent media. Biotechnology Progress, 33, 737–748.CrossRef
229.
go back to reference Laser, M., Schulman, D., Allen, S. G., Lichwa, J., Antal, M. J., & Lynd, L. R. (2002). A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for conversion to ethanol. Bioresource Technology, 81, 33–44.CrossRef Laser, M., Schulman, D., Allen, S. G., Lichwa, J., Antal, M. J., & Lynd, L. R. (2002). A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for conversion to ethanol. Bioresource Technology, 81, 33–44.CrossRef
230.
go back to reference Wei, Z., Zeng, G., Huang, F., Kosa, M., Sun, Q., Meng, X., Huang, D., & Ragauskas, A. J. (2015). Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates. Applied Microbiology and Biotechnology, 99, 7369–7377.CrossRef Wei, Z., Zeng, G., Huang, F., Kosa, M., Sun, Q., Meng, X., Huang, D., & Ragauskas, A. J. (2015). Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates. Applied Microbiology and Biotechnology, 99, 7369–7377.CrossRef
231.
go back to reference Banerjee, S., Sen, R., Pandey, R. A., Chakrabarti, T., Satpute, D., Giri, B. S., & Mudliar, S. (2009). Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization. Biomass Bioenerg, 33, 1680–1686.CrossRef Banerjee, S., Sen, R., Pandey, R. A., Chakrabarti, T., Satpute, D., Giri, B. S., & Mudliar, S. (2009). Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization. Biomass Bioenerg, 33, 1680–1686.CrossRef
232.
go back to reference Bjerre, A. B., Olesen, A. B., Fernqvist, T., Plöger, A., & Schmidt, A. S. (1996). Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnology and Bioengineering, 49, 568–577.CrossRef Bjerre, A. B., Olesen, A. B., Fernqvist, T., Plöger, A., & Schmidt, A. S. (1996). Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnology and Bioengineering, 49, 568–577.CrossRef
233.
go back to reference Hammel, K. E., Kapich, A. N., Jensen, K. A., Jr., & Ryan, Z. C. (2002). Reactive oxygen species as agents of wood decay by fungi. Enzyme and Microbial Technology, 30, 445–453.CrossRef Hammel, K. E., Kapich, A. N., Jensen, K. A., Jr., & Ryan, Z. C. (2002). Reactive oxygen species as agents of wood decay by fungi. Enzyme and Microbial Technology, 30, 445–453.CrossRef
234.
go back to reference Lucas, M., Hanson, S. K., Wagner, G. L., Kimball, D. B., & Rector, K. D. (2012). Evidence for room temperature delignification of wood using hydrogen peroxide and manganese acetate as a catalyst. Bioresource Technology, 119, 174–180.CrossRef Lucas, M., Hanson, S. K., Wagner, G. L., Kimball, D. B., & Rector, K. D. (2012). Evidence for room temperature delignification of wood using hydrogen peroxide and manganese acetate as a catalyst. Bioresource Technology, 119, 174–180.CrossRef
235.
go back to reference Martín, C., Thomsen, M. H., Hauggaard-Nielsen, H., & Thomsen, A. B. (2008). Wet oxidation pretreatment, enzymatic hydrolysis and simultaneous saccharification and fermentation of clover–ryegrass mixtures. Bioresource Technology, 99, 8777–8782.CrossRef Martín, C., Thomsen, M. H., Hauggaard-Nielsen, H., & Thomsen, A. B. (2008). Wet oxidation pretreatment, enzymatic hydrolysis and simultaneous saccharification and fermentation of clover–ryegrass mixtures. Bioresource Technology, 99, 8777–8782.CrossRef
236.
go back to reference Nakamura, Y., Daidai, M., & Kobayashi, F. (2004). Ozonolysis mechanism of lignin model compounds and microbial treatment of organic acids produced. Water Science & Technology A Journal of the International Association on Water Pollution Research, 50, 167.CrossRef Nakamura, Y., Daidai, M., & Kobayashi, F. (2004). Ozonolysis mechanism of lignin model compounds and microbial treatment of organic acids produced. Water Science & Technology A Journal of the International Association on Water Pollution Research, 50, 167.CrossRef
237.
go back to reference Saha, B. C., & Cotta, M. A. (2007). Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol. Enzyme & Microbial Technology, 41, 528–532.CrossRef Saha, B. C., & Cotta, M. A. (2007). Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol. Enzyme & Microbial Technology, 41, 528–532.CrossRef
238.
go back to reference Yu, J., Zhang, J. B., He, J., Liu, Z. D., & Yu, Z. N. (2009). Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresource Technology, 100, 903–908.CrossRef Yu, J., Zhang, J. B., He, J., Liu, Z. D., & Yu, Z. N. (2009). Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresource Technology, 100, 903–908.CrossRef
239.
go back to reference Cao, W. X., Sun, C., Liu, R. H., Yin, R. Z., & Wu, X. W. (2012). Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresource Technology, 111, 215–221.CrossRef Cao, W. X., Sun, C., Liu, R. H., Yin, R. Z., & Wu, X. W. (2012). Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresource Technology, 111, 215–221.CrossRef
240.
go back to reference Azzam, A. M. (1989). Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes; (USA), 24, 421–433.CrossRef Azzam, A. M. (1989). Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes; (USA), 24, 421–433.CrossRef
241.
go back to reference Sheikh, M. M. I., Kim, C. H., Park, H. H., Nam, H. G., Lee, G. S., Jo, H. S., Lee, J. Y., & Kim, J. W. (2015). A synergistic effect of pretreatment on cell wall structural changes in barley straw (Hordeum vulgare L) for efficient bioethanol production. Journal of Science of Food and Agriculture, 95, 843–850.CrossRef Sheikh, M. M. I., Kim, C. H., Park, H. H., Nam, H. G., Lee, G. S., Jo, H. S., Lee, J. Y., & Kim, J. W. (2015). A synergistic effect of pretreatment on cell wall structural changes in barley straw (Hordeum vulgare L) for efficient bioethanol production. Journal of Science of Food and Agriculture, 95, 843–850.CrossRef
242.
go back to reference Shi, Y., Huang, C., Rocha, K. C., El-Din, M. G., & Liu, Y. (2015). Treatment of oil sands process-affected water using moving bed biofilm reactors: With and without ozone pretreatment. Bioresource Technology, 192, 219–227.CrossRef Shi, Y., Huang, C., Rocha, K. C., El-Din, M. G., & Liu, Y. (2015). Treatment of oil sands process-affected water using moving bed biofilm reactors: With and without ozone pretreatment. Bioresource Technology, 192, 219–227.CrossRef
243.
go back to reference Arvaniti, E., Bjerre, A. B. A., & Schmidt, J. E. (2012). Wet oxidation pretreatment of rape straw for ethanol production. Biomass and Bioeenergy, 39, 94–105.CrossRef Arvaniti, E., Bjerre, A. B. A., & Schmidt, J. E. (2012). Wet oxidation pretreatment of rape straw for ethanol production. Biomass and Bioeenergy, 39, 94–105.CrossRef
244.
go back to reference Chaturvedi, V., & Verma, P. (2013). An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. Biotech, 3, 415–431. Chaturvedi, V., & Verma, P. (2013). An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. Biotech, 3, 415–431.
245.
go back to reference Szijártó, N., Kádár, Z., Varga, E., Thomsen, A. B., Costaferreira, M., & Réczey, K. (2009). Pretreatment of reed by wet oxidation and subsequent utilization of the pretreated fibers for ethanol production. Applied Biochemistry and Biotechnology, 155, 83–93.CrossRef Szijártó, N., Kádár, Z., Varga, E., Thomsen, A. B., Costaferreira, M., & Réczey, K. (2009). Pretreatment of reed by wet oxidation and subsequent utilization of the pretreated fibers for ethanol production. Applied Biochemistry and Biotechnology, 155, 83–93.CrossRef
246.
go back to reference Varga, E., Schmidt, A. S., Réczey, K., & Thomsen, A. B. (2003). Pretreatment of corn Stover using wet oxidation to enhance enzymatic digestibility. Applied Biochemistry & Biotechnology, 104, 37–50.CrossRef Varga, E., Schmidt, A. S., Réczey, K., & Thomsen, A. B. (2003). Pretreatment of corn Stover using wet oxidation to enhance enzymatic digestibility. Applied Biochemistry & Biotechnology, 104, 37–50.CrossRef
247.
go back to reference Panagiotou, G., & Olsson, L. (2007). Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnology and Bioengineering, 96, 250–258.CrossRef Panagiotou, G., & Olsson, L. (2007). Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnology and Bioengineering, 96, 250–258.CrossRef
248.
go back to reference Klinke, H. B., Ahring, B. K., Schmidt, S. S., & Thomsen, A. B. (2002). Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresource Technology, 82, 15–26.CrossRef Klinke, H. B., Ahring, B. K., Schmidt, S. S., & Thomsen, A. B. (2002). Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresource Technology, 82, 15–26.CrossRef
249.
go back to reference Banerjee, S., Sen, R., Mudliar, S., Pandey, R. A., Chakrabarti, T., & Satpute, D. (2011). Alkaline peroxide assisted wet air oxidation pretreatment approach to enhance enzymatic convertibility of rice husk. Biotechnology Progress, 27, 691–697.CrossRef Banerjee, S., Sen, R., Mudliar, S., Pandey, R. A., Chakrabarti, T., & Satpute, D. (2011). Alkaline peroxide assisted wet air oxidation pretreatment approach to enhance enzymatic convertibility of rice husk. Biotechnology Progress, 27, 691–697.CrossRef
250.
go back to reference Crowe, J. D., Li, M., Williams, D. L., Smith, A. D., Liu, T., & Hodge, D. B. (2019). Alkaline and alkaline-oxidative pretreatment and hydrolysis of herbaceous biomass for growth of Oleaginous microbes. Microbial Lipid Production, 1995, 173–182.CrossRef Crowe, J. D., Li, M., Williams, D. L., Smith, A. D., Liu, T., & Hodge, D. B. (2019). Alkaline and alkaline-oxidative pretreatment and hydrolysis of herbaceous biomass for growth of Oleaginous microbes. Microbial Lipid Production, 1995, 173–182.CrossRef
251.
go back to reference Tengborg, C., Galbe, M., & Zacchi, G. (2001). Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood. Enzyme and Microbial Technology, 28, 835–844.CrossRef Tengborg, C., Galbe, M., & Zacchi, G. (2001). Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood. Enzyme and Microbial Technology, 28, 835–844.CrossRef
252.
go back to reference Lorente, E., Farriol, X., & Salvadó, J. (2015). Steam explosion as a fractionation step in biofuel production from microalgae. Fuel Processing Technology, 131, 93–98.CrossRef Lorente, E., Farriol, X., & Salvadó, J. (2015). Steam explosion as a fractionation step in biofuel production from microalgae. Fuel Processing Technology, 131, 93–98.CrossRef
253.
go back to reference Aguiar, A., Gavioli, D., & Ferraz, A. (2013). Extracellular activities and wood component losses during Pinus taeda biodegradation by the brown-rot fungus Gloeophyllum trabeum. International Biodeterioration & Biodegradation, 82, 187–191.CrossRef Aguiar, A., Gavioli, D., & Ferraz, A. (2013). Extracellular activities and wood component losses during Pinus taeda biodegradation by the brown-rot fungus Gloeophyllum trabeum. International Biodeterioration & Biodegradation, 82, 187–191.CrossRef
254.
go back to reference Cianchetta, S., Maggio, B. D., Burzi, P. L., & Galletti, S. (2014). Evaluation of selected white-rot fungal isolates for improving the sugar yield from wheat straw. Applied Biochemistry and Biotechnology, 173, 609–623. Cianchetta, S., Maggio, B. D., Burzi, P. L., & Galletti, S. (2014). Evaluation of selected white-rot fungal isolates for improving the sugar yield from wheat straw. Applied Biochemistry and Biotechnology, 173, 609–623.
255.
go back to reference Guerra, A., Mendonça, R., & Ferraz, A. (2003). Molecular weight distribution of wood components extracted from Pinus taeda biotreated by Ceriporiopsis subvermispora. Enzyme and Microbial Technology, 33, 12–18.CrossRef Guerra, A., Mendonça, R., & Ferraz, A. (2003). Molecular weight distribution of wood components extracted from Pinus taeda biotreated by Ceriporiopsis subvermispora. Enzyme and Microbial Technology, 33, 12–18.CrossRef
256.
go back to reference Koray Gulsoy, S., & Eroglu, H. (2011). Biokraft pulping of European black pine with Ceriporiopsis subvermispora. International Biodeterioration & Biodegradation, 65, 644–648.CrossRef Koray Gulsoy, S., & Eroglu, H. (2011). Biokraft pulping of European black pine with Ceriporiopsis subvermispora. International Biodeterioration & Biodegradation, 65, 644–648.CrossRef
257.
go back to reference Larran, A., Jozami, E., Vicario, L., Feldman, S. R., Podestá, F. E., & Permingeat, H. R. (2015). Evaluation of biological pretreatments to increase the efficiency of the saccharification process using Spartina argentinensis as a biomass resource. Bioresource Technology, 194, 320–325.CrossRef Larran, A., Jozami, E., Vicario, L., Feldman, S. R., Podestá, F. E., & Permingeat, H. R. (2015). Evaluation of biological pretreatments to increase the efficiency of the saccharification process using Spartina argentinensis as a biomass resource. Bioresource Technology, 194, 320–325.CrossRef
258.
go back to reference Monrroy, M., Ortega, I., Ramírez, M., Baeza, J., & Freer, J. (2011). Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis. Enzyme and Microbial Technology, 49, 472–477.CrossRef Monrroy, M., Ortega, I., Ramírez, M., Baeza, J., & Freer, J. (2011). Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis. Enzyme and Microbial Technology, 49, 472–477.CrossRef
259.
go back to reference Ahmad, M., Taylor, C. R., Pink, D., Burton, K., Eastwood, D., Bending, G. D., & Bugg, T. D. (2010). Development of novel assays for lignin degradation: Comparative analysis of bacterial and fungal lignin degraders. Molecular BioSystems, 6(5), 815–821.CrossRef Ahmad, M., Taylor, C. R., Pink, D., Burton, K., Eastwood, D., Bending, G. D., & Bugg, T. D. (2010). Development of novel assays for lignin degradation: Comparative analysis of bacterial and fungal lignin degraders. Molecular BioSystems, 6(5), 815–821.CrossRef
260.
go back to reference Chen, Y., Ding, Y., Yang, L., Yu, J., Liu, G., Wang, X., Zhang, S., Yu, D., Song, L., & Zhang, H. (2013). Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630. Nucleic Acids Rresearch, 42(2), 1052–1064.CrossRef Chen, Y., Ding, Y., Yang, L., Yu, J., Liu, G., Wang, X., Zhang, S., Yu, D., Song, L., & Zhang, H. (2013). Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630. Nucleic Acids Rresearch, 42(2), 1052–1064.CrossRef
261.
go back to reference Dai, Y. Z., Si, M. Y., Chen, Y. H., Zhang, N. L., Zhou, M., Liao, Q., Shi, D. Q., & Liu, Y. N. (2015). Combination of biological pretreatment with NaOH/Urea pretreatment at cold temperature to enhance enzymatic hydrolysis of rice straw. Bioresource Technology, 198, 725–731.CrossRef Dai, Y. Z., Si, M. Y., Chen, Y. H., Zhang, N. L., Zhou, M., Liao, Q., Shi, D. Q., & Liu, Y. N. (2015). Combination of biological pretreatment with NaOH/Urea pretreatment at cold temperature to enhance enzymatic hydrolysis of rice straw. Bioresource Technology, 198, 725–731.CrossRef
262.
go back to reference Guillén, F., Martínez, M. J., Gutiérrez, A., & Del Rio, J. (2005). Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology, 8, 195–204. Guillén, F., Martínez, M. J., Gutiérrez, A., & Del Rio, J. (2005). Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology, 8, 195–204.
263.
go back to reference Sainsbury, P. D., Hardiman, E. M., Ahmad, M., Otani, H., Seghezzi, N., Eltis, L. D., & Bugg, T. D. H. (2013). Breaking down lignin to high-value chemicals: The conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chemical Biology, 8(10), 151–156.CrossRef Sainsbury, P. D., Hardiman, E. M., Ahmad, M., Otani, H., Seghezzi, N., Eltis, L. D., & Bugg, T. D. H. (2013). Breaking down lignin to high-value chemicals: The conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chemical Biology, 8(10), 151–156.CrossRef
264.
go back to reference Salvachúa, D., Karp, E. M., Nimlos, C. T., Vardon, D. R., & Beckham, G. T. (2015). Towards lignin consolidated bioprocessing: Simultaneous lignin depolymerization and product generation by bacteria. Green Chemistry, 17, 4951–4967.CrossRef Salvachúa, D., Karp, E. M., Nimlos, C. T., Vardon, D. R., & Beckham, G. T. (2015). Towards lignin consolidated bioprocessing: Simultaneous lignin depolymerization and product generation by bacteria. Green Chemistry, 17, 4951–4967.CrossRef
265.
go back to reference Leonowicz, A., Matuszewska, A., Luterek, J., Ziegenhagen, D., Wojtaś-Wasilewska, M., Cho, N. S., Hofrichter, M., & Rogalski, J. (1999). Biodegradation of lignin by white rot Fungi. Fungal Genetics and Biology, 27, 175–185.CrossRef Leonowicz, A., Matuszewska, A., Luterek, J., Ziegenhagen, D., Wojtaś-Wasilewska, M., Cho, N. S., Hofrichter, M., & Rogalski, J. (1999). Biodegradation of lignin by white rot Fungi. Fungal Genetics and Biology, 27, 175–185.CrossRef
266.
go back to reference Pérez, J., Muñozdorado, J., de la Rubia, T., & Martínez, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology the Official Journal of the Spanish Society for Microbiology, 5, 53–63. Pérez, J., Muñozdorado, J., de la Rubia, T., & Martínez, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology the Official Journal of the Spanish Society for Microbiology, 5, 53–63.
267.
go back to reference Tien, M., & Kirk, T. (1983). Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science, 221, 661.CrossRef Tien, M., & Kirk, T. (1983). Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science, 221, 661.CrossRef
268.
go back to reference Tišma, M., Planinić, M., Bucić-Kojić, A., Panjičko, M., Zupančič, G. D., & Zelić, B. (2018). Corn silage fungal-based solid-state pretreatment for enhanced biogas production in anaerobic co-digestion with cow manure. Bioresource Technology, 253, 220–226.CrossRef Tišma, M., Planinić, M., Bucić-Kojić, A., Panjičko, M., Zupančič, G. D., & Zelić, B. (2018). Corn silage fungal-based solid-state pretreatment for enhanced biogas production in anaerobic co-digestion with cow manure. Bioresource Technology, 253, 220–226.CrossRef
269.
go back to reference Aguiar, A., Souza-Cruz, P. B. D., & Ferraz, A. (2006). Oxalic acid, Fe3+-reduction activity and oxidative enzymes detected in culture extracts recovered from Pinus taeda wood chips biotreated by Ceriporiopsis subvermispora. Enzyme and Microbial Technology, 38, 873–878.CrossRef Aguiar, A., Souza-Cruz, P. B. D., & Ferraz, A. (2006). Oxalic acid, Fe3+-reduction activity and oxidative enzymes detected in culture extracts recovered from Pinus taeda wood chips biotreated by Ceriporiopsis subvermispora. Enzyme and Microbial Technology, 38, 873–878.CrossRef
270.
go back to reference Sanchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27, 185–194.CrossRef Sanchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27, 185–194.CrossRef
271.
go back to reference Saratale, G. D., Chien, L. J., & Chang, J. S. (2010). Enzymatic treatment of lignocellulosic wastes for anaerobic digestion and bioenergy production. In Environmental anaerobic technology applications and new developments (pp. 279–308). London: World Scientific Pub. Co. Inc.CrossRef Saratale, G. D., Chien, L. J., & Chang, J. S. (2010). Enzymatic treatment of lignocellulosic wastes for anaerobic digestion and bioenergy production. In Environmental anaerobic technology applications and new developments (pp. 279–308). London: World Scientific Pub. Co. Inc.CrossRef
272.
go back to reference Schilling, J. S., Tewalt, J. P., & Duncan, S. M. (2009). Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems. Applied Microbiology and Biotechnology, 84, 465.CrossRef Schilling, J. S., Tewalt, J. P., & Duncan, S. M. (2009). Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems. Applied Microbiology and Biotechnology, 84, 465.CrossRef
273.
go back to reference de Gonzalo, G. D. I., Habib, M. H., & Fraaije, M. W. (2016). Bacterial enzymes involved in lignin degradation. Journal of Biotechnology, 236, 110–119.CrossRef de Gonzalo, G. D. I., Habib, M. H., & Fraaije, M. W. (2016). Bacterial enzymes involved in lignin degradation. Journal of Biotechnology, 236, 110–119.CrossRef
274.
go back to reference Ma, K., & Ruan, Z. (2015). Production of a lignocellulolytic enzyme system for simultaneous bio-delignification and saccharification of corn stover employing co-culture of fungi. Bioresource Technology, 175, 586–593.CrossRef Ma, K., & Ruan, Z. (2015). Production of a lignocellulolytic enzyme system for simultaneous bio-delignification and saccharification of corn stover employing co-culture of fungi. Bioresource Technology, 175, 586–593.CrossRef
275.
go back to reference Godden, B., Ball, A. S., Helvenstein, P., Mccarthy, A. J., & Penninckx, M. J. (1992). Towards elucidation of the lignin degradation pathway in actinomycetes. Journal of General Microbiology, 138, 2441–2448.CrossRef Godden, B., Ball, A. S., Helvenstein, P., Mccarthy, A. J., & Penninckx, M. J. (1992). Towards elucidation of the lignin degradation pathway in actinomycetes. Journal of General Microbiology, 138, 2441–2448.CrossRef
276.
go back to reference Wältermann, M., Luftmann, H., Baumeister, D., Kalscheuer, R., & Steinbüchel, A. (2000). Rhodococcus opacus strain PD630 as a new source of high-value single-cell oil? Isolation and characterization of triacylglycerols and other storage lipids. Microbiology, 146(5), 1143–1149.CrossRef Wältermann, M., Luftmann, H., Baumeister, D., Kalscheuer, R., & Steinbüchel, A. (2000). Rhodococcus opacus strain PD630 as a new source of high-value single-cell oil? Isolation and characterization of triacylglycerols and other storage lipids. Microbiology, 146(5), 1143–1149.CrossRef
277.
go back to reference Ma, F., Yang, N., Xu, C., Yu, H., Wu, J., & Zhang, X. (2010). Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresource Technology, 101, 9600–9604.CrossRef Ma, F., Yang, N., Xu, C., Yu, H., Wu, J., & Zhang, X. (2010). Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresource Technology, 101, 9600–9604.CrossRef
278.
go back to reference Asadi, N., & Zilouei, H. (2017). Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Bioresource Technology, 227, 335–344.CrossRef Asadi, N., & Zilouei, H. (2017). Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Bioresource Technology, 227, 335–344.CrossRef
279.
go back to reference Feng, R., Zaidi, A. A., Zhang, K., & Shi, Y. (2018). Optimization of microwave pretreatment for biogas enhancement through anaerobic digestion of microalgal biomass. Periodica Polytechnica, Chemical Engineering, 63, 65–72.CrossRef Feng, R., Zaidi, A. A., Zhang, K., & Shi, Y. (2018). Optimization of microwave pretreatment for biogas enhancement through anaerobic digestion of microalgal biomass. Periodica Polytechnica, Chemical Engineering, 63, 65–72.CrossRef
280.
go back to reference Koupaie, E. H., Dahadha, S., BazyarLakeh, A. A., Azizi, A., & Elbeshbishy, E. (2019). Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production – A review. Journal of Environmental Management, 233, 774–784.CrossRef Koupaie, E. H., Dahadha, S., BazyarLakeh, A. A., Azizi, A., & Elbeshbishy, E. (2019). Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production – A review. Journal of Environmental Management, 233, 774–784.CrossRef
281.
go back to reference Hashemi, S. S., Karimi, K., & Mirmohamadsadeghi, S. (2019). Hydrothermal pretreatment of safflower straw to enhance biogas production. Energy, 172, 545–554.CrossRef Hashemi, S. S., Karimi, K., & Mirmohamadsadeghi, S. (2019). Hydrothermal pretreatment of safflower straw to enhance biogas production. Energy, 172, 545–554.CrossRef
282.
go back to reference Houtman, C. J., Maligaspe, E., Hunt, C. G., Fernández-Fueyo, E., Martínez, A. T., & Hammel, K. E. (2018). Fungal lignin peroxidase does not produce the veratryl alcohol cation radical as a diffusible ligninolytic oxidant. The Journal of Biological Chemistry, 293, 4702–4712.CrossRef Houtman, C. J., Maligaspe, E., Hunt, C. G., Fernández-Fueyo, E., Martínez, A. T., & Hammel, K. E. (2018). Fungal lignin peroxidase does not produce the veratryl alcohol cation radical as a diffusible ligninolytic oxidant. The Journal of Biological Chemistry, 293, 4702–4712.CrossRef
283.
go back to reference Parveen, K., Diane, M., Barrett, M., Delwiche, J., & Pieter, S. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research, 48, 3713–3729.CrossRef Parveen, K., Diane, M., Barrett, M., Delwiche, J., & Pieter, S. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research, 48, 3713–3729.CrossRef
284.
go back to reference Taherdanak, M., Zilouei, H., & Karimi, K. (2016). The inflfluence of dilute sulfuric acid pretreatment on biogas production form wheat plant. International Journal of Green Energy, 13, 1129–1134.CrossRef Taherdanak, M., Zilouei, H., & Karimi, K. (2016). The inflfluence of dilute sulfuric acid pretreatment on biogas production form wheat plant. International Journal of Green Energy, 13, 1129–1134.CrossRef
285.
go back to reference Wright, J. D. (1988). Ethanol from biomass by enzymatic hydrolysis. Chemical Engineering Progress, 84, 8. Wright, J. D. (1988). Ethanol from biomass by enzymatic hydrolysis. Chemical Engineering Progress, 84, 8.
286.
go back to reference Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96, 1959–1966.CrossRef Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96, 1959–1966.CrossRef
287.
go back to reference Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresource Technology, 96, 2026–2032.CrossRef Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresource Technology, 96, 2026–2032.CrossRef
288.
go back to reference Xu, Z. Y., & Huang, F. (2014). Pretreatment methods for bioethanol production. Applied Biochemistry and Biotecnology, 174, 43–62.CrossRef Xu, Z. Y., & Huang, F. (2014). Pretreatment methods for bioethanol production. Applied Biochemistry and Biotecnology, 174, 43–62.CrossRef
Metadata
Title
Microbial Lipid Production from Lignocellulosic Biomass Pretreated by Effective Pretreatment
Authors
Cui-Luan Ma
Yu-Cai He
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-65584-6_8