Skip to main content
Top

2019 | OriginalPaper | Chapter

59. Microelectromechanical Systems (MEMS)-Based Testing of Materials

Author : Jagannathan Rajagopalan

Published in: Handbook of Mechanics of Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mechanical behavior of micro- and nanoscale materials has received considerable attention in recent years because of their widespread use in micro−/nanotechnology applications. These materials are also intriguing from a scientific standpoint because their small-size scale results in mechanical behavior that is significantly different from the behavior of macroscale materials. As a result, a variety of experimental methodologies have been developed to accurately determine the mechanical properties (modulus, strength, fracture toughness, etc.) of micro- and nanoscale materials and uncover the microscopic mechanisms that lead to those properties. Among these approaches, microelectromechanical systems (MEMS)-based platforms have proven to be highly suitable because of their capability to apply and resolve extremely small forces (nN) and displacements (nm). In addition, MEMS-based testing platforms, because of their small size, are ideal for in situ characterization in electron and scanning probe microscopes, which often have stringent space limitations. This chapter provides an overview of the development and advances in MEMS-based materials characterization with an emphasis on in situ techniques. Different actuation and sensing mechanisms as well as device configurations for various types of testing (tensile, fatigue, thermomechanical) are reviewed. Key results and insights obtained from the nanomechanical characterization of thin films, nanowires, and nanotubes using MEMS-based platforms are summarized. Finally, some of the challenges and opportunities for MEMS-based micro- and nanoscale materials characterization are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tang WC, Nguyen T-CH, Howe RT. Laterally driven polysilicon resonant microstructures. Sensors Actuators. 1989;20(1):25–32.CrossRef Tang WC, Nguyen T-CH, Howe RT. Laterally driven polysilicon resonant microstructures. Sensors Actuators. 1989;20(1):25–32.CrossRef
2.
go back to reference Zhu Y, Chang T-HA. Review of microelectromechanical systems for nanoscale mechanical characterization. J Micromech Microeng. 2015;25(9):93001.CrossRef Zhu Y, Chang T-HA. Review of microelectromechanical systems for nanoscale mechanical characterization. J Micromech Microeng. 2015;25(9):93001.CrossRef
3.
go back to reference Huang Q-A, Lee NKS. Analysis and design of polysilicon thermal flexure actuator. J Micromech Microeng. 1999;9(1):64.CrossRef Huang Q-A, Lee NKS. Analysis and design of polysilicon thermal flexure actuator. J Micromech Microeng. 1999;9(1):64.CrossRef
4.
go back to reference Que L, Park J-S, Gianchandani YB. Bent-beam electrothermal actuators-part I: single beam and cascaded devices. J Microelectromech Syst. 2001;10(2):247–54.CrossRef Que L, Park J-S, Gianchandani YB. Bent-beam electrothermal actuators-part I: single beam and cascaded devices. J Microelectromech Syst. 2001;10(2):247–54.CrossRef
5.
go back to reference Guan C, Zhu Y. An electrothermal microactuator with Z-shaped beams. J Micromech Microeng. 2010;20(8):85014.CrossRef Guan C, Zhu Y. An electrothermal microactuator with Z-shaped beams. J Micromech Microeng. 2010;20(8):85014.CrossRef
6.
go back to reference Abbas K, Alaie S, Leseman ZC. Design and characterization of a low temperature gradient and large displacement thermal actuators for in situ mechanical testing of nanoscale materials. J Micromech Microeng. 2012;22(12):125027.CrossRef Abbas K, Alaie S, Leseman ZC. Design and characterization of a low temperature gradient and large displacement thermal actuators for in situ mechanical testing of nanoscale materials. J Micromech Microeng. 2012;22(12):125027.CrossRef
7.
go back to reference Haque MA, Espinosa HD, Lee HJ. MEMS for in situ testing – handling, actuation, loading, and displacement measurements. MRS Bull. 2010;35(5):375–81.CrossRef Haque MA, Espinosa HD, Lee HJ. MEMS for in situ testing – handling, actuation, loading, and displacement measurements. MRS Bull. 2010;35(5):375–81.CrossRef
8.
go back to reference Haque MA, Saif MTA. In-situ tensile testing of nano-scale specimens in SEM and TEM. Exp Mech. 2002;42(1):123–8.CrossRef Haque MA, Saif MTA. In-situ tensile testing of nano-scale specimens in SEM and TEM. Exp Mech. 2002;42(1):123–8.CrossRef
9.
go back to reference Gianola DS, Eberl C. Micro- and nanoscale tensile testing of materials. JOM. 2009;61(3):24–35.CrossRef Gianola DS, Eberl C. Micro- and nanoscale tensile testing of materials. JOM. 2009;61(3):24–35.CrossRef
10.
go back to reference Sharpe WN Jr, Turner KT, Edwards RL. Tensile testing of polysilicon. Exp Mech. 1999;39(3):162–70.CrossRef Sharpe WN Jr, Turner KT, Edwards RL. Tensile testing of polysilicon. Exp Mech. 1999;39(3):162–70.CrossRef
11.
go back to reference Hemker KJ, Sharpe WN, Microscale J. Characterization of mechanical properties. Annu Rev Mater Res. 2007;37(1):93–126.CrossRef Hemker KJ, Sharpe WN, Microscale J. Characterization of mechanical properties. Annu Rev Mater Res. 2007;37(1):93–126.CrossRef
12.
go back to reference Gianola DS, Van Petegem S, Legros M, Brandstetter S, Van Swygenhoven H, Hemker KJ. Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 2006;54(8):2253–63.CrossRef Gianola DS, Van Petegem S, Legros M, Brandstetter S, Van Swygenhoven H, Hemker KJ. Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 2006;54(8):2253–63.CrossRef
13.
go back to reference Gianola DS, Sedlmayr A, Mönig R, Volkert CA, Major RC, Cyrankowski E, et al. In situ nanomechanical testing in focused ion beam and scanning electron microscopes. Rev Sci Instrum. 2011;82(6):63901.CrossRef Gianola DS, Sedlmayr A, Mönig R, Volkert CA, Major RC, Cyrankowski E, et al. In situ nanomechanical testing in focused ion beam and scanning electron microscopes. Rev Sci Instrum. 2011;82(6):63901.CrossRef
14.
go back to reference Singh SS, Sarkar R, Xie H-X, Mayer C, Rajagopalan J, Chawla N. Tensile behavior of single-crystal tin whiskers. J Electron Mater. 2014;43(4):978–82.CrossRef Singh SS, Sarkar R, Xie H-X, Mayer C, Rajagopalan J, Chawla N. Tensile behavior of single-crystal tin whiskers. J Electron Mater. 2014;43(4):978–82.CrossRef
15.
go back to reference Brown JJ, Baca AI, Bertness KA, Dikin DA, Ruoff RS, Bright VM. Tensile measurement of single crystal gallium nitride nanowires on MEMS test stages. Sensors Actuators A Phys. 2011;166(2):177–86.CrossRef Brown JJ, Baca AI, Bertness KA, Dikin DA, Ruoff RS, Bright VM. Tensile measurement of single crystal gallium nitride nanowires on MEMS test stages. Sensors Actuators A Phys. 2011;166(2):177–86.CrossRef
16.
go back to reference Greil J, Lugstein A, Zeiner C, Strasser G, Bertagnolli E. Tuning the electro-optical properties of germanium nanowires by tensile strain. Nano Lett. 2012;12(12):6230–4.CrossRef Greil J, Lugstein A, Zeiner C, Strasser G, Bertagnolli E. Tuning the electro-optical properties of germanium nanowires by tensile strain. Nano Lett. 2012;12(12):6230–4.CrossRef
17.
go back to reference Read DT, Dally JW. A new method for measuring the strength and ductility of thin films. J Mater Res. 1993;8(7):1542–9.CrossRef Read DT, Dally JW. A new method for measuring the strength and ductility of thin films. J Mater Res. 1993;8(7):1542–9.CrossRef
18.
go back to reference Guo H, Chen K, Oh Y, Wang K, Dejoie C, Syed Asif SA, et al. Mechanics and dynamics of the strain-induced M1–M2 structural phase transition in individual VO2 nanowires. Nano Lett. 2011;11(8):3207–13.CrossRef Guo H, Chen K, Oh Y, Wang K, Dejoie C, Syed Asif SA, et al. Mechanics and dynamics of the strain-induced M1–M2 structural phase transition in individual VO2 nanowires. Nano Lett. 2011;11(8):3207–13.CrossRef
20.
go back to reference Haque MA, Saif MTA. In situ tensile testing of nanoscale freestanding thin films inside a transmission electron microscope. J Mater Res. 2005;20(7):1769–77.CrossRef Haque MA, Saif MTA. In situ tensile testing of nanoscale freestanding thin films inside a transmission electron microscope. J Mater Res. 2005;20(7):1769–77.CrossRef
21.
go back to reference Han JH, Saif MTA. In situ microtensile stage for electromechanical characterization of nanoscale freestanding films. Rev Sci Instrum. 2006;77(4):45102.CrossRef Han JH, Saif MTA. In situ microtensile stage for electromechanical characterization of nanoscale freestanding films. Rev Sci Instrum. 2006;77(4):45102.CrossRef
22.
go back to reference Desai AV, Haque MA. Test bed for mechanical characterization of nanowires. J Nanoengineering Nanosystems. 2005;219(2):57–65. Desai AV, Haque MA. Test bed for mechanical characterization of nanowires. J Nanoengineering Nanosystems. 2005;219(2):57–65.
23.
go back to reference Desai AV, Haque MA. Mechanical properties of ZnO nanowires. Sensors Actuators A Phys. 2007;134(1):169–76.CrossRef Desai AV, Haque MA. Mechanical properties of ZnO nanowires. Sensors Actuators A Phys. 2007;134(1):169–76.CrossRef
24.
go back to reference Naraghi M, Chasiotis I, Kahn H, Wen Y, Dzenis Y. Novel method for mechanical characterization of polymeric nanofibers. Rev Sci Instrum. 2007;78(8):85108.CrossRef Naraghi M, Chasiotis I, Kahn H, Wen Y, Dzenis Y. Novel method for mechanical characterization of polymeric nanofibers. Rev Sci Instrum. 2007;78(8):85108.CrossRef
25.
go back to reference Naraghi M, Chasiotis I, Kahn H, Wen Y, Dzenis Y. Mechanical deformation and failure of electrospun polyacrylonitrile nanofibers as a function of strain rate. Appl Phys Lett. 2007;91(15):151901. Naraghi M, Chasiotis I, Kahn H, Wen Y, Dzenis Y. Mechanical deformation and failure of electrospun polyacrylonitrile nanofibers as a function of strain rate. Appl Phys Lett. 2007;91(15):151901.
26.
go back to reference Zhu Y, Moldovan N, Espinosa HD. A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures. Appl Phys Lett. 2005;86(1):13506.CrossRef Zhu Y, Moldovan N, Espinosa HD. A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures. Appl Phys Lett. 2005;86(1):13506.CrossRef
27.
go back to reference Zhu Y, Espinosa HD. An electromechanical material testing system for in situ electron microscopy and applications. PNAS. 2005;102(41):14503–8.CrossRef Zhu Y, Espinosa HD. An electromechanical material testing system for in situ electron microscopy and applications. PNAS. 2005;102(41):14503–8.CrossRef
28.
go back to reference Zhang D, Breguet JM, Clavel R, Sivakov V, Christiansen S, Michler J. In situ electron microscopy mechanical testing of silicon nanowires using electrostatically actuated tensile stages. J Microelectromech Syst. 2010;19(3):663–74.CrossRef Zhang D, Breguet JM, Clavel R, Sivakov V, Christiansen S, Michler J. In situ electron microscopy mechanical testing of silicon nanowires using electrostatically actuated tensile stages. J Microelectromech Syst. 2010;19(3):663–74.CrossRef
29.
go back to reference Pantano MF, Bernal RA, Pagnotta L, Espinosa HD. Multiphysics design and implementation of a microsystem for displacement-controlled tensile testing of nanomaterials. Meccanica. 2014;50(2):549–60.CrossRef Pantano MF, Bernal RA, Pagnotta L, Espinosa HD. Multiphysics design and implementation of a microsystem for displacement-controlled tensile testing of nanomaterials. Meccanica. 2014;50(2):549–60.CrossRef
30.
go back to reference Hosseinian E, Pierron ON. Quantitative in situ TEM tensile fatigue testing on nanocrystalline metallic ultrathin films. Nanoscale. 2013;5(24):12532–41.CrossRef Hosseinian E, Pierron ON. Quantitative in situ TEM tensile fatigue testing on nanocrystalline metallic ultrathin films. Nanoscale. 2013;5(24):12532–41.CrossRef
31.
go back to reference Dai S, Zhao J, Xie L, Cai Y, Wang N, Zhu J. Electron-beam-induced elastic–plastic transition in Si nanowires. Nano Lett. 2012;12(5):2379–85.CrossRef Dai S, Zhao J, Xie L, Cai Y, Wang N, Zhu J. Electron-beam-induced elastic–plastic transition in Si nanowires. Nano Lett. 2012;12(5):2379–85.CrossRef
32.
go back to reference Zheng K, Wang C, Cheng Y-Q, Yue Y, Han X, Zhang Z, et al. Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat Commun. 2010;1:1(3):1–8.CrossRef Zheng K, Wang C, Cheng Y-Q, Yue Y, Han X, Zhang Z, et al. Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat Commun. 2010;1:1(3):1–8.CrossRef
33.
go back to reference Sarkar R, Rentenberger C, Rajagopalan J. Electron beam induced artifacts during in situ TEM deformation of nanostructured metals. Sci Rep. 2015;5:16345.CrossRef Sarkar R, Rentenberger C, Rajagopalan J. Electron beam induced artifacts during in situ TEM deformation of nanostructured metals. Sci Rep. 2015;5:16345.CrossRef
34.
go back to reference Bufford DC, Stauffer D, Mook WM, Syed Asif SA, Boyce BL, Hattar K. High cycle fatigue in the transmission electron microscope. Nano Lett. 2016;16(8):4946–53.CrossRef Bufford DC, Stauffer D, Mook WM, Syed Asif SA, Boyce BL, Hattar K. High cycle fatigue in the transmission electron microscope. Nano Lett. 2016;16(8):4946–53.CrossRef
35.
go back to reference Chang T-H, Zhu Y. Microelectromechanical system for thermomechanical testing of nanostructures. Appl Phys Lett. 2013;103(26):263114. Chang T-H, Zhu Y. Microelectromechanical system for thermomechanical testing of nanostructures. Appl Phys Lett. 2013;103(26):263114.
36.
go back to reference Kang W, Saif MTA. A novel SiC MEMS apparatus for in situ uniaxial testing of micro/nanomaterials at high temperature. J Micromech Microeng. 2011;21(10):105017.CrossRef Kang W, Saif MTA. A novel SiC MEMS apparatus for in situ uniaxial testing of micro/nanomaterials at high temperature. J Micromech Microeng. 2011;21(10):105017.CrossRef
37.
go back to reference Sim G-D, Park J-H, Uchic MD, Shade PA, Lee S-B, Vlassak JJ. An apparatus for performing microtensile tests at elevated temperatures inside a scanning electron microscope. Acta Mater. 2013;61(19):7500–10.CrossRef Sim G-D, Park J-H, Uchic MD, Shade PA, Lee S-B, Vlassak JJ. An apparatus for performing microtensile tests at elevated temperatures inside a scanning electron microscope. Acta Mater. 2013;61(19):7500–10.CrossRef
38.
go back to reference Agrawal R, Peng B, Gdoutos EE, Espinosa HD. Elasticity size effects in ZnO nanowires−a combined experimental-computational approach. Nano Lett. 2008;8(11):3668–74.CrossRef Agrawal R, Peng B, Gdoutos EE, Espinosa HD. Elasticity size effects in ZnO nanowires−a combined experimental-computational approach. Nano Lett. 2008;8(11):3668–74.CrossRef
39.
go back to reference Zhu Y, Qin Q, Xu F, Fan F, Ding Y, Zhang T, et al. Size effects on elasticity, yielding, and fracture of silver nanowires: in situ experiments. Phys Rev B. 2012;85(4):045443. Zhu Y, Qin Q, Xu F, Fan F, Ding Y, Zhang T, et al. Size effects on elasticity, yielding, and fracture of silver nanowires: in situ experiments. Phys Rev B. 2012;85(4):045443.
40.
go back to reference Rajagopalan J, Han JH, Saif MTA. Plastic deformation recovery in freestanding Nanocrystalline aluminum and gold thin films. Science. 2007;315(5820):1831–4.CrossRef Rajagopalan J, Han JH, Saif MTA. Plastic deformation recovery in freestanding Nanocrystalline aluminum and gold thin films. Science. 2007;315(5820):1831–4.CrossRef
41.
go back to reference Wei X, Kysar JW. Residual plastic strain recovery driven by grain boundary diffusion in nanocrystalline thin films. Acta Mater. 2011;59(10):3937–45.CrossRef Wei X, Kysar JW. Residual plastic strain recovery driven by grain boundary diffusion in nanocrystalline thin films. Acta Mater. 2011;59(10):3937–45.CrossRef
42.
go back to reference Lonardelli I, Almer J, Ischia G, Menapace C, Molinari A. Deformation behavior in bulk nanocrystalline-ultrafine aluminum: in situ evidence of plastic strain recovery. Scr Mater. 2009;60(7):520–3.CrossRef Lonardelli I, Almer J, Ischia G, Menapace C, Molinari A. Deformation behavior in bulk nanocrystalline-ultrafine aluminum: in situ evidence of plastic strain recovery. Scr Mater. 2009;60(7):520–3.CrossRef
43.
go back to reference Rajagopalan J, Han JH, Saif MTA. Bauschinger effect in unpassivated freestanding nanoscale metal films. Scr Mater. 2008;59(7):734–7.CrossRef Rajagopalan J, Han JH, Saif MTA. Bauschinger effect in unpassivated freestanding nanoscale metal films. Scr Mater. 2008;59(7):734–7.CrossRef
44.
go back to reference Qin Q, Yin S, Cheng G, Li X, Chang T-H, Richter G, et al. Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction. Nat Commun. 2015;6:5983.CrossRef Qin Q, Yin S, Cheng G, Li X, Chang T-H, Richter G, et al. Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction. Nat Commun. 2015;6:5983.CrossRef
45.
go back to reference Jonnalagadda KN, Chasiotis I, Yagnamurthy S, Lambros J, Pulskamp J, Polcawich R, et al. Experimental investigation of strain rate dependence of nanocrystalline Pt films. Exp Mech. 2010;50(1):25–35.CrossRef Jonnalagadda KN, Chasiotis I, Yagnamurthy S, Lambros J, Pulskamp J, Polcawich R, et al. Experimental investigation of strain rate dependence of nanocrystalline Pt films. Exp Mech. 2010;50(1):25–35.CrossRef
46.
go back to reference Karanjgaokar NJ, C-S O, Lambros J, Chasiotis I. Inelastic deformation of nanocrystalline au thin films as a function of temperature and strain rate. Acta Mater. 2012;60(13–14):5352–61.CrossRef Karanjgaokar NJ, C-S O, Lambros J, Chasiotis I. Inelastic deformation of nanocrystalline au thin films as a function of temperature and strain rate. Acta Mater. 2012;60(13–14):5352–61.CrossRef
47.
go back to reference Izadi E, Rajagopalan J. Texture dependent strain rate sensitivity of ultrafine-grained aluminum films. Scr Mater. 2016;114:65–9.CrossRef Izadi E, Rajagopalan J. Texture dependent strain rate sensitivity of ultrafine-grained aluminum films. Scr Mater. 2016;114:65–9.CrossRef
48.
go back to reference Zener C. Elasticity and anelasticity of metals. Chicago: University of Chicago Press; 1948.MATH Zener C. Elasticity and anelasticity of metals. Chicago: University of Chicago Press; 1948.MATH
49.
go back to reference Cheng G, Miao C, Qin Q, Li J, Xu F, Haftbaradaran H, et al. Large anelasticity and associated energy dissipation in single-crystalline nanowires. Nat Nanotechnol. 2015;10(8):687–91.CrossRef Cheng G, Miao C, Qin Q, Li J, Xu F, Haftbaradaran H, et al. Large anelasticity and associated energy dissipation in single-crystalline nanowires. Nat Nanotechnol. 2015;10(8):687–91.CrossRef
50.
go back to reference Kang W, Saif MTA. In situ study of size and temperature dependent brittle-to-ductile transition in single crystal silicon. Adv Funct Mater. 2013;23(6):713–9.CrossRef Kang W, Saif MTA. In situ study of size and temperature dependent brittle-to-ductile transition in single crystal silicon. Adv Funct Mater. 2013;23(6):713–9.CrossRef
Metadata
Title
Microelectromechanical Systems (MEMS)-Based Testing of Materials
Author
Jagannathan Rajagopalan
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6884-3_45

Premium Partners