Skip to main content
Top
Published in: Journal of Materials Science 11/2015

01-06-2015 | Original Paper

Microfibrillated cellulose-SiO2 composite nanopapers produced by spray deposition

Authors: Lisiê Ferreira Krol, Davide Beneventi, Fannie Alloin, Didier Chaussy

Published in: Journal of Materials Science | Issue 11/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microfibrillated cellulose (MFC)-SiO2 nanopapers were prepared using a rapid spray deposition technique. Large area (~310 cm2) composite nanopapers with thickness and SiO2 content varying from 16 to 92 µm and 0 to 33 %, respectively, were prepared in less than 30 min with nearly complete nanoparticle retention in the cellulose mat. In the presence of an excess of MFC, SiO2 nanoparticles formed large clusters embedded in a dense and continuous cellulose matrix which conferred to the composite an extremely low permeability to air, i.e., below 2 nm2. For silica mass fraction above 20 %, SiO2 clusters induced a net increase in air permeability and ionic conductivity up to 12 nm2 and 1.5 mS cm−1 for a SiO2 content of 33 %. Despite the addition of an inert phase, composite nanopapers displayed mechanical properties, viz. Young’s modulus and internal cohesion higher than 2.2 GPa and 913 J m−2, outperforming those of most conventional papers. This study demonstrates that MFC-SiO2 nanopapers fabricated by spray deposition can be an alternative to PE/PP membranes as separators in Li-ion batteries and, in general, that spray deposition is a promising method for the rapid fabrication of large area composite nanopapers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pääkkö M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruoko-lainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef Pääkkö M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruoko-lainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef
2.
go back to reference Meyer V, Tapin-Lingua S, Da Silva Perez D, Arndt T, Kautto J (2012) Technical opportunities and economic challenges to produce nanofibrillated cellulose in pilot scale: NFC delivery for applications in demonstrations trials. In: Proceed. SUNPAP EU project-final conference, Milan, Italy, 19–20 June 2012. http://sunpap.vtt.fi/finalconference2012.htm Meyer V, Tapin-Lingua S, Da Silva Perez D, Arndt T, Kautto J (2012) Technical opportunities and economic challenges to produce nanofibrillated cellulose in pilot scale: NFC delivery for applications in demonstrations trials. In: Proceed. SUNPAP EU project-final conference, Milan, Italy, 19–20 June 2012. http://​sunpap.​vtt.​fi/​finalconference2​012.​htm
3.
go back to reference Sandquist D (2013) New horizons for microfibrillated cellulose. Appita J 66:156–162 Sandquist D (2013) New horizons for microfibrillated cellulose. Appita J 66:156–162
4.
go back to reference Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
5.
go back to reference Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRef Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRef
6.
go back to reference Gonzalez I, Alcala M, Chinga-Carrasco G, Vilaseca F, Boufi S, Mutjé P (2014) From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21:2599–2609CrossRef Gonzalez I, Alcala M, Chinga-Carrasco G, Vilaseca F, Boufi S, Mutjé P (2014) From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21:2599–2609CrossRef
7.
go back to reference Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764CrossRef Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764CrossRef
8.
go back to reference Zheng G, Cui Y, Karabulut E, Wågberg L, Zhu H, Hu L (2013) Nanostructured paper for flexible energy and electronic devices. MRS Bull 38:320–325CrossRef Zheng G, Cui Y, Karabulut E, Wågberg L, Zhu H, Hu L (2013) Nanostructured paper for flexible energy and electronic devices. MRS Bull 38:320–325CrossRef
9.
go back to reference Jabbour L, Bongiovanni R, Chauss D, Gerbaldi C, Beneventi D (2013) Cellulose-based Li-ion batteries: a review. Cellulose 20:1523–1545CrossRef Jabbour L, Bongiovanni R, Chauss D, Gerbaldi C, Beneventi D (2013) Cellulose-based Li-ion batteries: a review. Cellulose 20:1523–1545CrossRef
10.
go back to reference Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85CrossRef Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85CrossRef
11.
go back to reference Sehaqui H, Liu A, Zhou Q, Berglound LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198CrossRef Sehaqui H, Liu A, Zhou Q, Berglound LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198CrossRef
12.
go back to reference Österberg M, Vartiainen J, Lucenius J, Hippi U, Seppälä J, Serimaa R, Laine J (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. Appl Mater Interfaces 5:4640–4647CrossRef Österberg M, Vartiainen J, Lucenius J, Hippi U, Seppälä J, Serimaa R, Laine J (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. Appl Mater Interfaces 5:4640–4647CrossRef
13.
go back to reference Varanasi S, Batchelor WJ (2013) Rapid preparation of cellulose nanofibre sheet. Cellulose 20:211–215CrossRef Varanasi S, Batchelor WJ (2013) Rapid preparation of cellulose nanofibre sheet. Cellulose 20:211–215CrossRef
15.
go back to reference Beneventi D, Chaussy D, Curtil D, Zolin L, Gerbaldi C, Penazzi N (2014) Highly porous paper loading with microfibrillated cellulose by spray coating on wet substrates. Ind Eng Chem Res 53:10982–10989CrossRef Beneventi D, Chaussy D, Curtil D, Zolin L, Gerbaldi C, Penazzi N (2014) Highly porous paper loading with microfibrillated cellulose by spray coating on wet substrates. Ind Eng Chem Res 53:10982–10989CrossRef
16.
go back to reference Beneventi D, Chaussy D, Curtil D, Zolin L, Bruno E, Bongiovanni R, Destro M, Gerbaldi C, Penazzi N, Tapin-Lingua S (2014) Pilot-scale elaboration of graphite/microfibrillated cellulose anodes for Li-ion batteries by spray deposition on a forming paper sheet. Chem Eng J 243:372–379CrossRef Beneventi D, Chaussy D, Curtil D, Zolin L, Bruno E, Bongiovanni R, Destro M, Gerbaldi C, Penazzi N, Tapin-Lingua S (2014) Pilot-scale elaboration of graphite/microfibrillated cellulose anodes for Li-ion batteries by spray deposition on a forming paper sheet. Chem Eng J 243:372–379CrossRef
17.
go back to reference Kulachenko A, Denoyelle T, Galland S, Lindström SB (2012) Elastic properties of cellulose nanopaper. Cellulose 19:793–807CrossRef Kulachenko A, Denoyelle T, Galland S, Lindström SB (2012) Elastic properties of cellulose nanopaper. Cellulose 19:793–807CrossRef
18.
go back to reference Pras O, Beneventi D, Chaussy D, Piette P, Tapin-Lingua S (2013) Use of microfibrillated cellulose and dendritic copper for the elaboration of conductive films from water- and ethanol-based dispersions. J Mater Sci 46:6911–6920CrossRef Pras O, Beneventi D, Chaussy D, Piette P, Tapin-Lingua S (2013) Use of microfibrillated cellulose and dendritic copper for the elaboration of conductive films from water- and ethanol-based dispersions. J Mater Sci 46:6911–6920CrossRef
19.
go back to reference Jabbour L, Gerbaldi C, Chaussy D, Zeno E, Bodoardo S, Beneventi D (2010) Microfibrillated cellulose–graphite nanocomposites for highly flexible paper-like Li-ion battery electrodes. J Mater Chem 20:7344–7347CrossRef Jabbour L, Gerbaldi C, Chaussy D, Zeno E, Bodoardo S, Beneventi D (2010) Microfibrillated cellulose–graphite nanocomposites for highly flexible paper-like Li-ion battery electrodes. J Mater Chem 20:7344–7347CrossRef
20.
go back to reference Sasso C, Elisa Zeno E, Petit-Conil M, Chaussy D, Belgacem N, Tapin-Lingua S, Beneventi D (2010) Highly conducting polypyrrole/cellulose nanocomposite films with enhanced mechanical properties. Macromol Mater Eng 295:934–941CrossRef Sasso C, Elisa Zeno E, Petit-Conil M, Chaussy D, Belgacem N, Tapin-Lingua S, Beneventi D (2010) Highly conducting polypyrrole/cellulose nanocomposite films with enhanced mechanical properties. Macromol Mater Eng 295:934–941CrossRef
21.
go back to reference Leijonmarck S, Cornell A, Lindbergh G, Wågberg L (2013) Flexible nano-paper-based positive electrodes for Li-ion batteries-preparation process and properties. Nano Energy 2:794–800CrossRef Leijonmarck S, Cornell A, Lindbergh G, Wågberg L (2013) Flexible nano-paper-based positive electrodes for Li-ion batteries-preparation process and properties. Nano Energy 2:794–800CrossRef
22.
go back to reference Huang X (2014) Performance evaluation of a non-woven lithium ion battery separator prepared through a paper-making process. J Power Source 256:96–101CrossRef Huang X (2014) Performance evaluation of a non-woven lithium ion battery separator prepared through a paper-making process. J Power Source 256:96–101CrossRef
23.
go back to reference Kim J-H, Kim J-H, Choi E-S, Yu HK, Kim JH, Wu Q, Chun S-J, Lee S-Y, Lee S-Y (2013) Colloidal silica nanoparticle assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries. J Power Source 242:533–540CrossRef Kim J-H, Kim J-H, Choi E-S, Yu HK, Kim JH, Wu Q, Chun S-J, Lee S-Y, Lee S-Y (2013) Colloidal silica nanoparticle assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries. J Power Source 242:533–540CrossRef
24.
go back to reference Zhang J, Yue L, Kong Q, Liu Z, Zhou X, Zhang C, Xu Q, Zhang B, Ding G, Qin B, Duan Y, Wang Q, Yao J, Cui G, Chen L (2014) Sustainable, heat resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Sci Rep 4:3935. doi:10.1038/srep03935 Zhang J, Yue L, Kong Q, Liu Z, Zhou X, Zhang C, Xu Q, Zhang B, Ding G, Qin B, Duan Y, Wang Q, Yao J, Cui G, Chen L (2014) Sustainable, heat resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Sci Rep 4:3935. doi:10.​1038/​srep03935
25.
go back to reference Leijonmarck S, Cornell A, Lindbergh G, Wagberg L (2013) Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. J Mater Chem A 1:4671–4677CrossRef Leijonmarck S, Cornell A, Lindbergh G, Wagberg L (2013) Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. J Mater Chem A 1:4671–4677CrossRef
26.
go back to reference Stana-Kleinschek K, Ribitsch V (1998) Electrokinetic properties of processed cellulose fibers. Colloids Surf A 140:127–138CrossRef Stana-Kleinschek K, Ribitsch V (1998) Electrokinetic properties of processed cellulose fibers. Colloids Surf A 140:127–138CrossRef
27.
go back to reference Fall AB, Lindström T, Sundman O, Ödberg L, Wagberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338CrossRef Fall AB, Lindström T, Sundman O, Ödberg L, Wagberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338CrossRef
28.
go back to reference Maouche-Chergui S, Grohens Y, Balnois E, Lebeau B (2014) Adhesion of silica particles on thin polymer films of flax cell wall. Mater Sci Appl 5:953–965 Maouche-Chergui S, Grohens Y, Balnois E, Lebeau B (2014) Adhesion of silica particles on thin polymer films of flax cell wall. Mater Sci Appl 5:953–965
29.
go back to reference Zhang Y, Chen Y, Westerhoff P, Hristovski K, Crittenden JC (2008) Stability of commercial metal oxide nanoparticles in water. Water Res 42:2204–2212CrossRef Zhang Y, Chen Y, Westerhoff P, Hristovski K, Crittenden JC (2008) Stability of commercial metal oxide nanoparticles in water. Water Res 42:2204–2212CrossRef
30.
go back to reference Holmberg M, Wigren R, Erlandsson R, Claesson PM (1997) Interactions between cellulose and colloidal silica in the presence of polyelectrolytes. Colloids Surf A 129–130:175–183CrossRef Holmberg M, Wigren R, Erlandsson R, Claesson PM (1997) Interactions between cellulose and colloidal silica in the presence of polyelectrolytes. Colloids Surf A 129–130:175–183CrossRef
31.
go back to reference Chun S-J, Choi E-S, Lee E-H, Kim JH, Lee S-Y, Lee S-Y (2012) Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J Mater Chem 22:16618–16626CrossRef Chun S-J, Choi E-S, Lee E-H, Kim JH, Lee S-Y, Lee S-Y (2012) Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J Mater Chem 22:16618–16626CrossRef
32.
go back to reference Koubaa A, Koran Z (1995) Measure of the internal bond strength of paper/board. Tappi J 78:103–111 Koubaa A, Koran Z (1995) Measure of the internal bond strength of paper/board. Tappi J 78:103–111
Metadata
Title
Microfibrillated cellulose-SiO2 composite nanopapers produced by spray deposition
Authors
Lisiê Ferreira Krol
Davide Beneventi
Fannie Alloin
Didier Chaussy
Publication date
01-06-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 11/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-8965-5

Other articles of this Issue 11/2015

Journal of Materials Science 11/2015 Go to the issue

Premium Partners