Skip to main content
Top

2022 | OriginalPaper | Chapter

2. Microcosmic Interaction Between Plasma Jet and Spraying Particles

Authors : Guozheng Ma, Shuying Chen, Haidou Wang

Published in: Micro Process and Quality Control of Plasma Spraying

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Plasma spraying consists of three steps of energy conversion. The first step is the conversion from electric energy to internal energy during ionization of working gas under high voltage; the second step is the form of heating transfer, mass transfer and accelerated process after the spray particles interact with the jet; and the final is the energy collaborative dissipation in the spreading and solidification process of molten particles impacting the substrate at high speed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fauchais P (2004) Understanding plasma spraying. J Phys D Appl Phys 37(9):86–108CrossRef Fauchais P (2004) Understanding plasma spraying. J Phys D Appl Phys 37(9):86–108CrossRef
2.
go back to reference Fauchais P, Vardelle A (2000) Heat, mass and momentum transfer in coating formation by plasma spraying. Int J Therm Sci 39(9–11):852–870CrossRef Fauchais P, Vardelle A (2000) Heat, mass and momentum transfer in coating formation by plasma spraying. Int J Therm Sci 39(9–11):852–870CrossRef
3.
go back to reference Liu T, Ansar A, Arnold J (2017) A study of the influence of the surrounding gas on the plasma jet and coating quality during plasma spraying. Plasma Chem Plasma Process 2017:1–24 Liu T, Ansar A, Arnold J (2017) A study of the influence of the surrounding gas on the plasma jet and coating quality during plasma spraying. Plasma Chem Plasma Process 2017:1–24
4.
go back to reference Xu Z, Dong T, Li G et al (2014) Parameters optimizing of NiCr-Cr3C2 coating deposited by supersonic plasma spraying based on uniform design. J Mech Eng 50(18):43–49CrossRef Xu Z, Dong T, Li G et al (2014) Parameters optimizing of NiCr-Cr3C2 coating deposited by supersonic plasma spraying based on uniform design. J Mech Eng 50(18):43–49CrossRef
5.
go back to reference Jan C, Khiamaik K (2012) Role of in-flight temperature and velocity of powder particles on plasma sprayed hydroxyapatite coating characteristics. Surf Coat Technol 206:2181–2191CrossRef Jan C, Khiamaik K (2012) Role of in-flight temperature and velocity of powder particles on plasma sprayed hydroxyapatite coating characteristics. Surf Coat Technol 206:2181–2191CrossRef
6.
go back to reference Dhiman R, Chandra S (2005) Freezing-induced splashing during impact of molten metal droplets with high Weber numbers. Int J Heat Mass Transf 48(25):5625–5638CrossRef Dhiman R, Chandra S (2005) Freezing-induced splashing during impact of molten metal droplets with high Weber numbers. Int J Heat Mass Transf 48(25):5625–5638CrossRef
7.
go back to reference Rampon R, Marchand O, Filiatre C et al (2008) Influence of suspension characteristics on coatings microstructure obtained by suspension plasma spraying. Surf Coat Technol 202(18):4337–4342CrossRef Rampon R, Marchand O, Filiatre C et al (2008) Influence of suspension characteristics on coatings microstructure obtained by suspension plasma spraying. Surf Coat Technol 202(18):4337–4342CrossRef
8.
go back to reference Montavon G, Sampath S, Berndt CC et al (1997) Effects of the spray angle on splat morphology during thermal spraying. Surf Coat Technol 91(1–2):107–115CrossRef Montavon G, Sampath S, Berndt CC et al (1997) Effects of the spray angle on splat morphology during thermal spraying. Surf Coat Technol 91(1–2):107–115CrossRef
9.
go back to reference Ružbarský J, Panda A (2017) Plasma and thermal spraying. Springer International Publishing Ružbarský J, Panda A (2017) Plasma and thermal spraying. Springer International Publishing
10.
go back to reference Tan C, Wei Z, Wei P et al (2014) In-flight particle behavior in internal powder injection supersonic plasma spray. J Xi’an Jiaotong Univ 48(6):91–97 Tan C, Wei Z, Wei P et al (2014) In-flight particle behavior in internal powder injection supersonic plasma spray. J Xi’an Jiaotong Univ 48(6):91–97
11.
go back to reference Zhou L, Luo F, Zhou W et al (2016) Influence of FeCrAl content on microstructure and bonding strength of plasma-sprayed FeCrAl/Al2O3 coatings. J Therm Spray Technol 25(3):509–517CrossRef Zhou L, Luo F, Zhou W et al (2016) Influence of FeCrAl content on microstructure and bonding strength of plasma-sprayed FeCrAl/Al2O3 coatings. J Therm Spray Technol 25(3):509–517CrossRef
12.
go back to reference Sudhakar CJ, Bandyopadhyay PP (2017) Plasma sprayed carbon nanotube reinforced splats and coatings. J Eur Ceram Soc 37:2235–2244CrossRef Sudhakar CJ, Bandyopadhyay PP (2017) Plasma sprayed carbon nanotube reinforced splats and coatings. J Eur Ceram Soc 37:2235–2244CrossRef
13.
go back to reference Anup KK, Debrupa L, Arvind A (2011) Carbon nanotubes improve the adhesion strength of a ceramic splat to the steel substrate. Carbon 49:4340–4347CrossRef Anup KK, Debrupa L, Arvind A (2011) Carbon nanotubes improve the adhesion strength of a ceramic splat to the steel substrate. Carbon 49:4340–4347CrossRef
14.
go back to reference Pei W, Wei Z, Zhao G et al (2015) The analysis of melting and refining process for in-flight particles in supersonic plasma spraying. Comput Mater Sci 103(9):8–19 Pei W, Wei Z, Zhao G et al (2015) The analysis of melting and refining process for in-flight particles in supersonic plasma spraying. Comput Mater Sci 103(9):8–19
15.
go back to reference Zhan Q, Yu L, Ye F et al (2012) Quantitative evaluation of the decarburization and microstructure evolution of WC-Co during plasma spraying. Surf Coat Technol 206:4068–4074CrossRef Zhan Q, Yu L, Ye F et al (2012) Quantitative evaluation of the decarburization and microstructure evolution of WC-Co during plasma spraying. Surf Coat Technol 206:4068–4074CrossRef
16.
go back to reference Niranatlumpong P, Sukonkhet C, Ninon K (2015) Loss of Y from NiCrAlY powder during air plasma spraying. Surf Coat Technol 280:277–281CrossRef Niranatlumpong P, Sukonkhet C, Ninon K (2015) Loss of Y from NiCrAlY powder during air plasma spraying. Surf Coat Technol 280:277–281CrossRef
17.
go back to reference Bai Y, Zhao L, Wang Y et al (2015) Fragmentation of in-flight particles and its influence on the microstructure and mechanical property of YSZ coating deposited by supersonic atmospheric plasma spraying. J Alloy Compd 632:794–799CrossRef Bai Y, Zhao L, Wang Y et al (2015) Fragmentation of in-flight particles and its influence on the microstructure and mechanical property of YSZ coating deposited by supersonic atmospheric plasma spraying. J Alloy Compd 632:794–799CrossRef
18.
go back to reference Tian J, Yao S, Luo X et al (2016) An effective approach for creating metallurgical self-bonding in plasma-spraying of NiCr-Mo coating by designing shell-core-structured powders. Acta Mater 110:19–30CrossRef Tian J, Yao S, Luo X et al (2016) An effective approach for creating metallurgical self-bonding in plasma-spraying of NiCr-Mo coating by designing shell-core-structured powders. Acta Mater 110:19–30CrossRef
19.
go back to reference Zhang L, Wei Q, Li H et al (2009) Oxidization behavior of thermally sprayed particles and the relevant protective techniques. J Mater Eng 6:78–82 Zhang L, Wei Q, Li H et al (2009) Oxidization behavior of thermally sprayed particles and the relevant protective techniques. J Mater Eng 6:78–82
20.
go back to reference Qi W, Yin Z, Li H (2012) Oxidation control in plasma spraying NiCrCoAlY coating. Appl Surf Sci 258:5094–5099CrossRef Qi W, Yin Z, Li H (2012) Oxidation control in plasma spraying NiCrCoAlY coating. Appl Surf Sci 258:5094–5099CrossRef
21.
go back to reference Syed AA, Denoirjean A, Fauchais P et al (2006) On the oxidation of stainless steel particles in the plasma jet. Surf Coat Technol 200(14–15):4368–4382CrossRef Syed AA, Denoirjean A, Fauchais P et al (2006) On the oxidation of stainless steel particles in the plasma jet. Surf Coat Technol 200(14–15):4368–4382CrossRef
22.
go back to reference Cizek J, Khor KA, Dlouhy I (2013) In-flight temperature and velocity of powder particles of plasma-sprayed TiO2. J Therm Spray Technol 22(8):1320–1327CrossRef Cizek J, Khor KA, Dlouhy I (2013) In-flight temperature and velocity of powder particles of plasma-sprayed TiO2. J Therm Spray Technol 22(8):1320–1327CrossRef
23.
go back to reference Matthews S (2014) Development of high carbide dissolution/low carbon loss Cr3C2-NiCr coatings by shrouded plasma spraying. Surf Coat Technol 258:886–900CrossRef Matthews S (2014) Development of high carbide dissolution/low carbon loss Cr3C2-NiCr coatings by shrouded plasma spraying. Surf Coat Technol 258:886–900CrossRef
24.
go back to reference Matthews S (2015) Carbide dissolution/carbon loss as a function of spray distance in unshrouded/shrouded plasma sprayed Cr3C2-NiCr coatings. J Therm Spray Technol 24(3):1–18 Matthews S (2015) Carbide dissolution/carbon loss as a function of spray distance in unshrouded/shrouded plasma sprayed Cr3C2-NiCr coatings. J Therm Spray Technol 24(3):1–18
25.
go back to reference Shahien M, Yamada M, Fukumoto M (2016) Challenges upon reactive plasma spray nitriding: Al powders and fabrication of AlN coatings as a case study. J Therm Spray Technol 25(5):1–23CrossRef Shahien M, Yamada M, Fukumoto M (2016) Challenges upon reactive plasma spray nitriding: Al powders and fabrication of AlN coatings as a case study. J Therm Spray Technol 25(5):1–23CrossRef
26.
go back to reference Shahien M, Yamada M, Yasui T et al (2013) N2 and H2 plasma gasses’ effects in reactive plasma spraying of Al2O3, powder. Surf Coat Technol 216:308–317CrossRef Shahien M, Yamada M, Yasui T et al (2013) N2 and H2 plasma gasses’ effects in reactive plasma spraying of Al2O3, powder. Surf Coat Technol 216:308–317CrossRef
27.
go back to reference Shahien M, Yamada M, Fukumoto M et al (2015) Reactive plasma-sprayed aluminum nitride-based coating thermal conductivity. J Therm Spray Technol 24(8):1385–1398CrossRef Shahien M, Yamada M, Fukumoto M et al (2015) Reactive plasma-sprayed aluminum nitride-based coating thermal conductivity. J Therm Spray Technol 24(8):1385–1398CrossRef
28.
go back to reference Xia M, Wang Z, Zhou Z et al (2016) Research on microstructure and properties of reactive plasma spraying TiN composite coatings. Powder Metall Indus 26(3):38–43 Xia M, Wang Z, Zhou Z et al (2016) Research on microstructure and properties of reactive plasma spraying TiN composite coatings. Powder Metall Indus 26(3):38–43
29.
go back to reference Yao Y, Wang Z, Zhou Z et al (2013) Study on reactive atmospheric plasma-sprayed in situ titanium compound composite coating. J Therm Spray Technol 22(4):509–517CrossRef Yao Y, Wang Z, Zhou Z et al (2013) Study on reactive atmospheric plasma-sprayed in situ titanium compound composite coating. J Therm Spray Technol 22(4):509–517CrossRef
30.
go back to reference Gardon M, Guilemany JM (2014) Milestones in functional titanium dioxide thermal spray coatings: a review. J Therm Spray Technol 23(4):577–595CrossRef Gardon M, Guilemany JM (2014) Milestones in functional titanium dioxide thermal spray coatings: a review. J Therm Spray Technol 23(4):577–595CrossRef
31.
go back to reference Gardon M, Dosta S, Guilemany JM et al (2013) Improved, high conductivity titanium sub-oxide coated electrodes obtained by atmospheric plasma spray. J Power Sources 238(238):430–434CrossRef Gardon M, Dosta S, Guilemany JM et al (2013) Improved, high conductivity titanium sub-oxide coated electrodes obtained by atmospheric plasma spray. J Power Sources 238(238):430–434CrossRef
32.
go back to reference Lee H, Su JH, Seshadri RC et al (2016) Thermoelectric properties of in-situ plasma spray synthesized sub-stoichiometry TiO2-x. Sci Rep 6:1–11CrossRef Lee H, Su JH, Seshadri RC et al (2016) Thermoelectric properties of in-situ plasma spray synthesized sub-stoichiometry TiO2-x. Sci Rep 6:1–11CrossRef
33.
go back to reference Yuan J, Zhan Q, Huanng J et al (2013) Decarburization mechanisms of WC-Co during thermal spraying: Insights from controlled carbon loss and microstructure characterization. Mater Chem Phys 142(1):165–171CrossRef Yuan J, Zhan Q, Huanng J et al (2013) Decarburization mechanisms of WC-Co during thermal spraying: Insights from controlled carbon loss and microstructure characterization. Mater Chem Phys 142(1):165–171CrossRef
34.
go back to reference Wang H, Jianlong MA, Guolong LI, et al (2014) The dependency of microstructure and mechanical properties of nanostructured alumina-titania coatings on critical plasma spraying parameter. Appl Surf Sci 314(10):468–475 Wang H, Jianlong MA, Guolong LI, et al (2014) The dependency of microstructure and mechanical properties of nanostructured alumina-titania coatings on critical plasma spraying parameter. Appl Surf Sci 314(10):468–475
35.
go back to reference Cizek J, Dlouhy I, Siska F et al (2014) Modification of plasma-sprayed TiO2 coatings characteristics via controlling the in-flight temperature and velocity of the powder particles. J Therm Spray Technol 23(8):1339–1349CrossRef Cizek J, Dlouhy I, Siska F et al (2014) Modification of plasma-sprayed TiO2 coatings characteristics via controlling the in-flight temperature and velocity of the powder particles. J Therm Spray Technol 23(8):1339–1349CrossRef
36.
go back to reference Xu J, Zou B, Tao S et al (2016) Fabrication and properties of Al2O3-TiB2-TiC/Al metal matrix composite coatings by atmospheric plasma spraying of SHS powders. J Alloy Compd 672:251–259CrossRef Xu J, Zou B, Tao S et al (2016) Fabrication and properties of Al2O3-TiB2-TiC/Al metal matrix composite coatings by atmospheric plasma spraying of SHS powders. J Alloy Compd 672:251–259CrossRef
37.
go back to reference Zou B, Tao S, Huang W et al (2013) Synthesis and characterization of in situ TiC-TiB2 composite coatings by reactive plasma spraying on a magnesium alloy. Appl Surf Sci 264:879–885CrossRef Zou B, Tao S, Huang W et al (2013) Synthesis and characterization of in situ TiC-TiB2 composite coatings by reactive plasma spraying on a magnesium alloy. Appl Surf Sci 264:879–885CrossRef
38.
go back to reference Wang L, Yan D, Yang Y et al (2014) Structure and properties of nanostructured ceramic matrix composite coatings prepared in-situ by reactive plasma spraying micro-sized Al-Fe2O3-Cr2O3 powders. Ceram Int 40:6481–6486CrossRef Wang L, Yan D, Yang Y et al (2014) Structure and properties of nanostructured ceramic matrix composite coatings prepared in-situ by reactive plasma spraying micro-sized Al-Fe2O3-Cr2O3 powders. Ceram Int 40:6481–6486CrossRef
39.
go back to reference Jining H, Fanyong Z, Pengbo M et al (2016) Microstructure and wear behavior of nano C-rich TiCN coatings fabricated by reactive plasma spraying with Ti-graphite powders. Surf Coat Technol 305:215–222CrossRef Jining H, Fanyong Z, Pengbo M et al (2016) Microstructure and wear behavior of nano C-rich TiCN coatings fabricated by reactive plasma spraying with Ti-graphite powders. Surf Coat Technol 305:215–222CrossRef
40.
go back to reference Mi P, He J, Qin Y, et al (2016) Nanostructure reactive plasma sprayed TiCN coating. Surf Coat Technol 309–314 Mi P, He J, Qin Y, et al (2016) Nanostructure reactive plasma sprayed TiCN coating. Surf Coat Technol 309–314
Metadata
Title
Microcosmic Interaction Between Plasma Jet and Spraying Particles
Authors
Guozheng Ma
Shuying Chen
Haidou Wang
Copyright Year
2022
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-2742-3_2

Premium Partners