Skip to main content
Top

2017 | OriginalPaper | Chapter

16. Microfluidic Devices and Their Applications

Authors : Aditya Aryasomayajula, Pouriya Bayat, Pouya Rezai, P. Ravi Selvaganapathy

Published in: Springer Handbook of Nanotechnology

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microfluidics and nanofluidics is a field of science that operates in the micrometer and nanometer scale. A microfluidic–nanofluidic device consists of components such as valves, pumps and mixers for manipulating and transporting the fluid at this scale. In this chapter we review the history, physics, fabrication methods and applications of microfluidics and nanofluidics. This interdisciplinary field has a wide range of application areas including environmental sensing, medical diagnostics, drug discovery, drug delivery, microscale chemical production, combinatorial synthesis and assays, artificial organs, and micropropulsion, microscale energy systems. The global market for microfluidic devices was estimated at around $3.1 billion dollars in 2015 and is expected to rise to $7.5 billion dollars by 2020. In the future, microfluidics and nanofluidics will see miniaturization and development of novel microfabrication techniques along with more sensitive detection methods and diagnosis of diseases in a point-of-care platform. Developments in the fundamental physics of fluid flow and its control, microfabrication methods, microfluidic components, and applications in new and emerging areas are all anticipated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
16.1
go back to reference D.J. Beebe, G.A. Mensing, G.M. Walker: Physics and applications of microfluidics in biology, Annu. Rev. Biomed. Eng. 4, 261–286 (2002) D.J. Beebe, G.A. Mensing, G.M. Walker: Physics and applications of microfluidics in biology, Annu. Rev. Biomed. Eng. 4, 261–286 (2002)
16.2
go back to reference A. Manz, N. Graber, H.M. Widmer: Miniaturized total chemical analysis systems: A novel concept for chemical sensing, Sens. Actuat. B: Chem. 1, 244–248 (1990) A. Manz, N. Graber, H.M. Widmer: Miniaturized total chemical analysis systems: A novel concept for chemical sensing, Sens. Actuat. B: Chem. 1, 244–248 (1990)
16.3
go back to reference E.H. Yoo, S.Y. Lee: Glucose Biosensors: An overview of use in clinical practice, Sensors (Basel) 10, 4558–4576 (2010) E.H. Yoo, S.Y. Lee: Glucose Biosensors: An overview of use in clinical practice, Sensors (Basel) 10, 4558–4576 (2010)
16.4
go back to reference Y. Feng, Y. Zhang, C. Ying, D. Wang, C. Du: Nanopore-based fourth-generation DNA sequencing technology, Genom. Proteom. Bioinform. 13, 4–16 (2015) Y. Feng, Y. Zhang, C. Ying, D. Wang, C. Du: Nanopore-based fourth-generation DNA sequencing technology, Genom. Proteom. Bioinform. 13, 4–16 (2015)
16.7
go back to reference D.D. Dalma-Weiszhausz, J. Warrington, E.Y. Tanimoto, C.G. Miyada: The affymetrix genechip platform: An overview, Methods Enzymol 410, 3–28 (2006) D.D. Dalma-Weiszhausz, J. Warrington, E.Y. Tanimoto, C.G. Miyada: The affymetrix genechip platform: An overview, Methods Enzymol 410, 3–28 (2006)
16.8
go back to reference F.F. Reuss: Sur un nouvel effet de l’electricite galvanique, Mem. Soc. Imp. Nat. Mosc. 2, 327–337 (1809) F.F. Reuss: Sur un nouvel effet de l’electricite galvanique, Mem. Soc. Imp. Nat. Mosc. 2, 327–337 (1809)
16.9
go back to reference S.C. Terry, J.H. Jerman, J.B. Angell: A gas chromatographic air analyzer fabricated on a silicon wafer, IEEE Trans. Electron. Devices 26, 1880–1886 (1979) S.C. Terry, J.H. Jerman, J.B. Angell: A gas chromatographic air analyzer fabricated on a silicon wafer, IEEE Trans. Electron. Devices 26, 1880–1886 (1979)
16.10
go back to reference J.K. Fink: Inkjet inks. In: The Chemistry of Printing Inks and Their Electronics and Medical Applications, ed. by M. Scrivener (Wiley, New York 2014) pp. 1–10CrossRef J.K. Fink: Inkjet inks. In: The Chemistry of Printing Inks and Their Electronics and Medical Applications, ed. by M. Scrivener (Wiley, New York 2014) pp. 1–10CrossRef
16.11
go back to reference Yole Développement: Inkjet printhead market technology trends (2016) Yole Développement: Inkjet printhead market technology trends (2016)
16.12
go back to reference S.P. Fodor, R.P. Rava, X.C. Huang, A.C. Pease, C.P. Holmes, C.L. Adams: Multiplexed biochemical assays with biological chips, Nature 364, 555–556 (1993) S.P. Fodor, R.P. Rava, X.C. Huang, A.C. Pease, C.P. Holmes, C.L. Adams: Multiplexed biochemical assays with biological chips, Nature 364, 555–556 (1993)
16.14
go back to reference D.R. Reyes, D. Iossifidis, P.-A. Auroux, A. Manz: Micro total analysis systems. 1. Introduction, theory and technology, Anal. Chem. 74, 2623–2636 (2002) D.R. Reyes, D. Iossifidis, P.-A. Auroux, A. Manz: Micro total analysis systems. 1. Introduction, theory and technology, Anal. Chem. 74, 2623–2636 (2002)
16.15
go back to reference C.T. Culbertson, T.G. Mickleburgh, S.A. Stewart-James, K.A. Sellens, M. Pressnall: Micro total analysis systems: Fundamental advances and biological applications, Anal. Chem. 86, 95–118 (2014) C.T. Culbertson, T.G. Mickleburgh, S.A. Stewart-James, K.A. Sellens, M. Pressnall: Micro total analysis systems: Fundamental advances and biological applications, Anal. Chem. 86, 95–118 (2014)
16.16
go back to reference M.L. Kovarik, D.M. Ornoff, A.T. Melvin, N.C. Dobes, Y. Wang, A.J. Dickinson, P.C. Gach, P.K. Shah, N.L. Allbritton: Micro total analysis systems: Fundamental advances and applications in the laboratory, clinic, and field, Anal. Chem. 85, 451–472 (2013) M.L. Kovarik, D.M. Ornoff, A.T. Melvin, N.C. Dobes, Y. Wang, A.J. Dickinson, P.C. Gach, P.K. Shah, N.L. Allbritton: Micro total analysis systems: Fundamental advances and applications in the laboratory, clinic, and field, Anal. Chem. 85, 451–472 (2013)
16.17
go back to reference D.E.W. Patabadige, S. Jia, J. Sibbitts, J. Sadeghi, K. Sellens, C.T. Culbertson: Micro total analysis systems: Fundamental advances and applications, Anal. Chem. 88, 320–338 (2016) D.E.W. Patabadige, S. Jia, J. Sibbitts, J. Sadeghi, K. Sellens, C.T. Culbertson: Micro total analysis systems: Fundamental advances and applications, Anal. Chem. 88, 320–338 (2016)
16.18
go back to reference A.J. Tudos, G.J. Besselink, R.B. Schasfoort: Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry, Lab Chip 1, 83–95 (2001) A.J. Tudos, G.J. Besselink, R.B. Schasfoort: Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry, Lab Chip 1, 83–95 (2001)
16.19
go back to reference M. A. Northrup, M.T. Ching, R.M. Whlte, R.T. Watson: Proc. Transducers '93, Yokohama, Japan, (1993), p. 924 M. A. Northrup, M.T. Ching, R.M. Whlte, R.T. Watson: Proc. Transducers '93, Yokohama, Japan, (1993), p. 924
16.20
go back to reference A.T. Woolley, D. Hadley, P. Landre, A.J. deMello, R.A. Mathies, M.A. Northrup: Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device, Anal. Chem. 68, 4081–4086 (1996) A.T. Woolley, D. Hadley, P. Landre, A.J. deMello, R.A. Mathies, M.A. Northrup: Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device, Anal. Chem. 68, 4081–4086 (1996)
16.21
go back to reference M.A. Burns, B.N. Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo, D.T. Burke: An integrated nanoliter DNA analysis device, Science 282, 484–487 (1998) M.A. Burns, B.N. Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo, D.T. Burke: An integrated nanoliter DNA analysis device, Science 282, 484–487 (1998)
16.22
go back to reference H. Becker, L.E. Locascio: Polymer microfluidic devices, Talanta 56, 267–287 (2002) H. Becker, L.E. Locascio: Polymer microfluidic devices, Talanta 56, 267–287 (2002)
16.23
go back to reference Y. Xia, G.M. Whitesides: Soft lithography, Angew. Chem. Int. Edn. 37, 550–575 (1998) Y. Xia, G.M. Whitesides: Soft lithography, Angew. Chem. Int. Edn. 37, 550–575 (1998)
16.24
go back to reference M.A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S.R. Quake: Monolithic microfabricated valves and pumps by multilayer soft lithography, Science 288, 113–116 (2000) M.A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S.R. Quake: Monolithic microfabricated valves and pumps by multilayer soft lithography, Science 288, 113–116 (2000)
16.25
go back to reference S. Quake: A nanoliter rotary device for polymerase chain reaction, Electrophoresis 23, 1531–1536 (2002) S. Quake: A nanoliter rotary device for polymerase chain reaction, Electrophoresis 23, 1531–1536 (2002)
16.26
go back to reference Y.-C. Wang, M.H. Choi, J. Han: Two-dimensional protein separation with advanced sample and buffer isolation using microfluidic valves, Anal. Chem. 76, 4426–4431 (2004) Y.-C. Wang, M.H. Choi, J. Han: Two-dimensional protein separation with advanced sample and buffer isolation using microfluidic valves, Anal. Chem. 76, 4426–4431 (2004)
16.27
go back to reference A.Y. Fu, H.-P. Chou, C. Spence, F.H. Arnold, S.R. Quake: An integrated microfabricated cell sorter, Anal. Chem. 74, 2451–2457 (2002) A.Y. Fu, H.-P. Chou, C. Spence, F.H. Arnold, S.R. Quake: An integrated microfabricated cell sorter, Anal. Chem. 74, 2451–2457 (2002)
16.28
go back to reference V. Studer, R. Jameson, E. Pellereau, A. Pepin, Y. Chen: A microfluidic mammalian cell sorter based on fluorescence detection, Microelectron. Eng. 73, 852–857 (2004) V. Studer, R. Jameson, E. Pellereau, A. Pepin, Y. Chen: A microfluidic mammalian cell sorter based on fluorescence detection, Microelectron. Eng. 73, 852–857 (2004)
16.29
go back to reference D. Lipomi, R. Martinez, L. Cademartiri, G. Whitesides: Soft lithographic approaches to nanofabrication. In: Polym. Sci. Compr. Ref., Vol. 10 (2012) pp. 211–231 D. Lipomi, R. Martinez, L. Cademartiri, G. Whitesides: Soft lithographic approaches to nanofabrication. In: Polym. Sci. Compr. Ref., Vol. 10 (2012) pp. 211–231
16.30
go back to reference P. Kim, K.W. Kwon, M.C. Park, S.H. Lee, S.M. Kim, K.Y. Suh: Soft lithography for microfluidics: A review, Biochip J 2, 1–11 (2008) P. Kim, K.W. Kwon, M.C. Park, S.H. Lee, S.M. Kim, K.Y. Suh: Soft lithography for microfluidics: A review, Biochip J 2, 1–11 (2008)
16.31
go back to reference D. Qin, Y. Xia, G.M. Whitesides: Soft lithography for micro- and nanoscale patterning, Nat. Protoc. 5, 491–502 (2010) D. Qin, Y. Xia, G.M. Whitesides: Soft lithography for micro- and nanoscale patterning, Nat. Protoc. 5, 491–502 (2010)
16.32
go back to reference G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D.E. Ingber: Soft lithography in biology and biochemistry, Annu. Rev. Biomed. Eng. 3, 335–373 (2001) G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D.E. Ingber: Soft lithography in biology and biochemistry, Annu. Rev. Biomed. Eng. 3, 335–373 (2001)
16.33
go back to reference H.A. Stone, A.D. Stroock, A. Ajdari: Engineering flows in small devices: Microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid Mech. 36, 381–411 (2004)MATH H.A. Stone, A.D. Stroock, A. Ajdari: Engineering flows in small devices: Microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid Mech. 36, 381–411 (2004)MATH
16.34
go back to reference G.F. Christopher, S.L. Anna: Microfluidic methods for generating continuous droplet streams, J. Phys. D: Appl. Phys. 40, R319 (2007) G.F. Christopher, S.L. Anna: Microfluidic methods for generating continuous droplet streams, J. Phys. D: Appl. Phys. 40, R319 (2007)
16.35
go back to reference P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides: Formation of droplets and bubbles in a microfluidic T-junction – scaling and mechanism of break-up, Lab Chip 6, 437–446 (2006) P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides: Formation of droplets and bubbles in a microfluidic T-junction – scaling and mechanism of break-up, Lab Chip 6, 437–446 (2006)
16.36
go back to reference P. Tabeling: Introduction to Microfluidics (Oxford Univ. Press, Oxford 2005) P. Tabeling: Introduction to Microfluidics (Oxford Univ. Press, Oxford 2005)
16.37
go back to reference J. Atencia, D.J. Beebe: Controlled microfluidic interfaces, Nature 437, 648–655 (2005) J. Atencia, D.J. Beebe: Controlled microfluidic interfaces, Nature 437, 648–655 (2005)
16.38
go back to reference C.N. Baroud, F. Gallaire, R. Dangla: Dynamics of microfluidic droplets, Lab Chip 10, 2032–2045 (2010) C.N. Baroud, F. Gallaire, R. Dangla: Dynamics of microfluidic droplets, Lab Chip 10, 2032–2045 (2010)
16.39
go back to reference H.N. Joensson, H. Andersson Svahn: Droplet Microfluidics – A tool for single-cell analysis, Angew. Chem. Int. Edn. 51, 12176–12192 (2012) H.N. Joensson, H. Andersson Svahn: Droplet Microfluidics – A tool for single-cell analysis, Angew. Chem. Int. Edn. 51, 12176–12192 (2012)
16.40
go back to reference S.Y. Teh, R. Lin, L.H. Hung, A.P. Lee: Droplet microfluidics, Lab Chip 8, 198–220 (2008) S.Y. Teh, R. Lin, L.H. Hung, A.P. Lee: Droplet microfluidics, Lab Chip 8, 198–220 (2008)
16.41
go back to reference Z. Guan, Y. Zou, M. Zhang, J. Lv, H. Shen, P. Yang, H. Zhang, Z. Zhu, C.J. Yang: A highly parallel microfluidic droplet method enabling single-molecule counting for digital enzyme detection, Biomicrofluidics 8, 014110 (2014) Z. Guan, Y. Zou, M. Zhang, J. Lv, H. Shen, P. Yang, H. Zhang, Z. Zhu, C.J. Yang: A highly parallel microfluidic droplet method enabling single-molecule counting for digital enzyme detection, Biomicrofluidics 8, 014110 (2014)
16.42
go back to reference C. Benz, H. Retzbach, S. Nagl, D. Belder: Protein-protein interaction analysis in single microfluidic droplets using FRET and fluorescence lifetime detection, Lab Chip 13, 2808–2814 (2013) C. Benz, H. Retzbach, S. Nagl, D. Belder: Protein-protein interaction analysis in single microfluidic droplets using FRET and fluorescence lifetime detection, Lab Chip 13, 2808–2814 (2013)
16.43
go back to reference J.W. Park, S.C. Na, T.Q. Nguyen, S.M. Paik, M. Kang, D. Hong, I.S. Choi, J.H. Lee, N.L. Jeon: Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research, Biotechnol. Bioeng. 112, 494–501 (2015) J.W. Park, S.C. Na, T.Q. Nguyen, S.M. Paik, M. Kang, D. Hong, I.S. Choi, J.H. Lee, N.L. Jeon: Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research, Biotechnol. Bioeng. 112, 494–501 (2015)
16.44
go back to reference W. Li, H. Dong, G. Tang, T. Ma, X. Cao: Controllable microfluidic fabrication of Janus and microcapsule particles for drug delivery applications, RSC Adv 5, 23181–23188 (2015) W. Li, H. Dong, G. Tang, T. Ma, X. Cao: Controllable microfluidic fabrication of Janus and microcapsule particles for drug delivery applications, RSC Adv 5, 23181–23188 (2015)
16.45
go back to reference C.H. Yang, C.Y. Wang, A.M. Grumezescu, A.H. Wang, C.J. Hsiao, Z.Y. Chen, K.S. Huang: Core-shell structure microcapsules with dual pH-responsive drug release function, Electrophoresis 35, 2673–2680 (2014) C.H. Yang, C.Y. Wang, A.M. Grumezescu, A.H. Wang, C.J. Hsiao, Z.Y. Chen, K.S. Huang: Core-shell structure microcapsules with dual pH-responsive drug release function, Electrophoresis 35, 2673–2680 (2014)
16.46
go back to reference N. Bardiya, J.-W. Choi, S.-I. Chang: Analysis of single nucleotide polymorphism in human angiogenin using droplet-based microfluidics, BioChip J 8, 15–21 (2014) N. Bardiya, J.-W. Choi, S.-I. Chang: Analysis of single nucleotide polymorphism in human angiogenin using droplet-based microfluidics, BioChip J 8, 15–21 (2014)
16.47
go back to reference J. Shuga, Y. Zeng, R. Novak, Q. Lan, X. Tang, N. Rothman, R. Vermeulen, L. Li, A. Hubbard, L. Zhang, R.A. Mathies, M.T. Smith: Single molecule quantitation and sequencing of rare translocations using microfluidic nested digital PCR, Nucl. Acids Res. 41, e159 (2013) J. Shuga, Y. Zeng, R. Novak, Q. Lan, X. Tang, N. Rothman, R. Vermeulen, L. Li, A. Hubbard, L. Zhang, R.A. Mathies, M.T. Smith: Single molecule quantitation and sequencing of rare translocations using microfluidic nested digital PCR, Nucl. Acids Res. 41, e159 (2013)
16.48
go back to reference N. Chronis, M. Zimmer, C.I. Bargmann: Microfluidics for in vivo imaging of neuronal and behavioral activity in caenorhabditis elegans, Nat. Methods 4, 727–731 (2007) N. Chronis, M. Zimmer, C.I. Bargmann: Microfluidics for in vivo imaging of neuronal and behavioral activity in caenorhabditis elegans, Nat. Methods 4, 727–731 (2007)
16.49
go back to reference K. Chung, M.M. Crane, H. Lu: Automated on-chip rapid microscopy, phenotyping and sorting of C. Elegans, Nat. Methods 5, 637–643 (2008) K. Chung, M.M. Crane, H. Lu: Automated on-chip rapid microscopy, phenotyping and sorting of C. Elegans, Nat. Methods 5, 637–643 (2008)
16.50
go back to reference P. Rezai, A. Siddiqui, P.R. Selvaganapathy, B.P. Gupta: Electrotaxis of Caenorhabditis elegans in a microfluidic environment, Lab Chip 10, 220–226 (2010) P. Rezai, A. Siddiqui, P.R. Selvaganapathy, B.P. Gupta: Electrotaxis of Caenorhabditis elegans in a microfluidic environment, Lab Chip 10, 220–226 (2010)
16.51
go back to reference K. Chung, Y. Kim, J.S. Kanodia, E. Gong, S.Y. Shvartsman, H. Lu: A microfluidic array for large-scale ordering and orientation of embryos, Nat. Methods 8, 171–176 (2011) K. Chung, Y. Kim, J.S. Kanodia, E. Gong, S.Y. Shvartsman, H. Lu: A microfluidic array for large-scale ordering and orientation of embryos, Nat. Methods 8, 171–176 (2011)
16.52
go back to reference R. Ghaemi, P. Rezai, B.G. Iyengar, P.R. Selvaganapathy: Microfluidic devices for imaging neurological response of drosophila melanogaster larva to auditory stimulus, Lab Chip 15, 1116–1122 (2015) R. Ghaemi, P. Rezai, B.G. Iyengar, P.R. Selvaganapathy: Microfluidic devices for imaging neurological response of drosophila melanogaster larva to auditory stimulus, Lab Chip 15, 1116–1122 (2015)
16.53
go back to reference E.M. Lucchetta, J.H. Lee, L.A. Fu, N.H. Patel, R.F. Ismagilov: Dynamics of drosophila embryonic patterning network perturbed in space and time using microfluidics, Nature 434, 1134–1138 (2005) E.M. Lucchetta, J.H. Lee, L.A. Fu, N.H. Patel, R.F. Ismagilov: Dynamics of drosophila embryonic patterning network perturbed in space and time using microfluidics, Nature 434, 1134–1138 (2005)
16.54
go back to reference Y.C. Shen, D. Li, A. Al-Shoaibi, T. Bersano-Begey, H. Chen, S. Ali, B. Flak, C. Perrin, M. Winslow, H. Shah, P. Ramamurthy, R.H. Schmedlen, S. Takayama, K.F. Barald: A student team in a University of Michigan biomedical engineering design course constructs a microfluidic bioreactor for studies of zebrafish development, Zebrafish 6, 201–213 (2009) Y.C. Shen, D. Li, A. Al-Shoaibi, T. Bersano-Begey, H. Chen, S. Ali, B. Flak, C. Perrin, M. Winslow, H. Shah, P. Ramamurthy, R.H. Schmedlen, S. Takayama, K.F. Barald: A student team in a University of Michigan biomedical engineering design course constructs a microfluidic bioreactor for studies of zebrafish development, Zebrafish 6, 201–213 (2009)
16.55
go back to reference L.L. Bischel, B.R. Mader, J.M. Green, A. Huttenlocher, D.J. Beebe: Zebrafish entrapment by restriction array (ZEBRA) device: A low-cost, agarose-free zebrafish mounting technique for automated imaging, Lab Chip 13, 1732–1736 (2013) L.L. Bischel, B.R. Mader, J.M. Green, A. Huttenlocher, D.J. Beebe: Zebrafish entrapment by restriction array (ZEBRA) device: A low-cost, agarose-free zebrafish mounting technique for automated imaging, Lab Chip 13, 1732–1736 (2013)
16.56
go back to reference F. Yang, C. Gao, P. Wang, G.-J. Zhang, Z. Chen: Fish-on-a-chip: Microfluidics for zebrafish research, Lab Chip 16, 1106–1125 (2016) F. Yang, C. Gao, P. Wang, G.-J. Zhang, Z. Chen: Fish-on-a-chip: Microfluidics for zebrafish research, Lab Chip 16, 1106–1125 (2016)
16.57
go back to reference S.N. Bhatia, D.E. Ingber: Microfluidic organs-on-chips, Nature 201, 4 (2014) S.N. Bhatia, D.E. Ingber: Microfluidic organs-on-chips, Nature 201, 4 (2014)
16.58
go back to reference E.W. Esch, A. Bahinski, D. Huh: Organs-on-chips at the frontiers of drug discovery, Nat. Rev. Drug Discov. 14, 248–260 (2015) E.W. Esch, A. Bahinski, D. Huh: Organs-on-chips at the frontiers of drug discovery, Nat. Rev. Drug Discov. 14, 248–260 (2015)
16.59
go back to reference I.M. Derrington, T.Z. Butler, M.D. Collins, E. Manrao, M. Pavlenok, M. Niederweis, J.H. Gundlach: Nanopore DNA sequencing with MspA, Proc. Nat. Acad. Sci. 107, 16060–16065 (2010) I.M. Derrington, T.Z. Butler, M.D. Collins, E. Manrao, M. Pavlenok, M. Niederweis, J.H. Gundlach: Nanopore DNA sequencing with MspA, Proc. Nat. Acad. Sci. 107, 16060–16065 (2010)
16.60
go back to reference A.M. Streets, Y. Huang: Microfluidics for biological measurements with single-molecule resolution, Curr. Opin. Biotechnol. 25, 69–77 (2014) A.M. Streets, Y. Huang: Microfluidics for biological measurements with single-molecule resolution, Curr. Opin. Biotechnol. 25, 69–77 (2014)
16.61
go back to reference C. Liu, Y. Qu, Y. Luo, N. Fang: Recent advances in single-molecule detection on micro- and nano-fluidic devices, Electrophoresis 32, 3308–3318 (2011) C. Liu, Y. Qu, Y. Luo, N. Fang: Recent advances in single-molecule detection on micro- and nano-fluidic devices, Electrophoresis 32, 3308–3318 (2011)
16.62
go back to reference J. Fu, R.B. Schoch, A.L. Stevens, S.R. Tannenbaum, J. Han: A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins, Nat. Nanotechnol. 2, 121–128 (2007) J. Fu, R.B. Schoch, A.L. Stevens, S.R. Tannenbaum, J. Han: A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins, Nat. Nanotechnol. 2, 121–128 (2007)
16.63
go back to reference S. Prakash, J. Yeom: Energy and environmental applications. In: Nanofluidics and Microfluidics, ed. by W. Andrew (Elsevier, Oxford 2014) pp. 241–269CrossRef S. Prakash, J. Yeom: Energy and environmental applications. In: Nanofluidics and Microfluidics, ed. by W. Andrew (Elsevier, Oxford 2014) pp. 241–269CrossRef
16.64
go back to reference F.M. White, I. Corfield: Viscous Fluid Flow (McGraw-Hill, New York 2006) F.M. White, I. Corfield: Viscous Fluid Flow (McGraw-Hill, New York 2006)
16.65
go back to reference R.A. Freitas: Nanomedicine, Basic Capabilities, Vol. I (Landes Bioscience Georgetown, Oxford 1999) R.A. Freitas: Nanomedicine, Basic Capabilities, Vol. I (Landes Bioscience Georgetown, Oxford 1999)
16.66
go back to reference D.L. Englert, M.D. Manson, A. Jayaraman: Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients, Appl. Environ. Microbiol. 75, 4557–4564 (2009) D.L. Englert, M.D. Manson, A. Jayaraman: Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients, Appl. Environ. Microbiol. 75, 4557–4564 (2009)
16.67
go back to reference J. Oakey, J. Allely, D.W. Marr: Laminar-flow-based separations at the microscale, Biotechnol. Prog. 18, 1439–1442 (2002) J. Oakey, J. Allely, D.W. Marr: Laminar-flow-based separations at the microscale, Biotechnol. Prog. 18, 1439–1442 (2002)
16.68
go back to reference A. Hatch, A.E. Kamholz, K.R. Hawkins, M.S. Munson, E.A. Schilling, B.H. Weigl, P. Yager: A rapid diffusion immunoassay in a T-sensor, Nat. Biotechnol. 19, 461–465 (2001) A. Hatch, A.E. Kamholz, K.R. Hawkins, M.S. Munson, E.A. Schilling, B.H. Weigl, P. Yager: A rapid diffusion immunoassay in a T-sensor, Nat. Biotechnol. 19, 461–465 (2001)
16.69
go back to reference V. Hessel, H. Löwe, F. Schönfeld: Micromixers – A review on passive and active mixing principles, Chem. Eng. Sci. 60, 2479–2501 (2005) V. Hessel, H. Löwe, F. Schönfeld: Micromixers – A review on passive and active mixing principles, Chem. Eng. Sci. 60, 2479–2501 (2005)
16.70
go back to reference N.-T. Nguyen, Z. Wu: Micromixers – A review, J. Micromech. Microeng. 15(2), R1 (2005) N.-T. Nguyen, Z. Wu: Micromixers – A review, J. Micromech. Microeng. 15(2), R1 (2005)
16.71
go back to reference X. Xuan, D. Li: Analytical study of joule heating effects on electrokinetic transportation in capillary electrophoresis, J. Chromatogr. A 1064, 227–237 (2005) X. Xuan, D. Li: Analytical study of joule heating effects on electrokinetic transportation in capillary electrophoresis, J. Chromatogr. A 1064, 227–237 (2005)
16.72
go back to reference M.U. Kopp, A.J. De Mello, A. Manz: Chemical amplification: Continuous-flow PCR on a chip, Science 280, 1046–1048 (1998) M.U. Kopp, A.J. De Mello, A. Manz: Chemical amplification: Continuous-flow PCR on a chip, Science 280, 1046–1048 (1998)
16.73
go back to reference W.L. Tong, M.K. Tan, J.K. Chin, K.S. Ong, Y.M. Hung: Coupled effects of hydrophobic layer and vibration on thermal efficiency of two-phase closed thermosyphons, RSC Adv 5, 10332–10340 (2015) W.L. Tong, M.K. Tan, J.K. Chin, K.S. Ong, Y.M. Hung: Coupled effects of hydrophobic layer and vibration on thermal efficiency of two-phase closed thermosyphons, RSC Adv 5, 10332–10340 (2015)
16.74
go back to reference A.A. Darhuber, S.M. Troian: Principles of microfluidic actuation by modulation of surface stresses, Annu. Rev. Fluid Mech. 37, 425–455 (2005)MathSciNetMATH A.A. Darhuber, S.M. Troian: Principles of microfluidic actuation by modulation of surface stresses, Annu. Rev. Fluid Mech. 37, 425–455 (2005)MathSciNetMATH
16.75
go back to reference Z. Stojek: The electrical double layer and its structure. In: Electroanalytical Methods, ed. by F. Scholz (Springer, Berlin, Heidelberg 2010) pp. 3–9 Z. Stojek: The electrical double layer and its structure. In: Electroanalytical Methods, ed. by F. Scholz (Springer, Berlin, Heidelberg 2010) pp. 3–9
16.76
go back to reference S. Zeng, C.-H. Chen, J.C. Mikkelsen, J.G. Santiago: Fabrication and characterization of electroosmotic micropumps, Sens. Actuat. B: Chem. 79, 107–114 (2001) S. Zeng, C.-H. Chen, J.C. Mikkelsen, J.G. Santiago: Fabrication and characterization of electroosmotic micropumps, Sens. Actuat. B: Chem. 79, 107–114 (2001)
16.77
go back to reference P.H. Paul, D.W. Arnold, D.J. Rakestraw: Electrokinetic generation of high pressures using porous microstructures. In: Micro Total Analysis Systems, ed. by D.J. Harrison, A. van den Berg (Springer, Dordrecht 1998) pp. 49–52 P.H. Paul, D.W. Arnold, D.J. Rakestraw: Electrokinetic generation of high pressures using porous microstructures. In: Micro Total Analysis Systems, ed. by D.J. Harrison, A. van den Berg (Springer, Dordrecht 1998) pp. 49–52
16.78
go back to reference P.H. Paul, D.J. Rakestraw, D.W. Arnold, K.R. Hencken, J.S. Schoeniger, D.W. Neyes: Electrokinetic high pressure hydraulic system, US Patent (Application) 6277257 B1 (2001) P.H. Paul, D.J. Rakestraw, D.W. Arnold, K.R. Hencken, J.S. Schoeniger, D.W. Neyes: Electrokinetic high pressure hydraulic system, US Patent (Application) 6277257 B1 (2001)
16.79
go back to reference S. Fiedler, S.G. Shirley, T. Schnelle, G. Fuhr: Dielectrophoretic sorting of particles and cells in a microsystem, Anal. Chem. 70, 1909–1915 (1998) S. Fiedler, S.G. Shirley, T. Schnelle, G. Fuhr: Dielectrophoretic sorting of particles and cells in a microsystem, Anal. Chem. 70, 1909–1915 (1998)
16.80
go back to reference J.G. Kralj, M.T. Lis, M.A. Schmidt, K.F. Jensen: Continuous dielectrophoretic size-based particle sorting, Anal. Chem. 78, 5019–5025 (2006) J.G. Kralj, M.T. Lis, M.A. Schmidt, K.F. Jensen: Continuous dielectrophoretic size-based particle sorting, Anal. Chem. 78, 5019–5025 (2006)
16.81
go back to reference K. Ahn, C. Kerbage, T.P. Hunt, R. Westervelt, D.R. Link, D. Weitz: Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices, Appl. Phys. Lett. 88, 24104–24104 (2006) K. Ahn, C. Kerbage, T.P. Hunt, R. Westervelt, D.R. Link, D. Weitz: Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices, Appl. Phys. Lett. 88, 24104–24104 (2006)
16.82
go back to reference S. Zeng, B. Li, X. Su, J. Qin, B. Lin: Microvalve-actuated precise control of individual droplets in microfluidic devices, Lab Chip 9, 1340–1343 (2009) S. Zeng, B. Li, X. Su, J. Qin, B. Lin: Microvalve-actuated precise control of individual droplets in microfluidic devices, Lab Chip 9, 1340–1343 (2009)
16.83
go back to reference Z.Z. Chong, S.H. Tan, A.M. Ganan-Calvo, S.B. Tor, N.H. Loh, N.T. Nguyen: Active droplet generation in microfluidics, Lab on a Chip 16, 35–58 (2016) Z.Z. Chong, S.H. Tan, A.M. Ganan-Calvo, S.B. Tor, N.H. Loh, N.T. Nguyen: Active droplet generation in microfluidics, Lab on a Chip 16, 35–58 (2016)
16.84
go back to reference H. Gu, M.H. Duits, F. Mugele: Droplets formation and merging in two-phase flow microfluidics, Int. J. Mol. Sci. 12, 2572–2597 (2011) H. Gu, M.H. Duits, F. Mugele: Droplets formation and merging in two-phase flow microfluidics, Int. J. Mol. Sci. 12, 2572–2597 (2011)
16.85
go back to reference T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake: Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett. 86, 4163–4166 (2001) T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake: Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett. 86, 4163–4166 (2001)
16.86
go back to reference S.L. Anna, N. Bontoux, H.A. Stone: Formation of dispersions using flow focusing in microchannels, Appl. Phys. lett. 82, 364–366 (2003) S.L. Anna, N. Bontoux, H.A. Stone: Formation of dispersions using flow focusing in microchannels, Appl. Phys. lett. 82, 364–366 (2003)
16.87
go back to reference L. Yobas, S. Martens, W.-L. Ong, N. Ranganathan: High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets, Lab on a Chip 6, 1073–1079 (2006) L. Yobas, S. Martens, W.-L. Ong, N. Ranganathan: High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets, Lab on a Chip 6, 1073–1079 (2006)
16.88
go back to reference C. Cramer, P. Fischer, E.J. Windhab: Drop formation in a co-flowing ambient fluid, Chem. Eng. Sci. 59, 3045–3058 (2004) C. Cramer, P. Fischer, E.J. Windhab: Drop formation in a co-flowing ambient fluid, Chem. Eng. Sci. 59, 3045–3058 (2004)
16.89
go back to reference D.J. Collins, A. Neild, A. de Mello, A.-Q. Liu, Y. Ai: The Poisson distribution and beyond: Methods for microfluidic droplet production and single all encapsulation, Lab Chip 15, 3439–3459 (2015) D.J. Collins, A. Neild, A. de Mello, A.-Q. Liu, Y. Ai: The Poisson distribution and beyond: Methods for microfluidic droplet production and single all encapsulation, Lab Chip 15, 3439–3459 (2015)
16.90
go back to reference H. Song, M.R. Bringer, J.D. Tice, C.J. Gerdts, R.F. Ismagilov: Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels, Appl. Phys. Lett. 83, 4664–4666 (2003) H. Song, M.R. Bringer, J.D. Tice, C.J. Gerdts, R.F. Ismagilov: Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels, Appl. Phys. Lett. 83, 4664–4666 (2003)
16.91
go back to reference D.R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z. Cheng, G. Cristobal, M. Marquez, D.A. Weitz: Electric control of droplets in microfluidic devices, Angew. Chem. Int. Edn. 45, 2556–2560 (2006) D.R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z. Cheng, G. Cristobal, M. Marquez, D.A. Weitz: Electric control of droplets in microfluidic devices, Angew. Chem. Int. Edn. 45, 2556–2560 (2006)
16.92
go back to reference D. Link, S.L. Anna, D. Weitz, H. Stone: Geometrically mediated breakup of drops in microfluidic devices, Phys. Rev. Lett. 92, 054503 (2004) D. Link, S.L. Anna, D. Weitz, H. Stone: Geometrically mediated breakup of drops in microfluidic devices, Phys. Rev. Lett. 92, 054503 (2004)
16.93
go back to reference A.T.-H. Hsieh, N. Hori, R. Massoudi, P.J.-H. Pan, H. Sasaki, Y.A. Lin, A.P. Lee: Nonviral gene vector formation in monodispersed picolitre incubator for consistent gene delivery, Lab on a Chip 9, 2638–2643 (2009) A.T.-H. Hsieh, N. Hori, R. Massoudi, P.J.-H. Pan, H. Sasaki, Y.A. Lin, A.P. Lee: Nonviral gene vector formation in monodispersed picolitre incubator for consistent gene delivery, Lab on a Chip 9, 2638–2643 (2009)
16.94
go back to reference Y.-C. Tan, Y.L. Ho, A.P. Lee: Microfluidic sorting of droplets by size, Microfluid. Nanofluidics 4, 343–348 (2008) Y.-C. Tan, Y.L. Ho, A.P. Lee: Microfluidic sorting of droplets by size, Microfluid. Nanofluidics 4, 343–348 (2008)
16.95
go back to reference M. Srisa-Art, I.C. Bonzani, A. Williams, M.M. Stevens: A.J. deMello, J.B. Edel: Identification of rare progenitor cells from human periosteal tissue using droplet microfluidics, Analyst 134, 2239–2245 (2009) M. Srisa-Art, I.C. Bonzani, A. Williams, M.M. Stevens: A.J. deMello, J.B. Edel: Identification of rare progenitor cells from human periosteal tissue using droplet microfluidics, Analyst 134, 2239–2245 (2009)
16.96
go back to reference J.C. Baret, Y. Beck, I. Billas-Massobrio, D. Moras, A.D. Griffiths: Quantitative cell-based reporter gene assays using droplet-based microfluidics, Chem. Biol. 17, 528–536 (2010) J.C. Baret, Y. Beck, I. Billas-Massobrio, D. Moras, A.D. Griffiths: Quantitative cell-based reporter gene assays using droplet-based microfluidics, Chem. Biol. 17, 528–536 (2010)
16.97
go back to reference E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J.B. Hutchison, J.M. Rothberg, D.R. Link, N. Perrimon, M.L. Samuels: Droplet microfluidic technology for single-cell high-throughput screening, Proc. Nat. Acad. Sci. 106, 14195–14200 (2009) E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J.B. Hutchison, J.M. Rothberg, D.R. Link, N. Perrimon, M.L. Samuels: Droplet microfluidic technology for single-cell high-throughput screening, Proc. Nat. Acad. Sci. 106, 14195–14200 (2009)
16.98
go back to reference S. McNamara, Y.B. Gianchandani: On-chip vacuum generated by a micromachined Knudsen pump, J. Microelectromech. Syst. 14, 741–746 (2005) S. McNamara, Y.B. Gianchandani: On-chip vacuum generated by a micromachined Knudsen pump, J. Microelectromech. Syst. 14, 741–746 (2005)
16.99
go back to reference W. Reisner, J.N. Pedersen, R.H. Austin: DNA confinement in nanochannels: Physics and biological applications, Rep. Prog. Phys. 75, 106601 (2012) W. Reisner, J.N. Pedersen, R.H. Austin: DNA confinement in nanochannels: Physics and biological applications, Rep. Prog. Phys. 75, 106601 (2012)
16.100
go back to reference T.-C. Kuo, D.M. Cannon, Y. Chen, J.J. Tulock, M.A. Shannon, J.V. Sweedler, P.W. Bohn: Gateable nanofluidic interconnects for multilayered microfluidic separation systems, Anal. Chem. 75, 1861–1867 (2003) T.-C. Kuo, D.M. Cannon, Y. Chen, J.J. Tulock, M.A. Shannon, J.V. Sweedler, P.W. Bohn: Gateable nanofluidic interconnects for multilayered microfluidic separation systems, Anal. Chem. 75, 1861–1867 (2003)
16.101
go back to reference S.A. Gajar, M.W. Geis: An ionic liquid-channel field-effect transistor, J. Electrochem. Soc. 139, 2833–2840 (1992) S.A. Gajar, M.W. Geis: An ionic liquid-channel field-effect transistor, J. Electrochem. Soc. 139, 2833–2840 (1992)
16.102
go back to reference P. Abgrall, N.T. Nguyen: Nanofluidic devices and their applications, Anal. Chem. 80, 2326–2341 (2008) P. Abgrall, N.T. Nguyen: Nanofluidic devices and their applications, Anal. Chem. 80, 2326–2341 (2008)
16.103
go back to reference M.A. Gijs: Device physics: Will fluidic electronics take off?, Nat. Nanotechnol. 2, 268–270 (2007) M.A. Gijs: Device physics: Will fluidic electronics take off?, Nat. Nanotechnol. 2, 268–270 (2007)
16.104
go back to reference A. Manz, D.J. Harrison, E.M. Verpoorte, J.C. Fettinger, A. Paulus, H. Lüdi, H.M. Widmer: Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: Capillary electrophoresis on a chip, J. Chromatogr. A 593, 253–258 (1992) A. Manz, D.J. Harrison, E.M. Verpoorte, J.C. Fettinger, A. Paulus, H. Lüdi, H.M. Widmer: Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: Capillary electrophoresis on a chip, J. Chromatogr. A 593, 253–258 (1992)
16.105
go back to reference C. Iliescu, H. Taylor, M. Avram, J. Miao, S. Franssila: A practical guide for the fabrication of microfluidic devices using glass and silicon, Biomicrofluidics 6, 016505 (2012) C. Iliescu, H. Taylor, M. Avram, J. Miao, S. Franssila: A practical guide for the fabrication of microfluidic devices using glass and silicon, Biomicrofluidics 6, 016505 (2012)
16.106
go back to reference G.T. Kovacs, N.I. Maluf, K.E. Petersen: Bulk micromachining of silicon, Proc. IEEE 86, 1536–1551 (1998) G.T. Kovacs, N.I. Maluf, K.E. Petersen: Bulk micromachining of silicon, Proc. IEEE 86, 1536–1551 (1998)
16.107
go back to reference C.D. James, M. Okandan, S.S. Mani, P.C. Galambos, R. Shul: Monolithic surface micromachined fluidic devices for dielectrophoretic preconcentration and routing of particles, J. Micromech. Microeng. 16, 1909 (2006) C.D. James, M. Okandan, S.S. Mani, P.C. Galambos, R. Shul: Monolithic surface micromachined fluidic devices for dielectrophoretic preconcentration and routing of particles, J. Micromech. Microeng. 16, 1909 (2006)
16.108
go back to reference M.J. de Boer, R.W. Tjerkstra, J. Berenschot, H.V. Jansen, G. Burger, J. Gardeniers, M. Elwenspoek, A. van den Berg: Micromachining of buried micro channels in silicon, J. Microelectromech. Syst. 9, 94–103 (2000) M.J. de Boer, R.W. Tjerkstra, J. Berenschot, H.V. Jansen, G. Burger, J. Gardeniers, M. Elwenspoek, A. van den Berg: Micromachining of buried micro channels in silicon, J. Microelectromech. Syst. 9, 94–103 (2000)
16.109
go back to reference S.-J. Paik, S. Byun, J.-M. Lim, Y. Park, A. Lee, S. Chung, J. Chang, K. Chun: In-plane single-crystal-silicon microneedles for minimally invasive microfluid systems, Sens. Actuat. A: Phys. 114, 276–284 (2004) S.-J. Paik, S. Byun, J.-M. Lim, Y. Park, A. Lee, S. Chung, J. Chang, K. Chun: In-plane single-crystal-silicon microneedles for minimally invasive microfluid systems, Sens. Actuat. A: Phys. 114, 276–284 (2004)
16.110
go back to reference N.-T. Nguyen, S.T. Wereley: Fundamentals and Applications of Microfluidics (Artech House, Norwood 2002)MATH N.-T. Nguyen, S.T. Wereley: Fundamentals and Applications of Microfluidics (Artech House, Norwood 2002)MATH
16.111
go back to reference W.I. Wu, P. Rezai, H.H. Hsu, P.R. Selvaganapathy: Materials and methods for the microfabrication of microfluidic biomedical devices. In: Microfluidic Devices for Biomedical Applications, ed. by X.-J.J. Li, Y. Zhou (2013) pp. 3–62 W.I. Wu, P. Rezai, H.H. Hsu, P.R. Selvaganapathy: Materials and methods for the microfabrication of microfluidic biomedical devices. In: Microfluidic Devices for Biomedical Applications, ed. by X.-J.J. Li, Y. Zhou (2013) pp. 3–62
16.112
go back to reference D.J. Laser, J.G. Santiago: A review of micropumps, J. Micromech. Microeng. 14, R35 (2004) D.J. Laser, J.G. Santiago: A review of micropumps, J. Micromech. Microeng. 14, R35 (2004)
16.113
go back to reference K.W. Oh, C.H. Ahn: A review of microvalves, J. Micromech. Microeng. 16, R13 (2006) K.W. Oh, C.H. Ahn: A review of microvalves, J. Micromech. Microeng. 16, R13 (2006)
16.114
go back to reference R. Tiggelaar, P. Van Male, J. Berenschot, J. Gardeniers, R. Oosterbroek, M. De Croon, J. Schouten, A.M. Van Den Berg: Elwenspoek: Fabrication of a high-temperature microreactor with integrated heater and sensor patterns on an ultrathin silicon membrane, Sens. Actuat. A: Phys. 119, 196–205 (2005) R. Tiggelaar, P. Van Male, J. Berenschot, J. Gardeniers, R. Oosterbroek, M. De Croon, J. Schouten, A.M. Van Den Berg: Elwenspoek: Fabrication of a high-temperature microreactor with integrated heater and sensor patterns on an ultrathin silicon membrane, Sens. Actuat. A: Phys. 119, 196–205 (2005)
16.115
go back to reference Y. Nakashima, T. Yasuda: Cell differentiation guidance using chemical stimulation controlled by a microfluidic device, Sens. Actuat. A: Phys. 139, 252–258 (2007) Y. Nakashima, T. Yasuda: Cell differentiation guidance using chemical stimulation controlled by a microfluidic device, Sens. Actuat. A: Phys. 139, 252–258 (2007)
16.116
go back to reference E.G. Lavoie, T. Wangdi, B.I. Kazmierczak: Innate immune responses to Pseudomonas aeruginosa infection, Microbes Infect 13, 1133–1145 (2011) E.G. Lavoie, T. Wangdi, B.I. Kazmierczak: Innate immune responses to Pseudomonas aeruginosa infection, Microbes Infect 13, 1133–1145 (2011)
16.117
go back to reference M.A. Hopcroft, W.D. Nix, T.W. Kenny: What is the young’s modulus of silicon?, J. Microelectromech. Syst. 19, 229–238 (2010) M.A. Hopcroft, W.D. Nix, T.W. Kenny: What is the young’s modulus of silicon?, J. Microelectromech. Syst. 19, 229–238 (2010)
16.118
go back to reference K. Yamada, T.G. Henares, K. Suzuki, D. Citterio: Paper-based inkjet-printed microfluidic analytical devices, Angew. Chem. Int. Edn. 54, 5294–5310 (2015) K. Yamada, T.G. Henares, K. Suzuki, D. Citterio: Paper-based inkjet-printed microfluidic analytical devices, Angew. Chem. Int. Edn. 54, 5294–5310 (2015)
16.119
go back to reference R.R. Anderson, W. Hu, J.W. Noh, W.C. Dahlquist, S.J. Ness, T.M. Gustafson, D.C. Richards, S. Kim, B.A. Mazzeo, A.T. Woolley: Transient deflection response in microcantilever array integrated with polydimethylsiloxane (PDMS) microfluidics, Lab on a Chip 11, 2088–2096 (2011) R.R. Anderson, W. Hu, J.W. Noh, W.C. Dahlquist, S.J. Ness, T.M. Gustafson, D.C. Richards, S. Kim, B.A. Mazzeo, A.T. Woolley: Transient deflection response in microcantilever array integrated with polydimethylsiloxane (PDMS) microfluidics, Lab on a Chip 11, 2088–2096 (2011)
16.120
go back to reference M.-A. Grétillat, F. Paoletti, P. Thiébaud, S. Roth, M. Koudelka-Hep, N. De Rooij: A new fabrication method for borosilicate glass capillary tubes with lateral inlets and outlets, Sens. Actuat. A 60, 219–222 (1997) M.-A. Grétillat, F. Paoletti, P. Thiébaud, S. Roth, M. Koudelka-Hep, N. De Rooij: A new fabrication method for borosilicate glass capillary tubes with lateral inlets and outlets, Sens. Actuat. A 60, 219–222 (1997)
16.121
go back to reference F. Gretillat, M.-A. Gretillat, N.F. de Rooij: Improved design of a silicon micromachined gyroscope with piezoresistive detection and electromagnetic excitation, J. Microelectromech. Syst. 8, 243–250 (1999) F. Gretillat, M.-A. Gretillat, N.F. de Rooij: Improved design of a silicon micromachined gyroscope with piezoresistive detection and electromagnetic excitation, J. Microelectromech. Syst. 8, 243–250 (1999)
16.122
go back to reference C. Iliescu, B. Chen: Thick and low-stress PECVD amorphous silicon for MEMS applications, J. Micromech. Microeng. 18, 015024 (2007) C. Iliescu, B. Chen: Thick and low-stress PECVD amorphous silicon for MEMS applications, J. Micromech. Microeng. 18, 015024 (2007)
16.123
go back to reference J. Brugger, G. Beljakovic, M. Despont, N. De Rooij, P. Vettiger: Silicon micro-nanomechanical device fabrication based on focused ion beam surface modification and KOH etching, Microeleetronic Eng 35, 401–404 (1997) J. Brugger, G. Beljakovic, M. Despont, N. De Rooij, P. Vettiger: Silicon micro-nanomechanical device fabrication based on focused ion beam surface modification and KOH etching, Microeleetronic Eng 35, 401–404 (1997)
16.124
go back to reference J.S. You, D. Kim, J.Y. Huh, H.J. Park, J.J. Pak, C.S. Kang: Experiments on anisotropic etching of Si in TMAH, Sol. Energy Mater. Sol. Cells 66, 37–44 (2001) J.S. You, D. Kim, J.Y. Huh, H.J. Park, J.J. Pak, C.S. Kang: Experiments on anisotropic etching of Si in TMAH, Sol. Energy Mater. Sol. Cells 66, 37–44 (2001)
16.125
go back to reference G. Spierings: Wet chemical etching of silicate glasses in hydrofluoric acid based solutions, J. Mater. Sci. 28, 6261–6273 (1993) G. Spierings: Wet chemical etching of silicate glasses in hydrofluoric acid based solutions, J. Mater. Sci. 28, 6261–6273 (1993)
16.126
go back to reference U. Gösele, Q.-Y. Tong: Semiconductor wafer bonding, Annu. Rev. Mater. Sci. 28, 215–241 (1998) U. Gösele, Q.-Y. Tong: Semiconductor wafer bonding, Annu. Rev. Mater. Sci. 28, 215–241 (1998)
16.127
go back to reference M.A. Schmidt: Wafer-to-wafer bonding for microstructure formation, Proc. IEEE 86, 1575–1585 (1998) M.A. Schmidt: Wafer-to-wafer bonding for microstructure formation, Proc. IEEE 86, 1575–1585 (1998)
16.128
go back to reference V.I. Chin, P. Taupin, S. Sanga, J. Scheel, F.H. Gage, S.N. Bhatia: Microfabricated platform for studying stem cell fates, Biotechnol. Bioeng. 88, 399–415 (2004) V.I. Chin, P. Taupin, S. Sanga, J. Scheel, F.H. Gage, S.N. Bhatia: Microfabricated platform for studying stem cell fates, Biotechnol. Bioeng. 88, 399–415 (2004)
16.129
go back to reference E.T. Lagally, P.C. Simpson, R.A. Mathies: Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system, Sens. Actuat. B 63, 138–146 (2000) E.T. Lagally, P.C. Simpson, R.A. Mathies: Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system, Sens. Actuat. B 63, 138–146 (2000)
16.130
go back to reference A.C. Lewis, J.F. Hamilton, C.N. Halliday, J. Rhodes, K.D. Bartle, P. Homewood, R.J. Grenfell, B. Goody, A.M. Harling, P. Brewer: Microfabricated planar glass gas chromatography with photoionization detection, J. Chromatogra. A 1217, 768–774 (2010) A.C. Lewis, J.F. Hamilton, C.N. Halliday, J. Rhodes, K.D. Bartle, P. Homewood, R.J. Grenfell, B. Goody, A.M. Harling, P. Brewer: Microfabricated planar glass gas chromatography with photoionization detection, J. Chromatogra. A 1217, 768–774 (2010)
16.131
go back to reference G.M. Whitesides: The origins and the future of microfluidics, Nature 442, 368–373 (2006) G.M. Whitesides: The origins and the future of microfluidics, Nature 442, 368–373 (2006)
16.132
go back to reference A. Plecis, Y. Chen: Fabrication of microfluidic devices based on glass–PDMS–glass technology, Microelectron. Eng. 84, 1265–1269 (2007) A. Plecis, Y. Chen: Fabrication of microfluidic devices based on glass–PDMS–glass technology, Microelectron. Eng. 84, 1265–1269 (2007)
16.133
go back to reference D. Mijatovic, J. Eijkel, A. Van Den Berg: Technologies for nanofluidic systems: Top-down versus bottom up – a review, Lab on a Chip 5, 492–500 (2005) D. Mijatovic, J. Eijkel, A. Van Den Berg: Technologies for nanofluidic systems: Top-down versus bottom up – a review, Lab on a Chip 5, 492–500 (2005)
16.134
go back to reference F.H. Labeed, H.O. Fatoyinbo: Microfluidics in Detection Science: Lab-on-a-Chip Technologies (Royal Society of Chemistry, London 2014) F.H. Labeed, H.O. Fatoyinbo: Microfluidics in Detection Science: Lab-on-a-Chip Technologies (Royal Society of Chemistry, London 2014)
16.135
go back to reference J. Friend, L. Yeo: Fabrication of microfluidic devices using polydimethylsiloxane, Biomicrofluidics 4, 026502 (2010) J. Friend, L. Yeo: Fabrication of microfluidic devices using polydimethylsiloxane, Biomicrofluidics 4, 026502 (2010)
16.136
go back to reference J.C. McDonald, G.M. Whitesides: Poly (dimethylsiloxane) as a material for fabricating microfluidic devices, Accounts Chem. Res. 35, 491–499 (2002) J.C. McDonald, G.M. Whitesides: Poly (dimethylsiloxane) as a material for fabricating microfluidic devices, Accounts Chem. Res. 35, 491–499 (2002)
16.137
go back to reference N. Lobontiu, E. Garcia: Mechanics of Microelectromechanical Systems (Springer, New York 2004) N. Lobontiu, E. Garcia: Mechanics of Microelectromechanical Systems (Springer, New York 2004)
16.138
go back to reference H. Becker, C. Gärtner: Polymer microfabrication technologies for microfluidic systems, Anal. Bioanal. Chem. 390, 89–111 (2008) H. Becker, C. Gärtner: Polymer microfabrication technologies for microfluidic systems, Anal. Bioanal. Chem. 390, 89–111 (2008)
16.139
go back to reference D.C. Duffy, J.C. McDonald, O.J. Schueller, G.M. Whitesides: Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Anal. Chem. 70, 4974–4984 (1998) D.C. Duffy, J.C. McDonald, O.J. Schueller, G.M. Whitesides: Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Anal. Chem. 70, 4974–4984 (1998)
16.140
go back to reference J.C. McDonald, S.J. Metallo, G.M. Whitesides: Fabrication of a configurable, single-use microfluidic device, Anal. Chem. 73, 5645–5650 (2001) J.C. McDonald, S.J. Metallo, G.M. Whitesides: Fabrication of a configurable, single-use microfluidic device, Anal. Chem. 73, 5645–5650 (2001)
16.141
go back to reference T. Yang, S. Jung, H. Mao, P.S. Cremer: Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays, Anal. Chem. 73, 165–169 (2001) T. Yang, S. Jung, H. Mao, P.S. Cremer: Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays, Anal. Chem. 73, 165–169 (2001)
16.142
go back to reference R.S. Martin, A.J. Gawron, S.M. Lunte: Dual-electrode electrochemical detection for poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips, Anal. Chem. 72, 3196–3202 (2000) R.S. Martin, A.J. Gawron, S.M. Lunte: Dual-electrode electrochemical detection for poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips, Anal. Chem. 72, 3196–3202 (2000)
16.143
go back to reference A.W. Martinez, S.T. Phillips, M.J. Butte, G.M. Whitesides: Patterned paper as a platform for inexpensive, low-volume, portable bioassays, Angew. Chem. Int. Edn. 46, 1318–1320 (2007) A.W. Martinez, S.T. Phillips, M.J. Butte, G.M. Whitesides: Patterned paper as a platform for inexpensive, low-volume, portable bioassays, Angew. Chem. Int. Edn. 46, 1318–1320 (2007)
16.144
go back to reference S. Bhattacharya, A. Datta, J.M. Berg, S. Gangopadhyay: Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength, J. Microelectromech. Syst. 14, 590–597 (2005) S. Bhattacharya, A. Datta, J.M. Berg, S. Gangopadhyay: Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength, J. Microelectromech. Syst. 14, 590–597 (2005)
16.145
go back to reference P. Rezai, P.R. Selvaganapathy, G.R. Wohl: Plasma enhanced bonding of polydimethylsiloxane with parylene and its optimization, J. Micromech. Microeng. 21, 065024 (2011) P. Rezai, P.R. Selvaganapathy, G.R. Wohl: Plasma enhanced bonding of polydimethylsiloxane with parylene and its optimization, J. Micromech. Microeng. 21, 065024 (2011)
16.146
go back to reference J. Soo Ko, H.C. Yoon, H. Yang, H.B. Pyo, K. Hyo Chung, S.K. Jin, Y.K. Tae: A polymer-based microfluidic device for immunosensing biochips, Lab Chip 3, 106–113 (2003) J. Soo Ko, H.C. Yoon, H. Yang, H.B. Pyo, K. Hyo Chung, S.K. Jin, Y.K. Tae: A polymer-based microfluidic device for immunosensing biochips, Lab Chip 3, 106–113 (2003)
16.147
go back to reference M.A. Eddings, M.A. Johnson, B.K. Gale: Determining the optimal PDMS–PDMS bonding technique for microfluidic devices, J. Micromech. Microeng. 18, 067001 (2008) M.A. Eddings, M.A. Johnson, B.K. Gale: Determining the optimal PDMS–PDMS bonding technique for microfluidic devices, J. Micromech. Microeng. 18, 067001 (2008)
16.148
go back to reference P. Rezai, P.R. Selvaganapathy, G.R. Wohl: Plasma enhanced bonding of polydimethylsiloxane (PDMS) with parylene. In: Proc. 16th Int. Solid-State Sens., Actuat. Microsyst. Conf. (2011) pp. 1340–1343CrossRef P. Rezai, P.R. Selvaganapathy, G.R. Wohl: Plasma enhanced bonding of polydimethylsiloxane (PDMS) with parylene. In: Proc. 16th Int. Solid-State Sens., Actuat. Microsyst. Conf. (2011) pp. 1340–1343CrossRef
16.149
go back to reference M. Atai, L. Solhi, A. Nodehi, S.M. Mirabedini, S. Kasraei, K. Akbari, S. Babanzadeh: PMMA-grafted nanoclay as novel filler for dental adhesives, Dent. Mater. 25, 339–347 (2009) M. Atai, L. Solhi, A. Nodehi, S.M. Mirabedini, S. Kasraei, K. Akbari, S. Babanzadeh: PMMA-grafted nanoclay as novel filler for dental adhesives, Dent. Mater. 25, 339–347 (2009)
16.150
go back to reference P.C. Nicolson, J. Vogt: Soft contact lens polymers: An evolution, Biomaterials 22, 3273–3283 (2001) P.C. Nicolson, J. Vogt: Soft contact lens polymers: An evolution, Biomaterials 22, 3273–3283 (2001)
16.151
go back to reference S.B. Kim, Y.J. Kim, T.L. Yoon, S.A. Park, I.H. Cho, E.J. Kim, I.A. Kim, J.W. Shin: The characteristics of a hydroxyapatite-chitosan-PMMA bone cement, Biomaterials 25, 5715–5723 (2004) S.B. Kim, Y.J. Kim, T.L. Yoon, S.A. Park, I.H. Cho, E.J. Kim, I.A. Kim, J.W. Shin: The characteristics of a hydroxyapatite-chitosan-PMMA bone cement, Biomaterials 25, 5715–5723 (2004)
16.152
go back to reference M.B. Wabuyele, S.M. Ford, W. Stryjewski, J. Barrow, S.A. Soper: Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices, Electrophoresis 22, 3939–3948 (2001) M.B. Wabuyele, S.M. Ford, W. Stryjewski, J. Barrow, S.A. Soper: Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices, Electrophoresis 22, 3939–3948 (2001)
16.153
go back to reference G. Jenkins, C.D. Mansfield: Microfluidic Diagnostics: Methods and Protocols (Humana, Totowa 2013) G. Jenkins, C.D. Mansfield: Microfluidic Diagnostics: Methods and Protocols (Humana, Totowa 2013)
16.154
go back to reference M. Heckele, W. Bacher, D.K. Müller: Hot embossing – The molding technique for plastic microstructures, Microsyst. Technol. 4, 122–124 (1998) M. Heckele, W. Bacher, D.K. Müller: Hot embossing – The molding technique for plastic microstructures, Microsyst. Technol. 4, 122–124 (1998)
16.155
go back to reference J. Liu, L. Wang, W. Ouyang, W. Wang, J. Qin, Z. Xu, S. Xu, D. Ge, L. Wang, C. Liu, L. Wang: Fabrication of PMMA nanofluidic electrochemical chips with integrated microelectrodes, Biosens. Bioelectron. 72, 288–293 (2015) J. Liu, L. Wang, W. Ouyang, W. Wang, J. Qin, Z. Xu, S. Xu, D. Ge, L. Wang, C. Liu, L. Wang: Fabrication of PMMA nanofluidic electrochemical chips with integrated microelectrodes, Biosens. Bioelectron. 72, 288–293 (2015)
16.156
go back to reference G. Julien, C. Thierry, M. Patrice: Microinjection molding of thermoplastic polymers: A review, J. Micromech. Microeng. 17, R96 (2007) G. Julien, C. Thierry, M. Patrice: Microinjection molding of thermoplastic polymers: A review, J. Micromech. Microeng. 17, R96 (2007)
16.157
go back to reference S.A. Soper, S.M. Ford, S. Qi, R.L. McCarley, K. Kelly, M.C. Murphy: Peer reviewed: Polymeric microelectromechanical systems, Anal. Chem. 72, 642A–651A (2000) S.A. Soper, S.M. Ford, S. Qi, R.L. McCarley, K. Kelly, M.C. Murphy: Peer reviewed: Polymeric microelectromechanical systems, Anal. Chem. 72, 642A–651A (2000)
16.158
go back to reference H. Klank, J.P. Kutter, O. Geschke: CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems, Lab on a Chip 2, 242–246 (2002) H. Klank, J.P. Kutter, O. Geschke: CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems, Lab on a Chip 2, 242–246 (2002)
16.159
go back to reference C.-H. Lin, C.-H. Chao, C.-W. Lan: Low azeotropic solvent for bonding of PMMA microfluidic devices, Sens. Actuat. B 121, 698–705 (2007) C.-H. Lin, C.-H. Chao, C.-W. Lan: Low azeotropic solvent for bonding of PMMA microfluidic devices, Sens. Actuat. B 121, 698–705 (2007)
16.160
go back to reference Z. Chen, Y. Gao, J. Lin, R. Su, Y. Xie: Vacuum-assisted thermal bonding of plastic capillary electrophoresis microchip imprinted with stainless steel template, J. Chromatogra. A 1038, 39–245 (2004) Z. Chen, Y. Gao, J. Lin, R. Su, Y. Xie: Vacuum-assisted thermal bonding of plastic capillary electrophoresis microchip imprinted with stainless steel template, J. Chromatogra. A 1038, 39–245 (2004)
16.161
go back to reference C.-W. Tsao, D.L. DeVoe: Bonding of thermoplastic polymer microfluidics, Microfluid. Nanofluidics 6, 1–16 (2009) C.-W. Tsao, D.L. DeVoe: Bonding of thermoplastic polymer microfluidics, Microfluid. Nanofluidics 6, 1–16 (2009)
16.162
go back to reference S.A. Soper, A.C. Henry, B. Vaidya, M. Galloway, M. Wabuyele, R.L. McCarley: Surface modification of polymer-based microfluidic devices, Anal. Chim. Acta 470, 87–99 (2002) S.A. Soper, A.C. Henry, B. Vaidya, M. Galloway, M. Wabuyele, R.L. McCarley: Surface modification of polymer-based microfluidic devices, Anal. Chim. Acta 470, 87–99 (2002)
16.163
go back to reference J. Wang, A. Muck Jr., M.P. Chatrathi, G. Chen, N. Mittal, S.D. Spillman, S. Obeidat: Bulk modification of polymeric microfluidic devices, Lab Chip 5, 226–230 (2005) J. Wang, A. Muck Jr., M.P. Chatrathi, G. Chen, N. Mittal, S.D. Spillman, S. Obeidat: Bulk modification of polymeric microfluidic devices, Lab Chip 5, 226–230 (2005)
16.164
go back to reference F. Dang, L. Zhang, H. Hagiwara, Y. Mishina, Y. Baba: Ultrafast analysis of oligosaccharides on microchip with light-emitting diode confocal fluorescence detection, Electrophoresis 24, 714–721 (2003) F. Dang, L. Zhang, H. Hagiwara, Y. Mishina, Y. Baba: Ultrafast analysis of oligosaccharides on microchip with light-emitting diode confocal fluorescence detection, Electrophoresis 24, 714–721 (2003)
16.165
go back to reference C. Goll, W. Bacher, B. Buestgens, D. Maas, W. Menz, W. Schomburg: Microvalves with bistable buckled polymer diaphragms, J. Micromech. Microeng. 6, 77 (1996) C. Goll, W. Bacher, B. Buestgens, D. Maas, W. Menz, W. Schomburg: Microvalves with bistable buckled polymer diaphragms, J. Micromech. Microeng. 6, 77 (1996)
16.166
go back to reference C. Goll, W. Bacher, B. Büstgens, D. Maas, R. Ruprecht, W. Schomburg: An electrostatically actuated polymer microvalve equipped with a movable membrane electrode, J. Micromech. Microeng. 7, 224 (1997) C. Goll, W. Bacher, B. Büstgens, D. Maas, R. Ruprecht, W. Schomburg: An electrostatically actuated polymer microvalve equipped with a movable membrane electrode, J. Micromech. Microeng. 7, 224 (1997)
16.167
go back to reference Z. Azeem, P. Andrea, S.E. Winnie, D. Maria: Fabrication of polyimide based microfluidic channels for biosensor devices, J. Micromech. Microeng. 25, 035022 (2015) Z. Azeem, P. Andrea, S.E. Winnie, D. Maria: Fabrication of polyimide based microfluidic channels for biosensor devices, J. Micromech. Microeng. 25, 035022 (2015)
16.168
go back to reference R.R. Richardson Jr., J.A. Miller, W.M. Reichert: Polyimides as biomaterials: Preliminary biocompatibility testing, Biomaterials 14, 627–635 (1993) R.R. Richardson Jr., J.A. Miller, W.M. Reichert: Polyimides as biomaterials: Preliminary biocompatibility testing, Biomaterials 14, 627–635 (1993)
16.169
go back to reference I.K. Glasgow, D.J. Beebe, V.E. White: Design rules for polyimide solvent bonding, Sens. Mater. 11, 269–278 (1999) I.K. Glasgow, D.J. Beebe, V.E. White: Design rules for polyimide solvent bonding, Sens. Mater. 11, 269–278 (1999)
16.170
go back to reference A. Bayrashev, B. Ziaie: Silicon wafer bonding with an insulator interlayer using RF dielectric heating. In: IEEE Int. Conf (2002) pp. 419–422CrossRef A. Bayrashev, B. Ziaie: Silicon wafer bonding with an insulator interlayer using RF dielectric heating. In: IEEE Int. Conf (2002) pp. 419–422CrossRef
16.171
go back to reference K. Min, D. Kim: Pressure tolerant multilayered polymer film microfluidics by one-step bonding process for high throughput emulsion generation. In: 16th Int. Conf. Miniaturized Syst. Chem. Life Sci. (2012) pp. 1798–1800 K. Min, D. Kim: Pressure tolerant multilayered polymer film microfluidics by one-step bonding process for high throughput emulsion generation. In: 16th Int. Conf. Miniaturized Syst. Chem. Life Sci. (2012) pp. 1798–1800
16.172
go back to reference B.-K. Zhu, S.-H. Xie, Z.-K. Xu, Y.-Y. Xu: Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites, Compos. Sci. Technol. 66, 548–554 (2006) B.-K. Zhu, S.-H. Xie, Z.-K. Xu, Y.-Y. Xu: Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites, Compos. Sci. Technol. 66, 548–554 (2006)
16.173
go back to reference X. Jiang, Y. Bin, M. Matsuo: Electrical and mechanical properties of polyimide–carbon nanotubes composites fabricated by in situ polymerization, Polymer 46, 7418–7424 (2005) X. Jiang, Y. Bin, M. Matsuo: Electrical and mechanical properties of polyimide–carbon nanotubes composites fabricated by in situ polymerization, Polymer 46, 7418–7424 (2005)
16.174
go back to reference Y. Zhao, J.T. Yeow, L.A. Zheng: Simple and quick fabrication method of microfluidic cell sorter using Dielectrophoresis. In: The 7th IEEE Int. Conf. Nano–Molecular Medicine and Engineering (2013) pp. 32–35 Y. Zhao, J.T. Yeow, L.A. Zheng: Simple and quick fabrication method of microfluidic cell sorter using Dielectrophoresis. In: The 7th IEEE Int. Conf. Nano–Molecular Medicine and Engineering (2013) pp. 32–35
16.175
go back to reference E.W. Young, E. Berthier, D.J. Guckenberger, E. Sackmann, C. Lamers, I. Meyvantsson, A. Huttenlocher, D.J. Beebe: Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays, Anal. Chem. 83, 1408–1417 (2011) E.W. Young, E. Berthier, D.J. Guckenberger, E. Sackmann, C. Lamers, I. Meyvantsson, A. Huttenlocher, D.J. Beebe: Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays, Anal. Chem. 83, 1408–1417 (2011)
16.176
go back to reference P.M. van Midwoud, A. Janse, M.T. Merema, G.M. Groothuis, E. Verpoorte: Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models, Anal. Chem. 84, 3938–3944 (2012) P.M. van Midwoud, A. Janse, M.T. Merema, G.M. Groothuis, E. Verpoorte: Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models, Anal. Chem. 84, 3938–3944 (2012)
16.177
go back to reference M.-S. Choi, J.-C. Yoo: Automated centrifugal-microfluidic platform for DNA purification using laser burst valve and voriolis effect, Appl. Biochem. Biotechnol. 175, 3778–3787 (2015) M.-S. Choi, J.-C. Yoo: Automated centrifugal-microfluidic platform for DNA purification using laser burst valve and voriolis effect, Appl. Biochem. Biotechnol. 175, 3778–3787 (2015)
16.178
go back to reference D. Ogończyk, J. Węgrzyn, P. Jankowski, B. Dąbrowski, P. Garstecki: Bonding of microfluidic devices fabricated in polycarbonate, Lab Chip 10, 1324–1327 (2010) D. Ogończyk, J. Węgrzyn, P. Jankowski, B. Dąbrowski, P. Garstecki: Bonding of microfluidic devices fabricated in polycarbonate, Lab Chip 10, 1324–1327 (2010)
16.179
go back to reference R.K. Jena, C. Yue: Cyclic olefin copolymer based microfluidic devices for biochip applications: Ultraviolet surface grafting using 2-methacryloyloxyethyl phosphorylcholine, Biomicrofluidics 6, 012822 (2012) R.K. Jena, C. Yue: Cyclic olefin copolymer based microfluidic devices for biochip applications: Ultraviolet surface grafting using 2-methacryloyloxyethyl phosphorylcholine, Biomicrofluidics 6, 012822 (2012)
16.180
go back to reference J.S. Jeon, S. Chung, R.D. Kamm, J.L. Charest: Hot embossing for fabrication of a microfluidic 3-D cell culture platform, Biomed. Microdevices 13, 325–333 (2011) J.S. Jeon, S. Chung, R.D. Kamm, J.L. Charest: Hot embossing for fabrication of a microfluidic 3-D cell culture platform, Biomed. Microdevices 13, 325–333 (2011)
16.181
go back to reference J. Steigert, S. Haeberle, T. Brenner, C. Müller, C. Steinert, P. Koltay, N. Gottschlich, H. Reinecke, J. Rühe, R. Zengerle: Rapid prototyping of microfluidic chips in COC, J. Micromech. Microeng. 17, 333 (2007) J. Steigert, S. Haeberle, T. Brenner, C. Müller, C. Steinert, P. Koltay, N. Gottschlich, H. Reinecke, J. Rühe, R. Zengerle: Rapid prototyping of microfluidic chips in COC, J. Micromech. Microeng. 17, 333 (2007)
16.182
go back to reference V. Gubala, L.F. Harris, A.J. Ricco, M.X. Tan, D.E. Williams: Point of care diagnostics: Status and future, Anal. Chem. 84, 487–515 (2011) V. Gubala, L.F. Harris, A.J. Ricco, M.X. Tan, D.E. Williams: Point of care diagnostics: Status and future, Anal. Chem. 84, 487–515 (2011)
16.183
go back to reference C. Renault, X. Li, S.E. Fosdick, R.M. Crooks: Hollow-channel paper analytical devices, Anal. Chem. 85, 7976–7979 (2013) C. Renault, X. Li, S.E. Fosdick, R.M. Crooks: Hollow-channel paper analytical devices, Anal. Chem. 85, 7976–7979 (2013)
16.184
go back to reference L. Cai, Y. Wu, C. Xu, Z. Chen: A simple paper-based microfluidic device for the determination of the total amino acid content in a tea leaf extract, J. Chem. Educ. 90, 232–234 (2012) L. Cai, Y. Wu, C. Xu, Z. Chen: A simple paper-based microfluidic device for the determination of the total amino acid content in a tea leaf extract, J. Chem. Educ. 90, 232–234 (2012)
16.185
go back to reference J. Olkkonen, K. Lehtinen, T. Erho: Flexographically printed fluidic structures in paper, Anal. Chem. 82, 10246–10250 (2010) J. Olkkonen, K. Lehtinen, T. Erho: Flexographically printed fluidic structures in paper, Anal. Chem. 82, 10246–10250 (2010)
16.186
go back to reference J.S. Miller, K.R. Stevens, M.T. Yang, B.M. Baker, D.-H.T. Nguyen, D.M. Cohen, E. Toro, A.A. Chen, P.A. Galie, X. Yu: Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues, Nat. Mater. 11, 768–774 (2012) J.S. Miller, K.R. Stevens, M.T. Yang, B.M. Baker, D.-H.T. Nguyen, D.M. Cohen, E. Toro, A.A. Chen, P.A. Galie, X. Yu: Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues, Nat. Mater. 11, 768–774 (2012)
16.187
go back to reference Y. Xia, J. Si, Z. Li: Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review, Biosens. Bioelectron. 77, 774–789 (2016) Y. Xia, J. Si, Z. Li: Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review, Biosens. Bioelectron. 77, 774–789 (2016)
16.188
go back to reference X. Li, D.R. Ballerini, W. Shen: A perspective on paper-based microfluidics: Current status and future trends, Biomicrofluidics 6, 011301 (2012) X. Li, D.R. Ballerini, W. Shen: A perspective on paper-based microfluidics: Current status and future trends, Biomicrofluidics 6, 011301 (2012)
16.189
go back to reference K.M. Schilling, A.L. Lepore, J.A. Kurian, A.W. Martinez: Fully enclosed microfluidic paper-based analytical devices, Anal. Chem. 84, 1579–1585 (2012) K.M. Schilling, A.L. Lepore, J.A. Kurian, A.W. Martinez: Fully enclosed microfluidic paper-based analytical devices, Anal. Chem. 84, 1579–1585 (2012)
16.190
go back to reference E.W. Washburn: The dynamics of capillary flow, Phys. Rev. 17, 273 (1921) E.W. Washburn: The dynamics of capillary flow, Phys. Rev. 17, 273 (1921)
16.191
go back to reference Y. Lu, W. Shi, L. Jiang, J. Qin, B. Lin: Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay, Electrophoresis 30, 1497–1500 (2009) Y. Lu, W. Shi, L. Jiang, J. Qin, B. Lin: Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay, Electrophoresis 30, 1497–1500 (2009)
16.192
go back to reference K. Abe, K. Suzuki, D. Citterio: Inkjet-printed microfluidic multianalyte chemical sensing paper, Anal. Chem. 80, 6928–6934 (2008) K. Abe, K. Suzuki, D. Citterio: Inkjet-printed microfluidic multianalyte chemical sensing paper, Anal. Chem. 80, 6928–6934 (2008)
16.193
go back to reference X. Li, J. Tian, W. Shen: Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors, Cellulose 17, 649–659 (2010) X. Li, J. Tian, W. Shen: Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors, Cellulose 17, 649–659 (2010)
16.194
go back to reference C. Renault, K. Scida, K.N. Knust, S.E. Fosdick, R.M. Crooks: Paper-based bipolar electrochemistry, J. Electrochem. Sci. Technol. 4, 146–152 (2013) C. Renault, K. Scida, K.N. Knust, S.E. Fosdick, R.M. Crooks: Paper-based bipolar electrochemistry, J. Electrochem. Sci. Technol. 4, 146–152 (2013)
16.195
go back to reference W. Dungchai, O. Chailapakul, C.S. Henry: A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing, Analyst 136, 77–82 (2011) W. Dungchai, O. Chailapakul, C.S. Henry: A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing, Analyst 136, 77–82 (2011)
16.196
go back to reference E.M. Fenton, M.R. Mascarenas, G.P. López, S.S. Sibbett: Multiplex lateral-flow test strips fabricated by two-dimensional shaping, ACS Appl. Mater. Interfaces 1, 124–129 (2008) E.M. Fenton, M.R. Mascarenas, G.P. López, S.S. Sibbett: Multiplex lateral-flow test strips fabricated by two-dimensional shaping, ACS Appl. Mater. Interfaces 1, 124–129 (2008)
16.197
go back to reference S. Jahanshahi-Anbuhi, P. Chavan, C. Sicard, V. Leung, S.Z. Hossain, R. Pelton, J.D. Brennan, C.D. Filipe: Creating fast flow channels in paper fluidic devices to control timing of sequential reactions, Lab on a Chip 12, 5079–5085 (2012) S. Jahanshahi-Anbuhi, P. Chavan, C. Sicard, V. Leung, S.Z. Hossain, R. Pelton, J.D. Brennan, C.D. Filipe: Creating fast flow channels in paper fluidic devices to control timing of sequential reactions, Lab on a Chip 12, 5079–5085 (2012)
16.198
go back to reference E. Carrilho, S.T. Phillips, S.J. Vella, A.W. Martinez, G.M. Whitesides: Paper microzone plates, Anal. Chem. 81, 5990–5998 (2009) E. Carrilho, S.T. Phillips, S.J. Vella, A.W. Martinez, G.M. Whitesides: Paper microzone plates, Anal. Chem. 81, 5990–5998 (2009)
16.199
go back to reference G. Chitnis, Z. Ding, C.-L. Chang, C.A. Savran, B. Ziaie: Laser-treated hydrophobic paper: An inexpensive microfluidic platform, Lab on a Chip 11, 1161–1165 (2011) G. Chitnis, Z. Ding, C.-L. Chang, C.A. Savran, B. Ziaie: Laser-treated hydrophobic paper: An inexpensive microfluidic platform, Lab on a Chip 11, 1161–1165 (2011)
16.200
go back to reference C.L. Sones, I.N. Katis, P.J. He, B. Mills, M.F. Namiq, P. Shardlow, M. Ibsen, R.W. Eason: Laser-induced photo-polymerisation for creation of paper-based fluidic devices, Lab Chip 14, 4567–4574 (2014) C.L. Sones, I.N. Katis, P.J. He, B. Mills, M.F. Namiq, P. Shardlow, M. Ibsen, R.W. Eason: Laser-induced photo-polymerisation for creation of paper-based fluidic devices, Lab Chip 14, 4567–4574 (2014)
16.201
go back to reference X. Li, J. Tian, T. Nguyen, W. Shen: Paper-based microfluidic devices by plasma treatment, Anal. Chem. 80, 9131–9134 (2008) X. Li, J. Tian, T. Nguyen, W. Shen: Paper-based microfluidic devices by plasma treatment, Anal. Chem. 80, 9131–9134 (2008)
16.202
go back to reference A.W. Martinez, S.T. Phillips, B.J. Wiley, M. Gupta, G.M. Whitesides: FLASH: A rapid method for prototyping paper-based microfluidic devices, Lab on a Chip 8, 2146–2150 (2008) A.W. Martinez, S.T. Phillips, B.J. Wiley, M. Gupta, G.M. Whitesides: FLASH: A rapid method for prototyping paper-based microfluidic devices, Lab on a Chip 8, 2146–2150 (2008)
16.203
go back to reference E. Carrilho, A.W. Martinez, G.M. Whitesides: Understanding wax printing: A simple micropatterning process for paper-based microfluidics, Anal. Chem. 81, 7091–7095 (2009) E. Carrilho, A.W. Martinez, G.M. Whitesides: Understanding wax printing: A simple micropatterning process for paper-based microfluidics, Anal. Chem. 81, 7091–7095 (2009)
16.204
go back to reference A.K. Yetisen, M.S. Akram, C.R. Lowe: Paper-based microfluidic point-of-care diagnostic devices, Lab on a Chip 13, 2210–2251 (2013) A.K. Yetisen, M.S. Akram, C.R. Lowe: Paper-based microfluidic point-of-care diagnostic devices, Lab on a Chip 13, 2210–2251 (2013)
16.205
go back to reference W. Wang, W.-Y. Wu, J.-J. Zhu: Tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration, J. Chromatogra A 1217, 3896–3899 (2010) W. Wang, W.-Y. Wu, J.-J. Zhu: Tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration, J. Chromatogra A 1217, 3896–3899 (2010)
16.206
go back to reference W. Dungchai, O. Chailapakul, C.S. Henry: Electrochemical detection for paper-based microfluidics, Anal. Chem. 81, 5821–5826 (2009) W. Dungchai, O. Chailapakul, C.S. Henry: Electrochemical detection for paper-based microfluidics, Anal. Chem. 81, 5821–5826 (2009)
16.207
go back to reference L. Ge, S. Wang, S. Ge, J. Yu, M. Yan, N. Li, J. Huang: Electrophoretic separation in a microfluidic paper-based analytical device with an on-column wireless electrogenerated chemiluminescence detector, Chem. Commun. (Camb.) 50, 5699–5702 (2014) L. Ge, S. Wang, S. Ge, J. Yu, M. Yan, N. Li, J. Huang: Electrophoretic separation in a microfluidic paper-based analytical device with an on-column wireless electrogenerated chemiluminescence detector, Chem. Commun. (Camb.) 50, 5699–5702 (2014)
16.208
go back to reference L. Wu, C. Ma, L. Ge, Q. Kong, M. Yan, S. Ge, J. Yu: Paper-based electrochemiluminescence origami cyto-device for multiple cancer cells detection using porous AuPd alloy as catalytically promoted nanolabels, Biosens. Bioelectron. 63, 450–457 (2015) L. Wu, C. Ma, L. Ge, Q. Kong, M. Yan, S. Ge, J. Yu: Paper-based electrochemiluminescence origami cyto-device for multiple cancer cells detection using porous AuPd alloy as catalytically promoted nanolabels, Biosens. Bioelectron. 63, 450–457 (2015)
16.209
go back to reference L. Ge, J. Yan, X. Song, M. Yan, S. Ge, J. Yu: Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing, Biomaterials 33, 1024–1031 (2012) L. Ge, J. Yan, X. Song, M. Yan, S. Ge, J. Yu: Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing, Biomaterials 33, 1024–1031 (2012)
16.210
go back to reference M.M. Mentele, J. Cunningham, K. Koehler, J. Volckens, C.S. Henry: Microfluidic paper-based analytical device for particulate metals, Anal. Chem. 84, 4474–4480 (2012) M.M. Mentele, J. Cunningham, K. Koehler, J. Volckens, C.S. Henry: Microfluidic paper-based analytical device for particulate metals, Anal. Chem. 84, 4474–4480 (2012)
16.211
go back to reference P. Rattanarat, W. Dungchai, D. Cate, J. Volckens, O. Chailapakul, C.S. Henry: Multilayer paper-based device for colorimetric and electrochemical quantification of metals, Anal. Chem. 86, 3555–3562 (2014) P. Rattanarat, W. Dungchai, D. Cate, J. Volckens, O. Chailapakul, C.S. Henry: Multilayer paper-based device for colorimetric and electrochemical quantification of metals, Anal. Chem. 86, 3555–3562 (2014)
16.212
go back to reference P. Rattanarat, W. Dungchai, D.M. Cate, W. Siangproh, J. Volckens, O. Chailapakul, C.S. Henry: A microfluidic paper-based analytical device for rapid quantification of particulate chromium, Anal. Chim. Acta 800, 50–55 (2013) P. Rattanarat, W. Dungchai, D.M. Cate, W. Siangproh, J. Volckens, O. Chailapakul, C.S. Henry: A microfluidic paper-based analytical device for rapid quantification of particulate chromium, Anal. Chim. Acta 800, 50–55 (2013)
16.213
go back to reference D.M. Cate, P. Nanthasurasak, P. Riwkulkajorn, C. L’Orange, C.S. Henry, J. Volckens: Rapid detection of transition metals in welding fumes using paper-based analytical devices, Ann. Occup. 58, 413–423 (2014) D.M. Cate, P. Nanthasurasak, P. Riwkulkajorn, C. L’Orange, C.S. Henry, J. Volckens: Rapid detection of transition metals in welding fumes using paper-based analytical devices, Ann. Occup. 58, 413–423 (2014)
16.214
go back to reference L. Feng, X. Li, H. Li, W. Yang, L. Chen, Y. Guan: Enhancement of sensitivity of paper-based sensor array for the identification of heavy-metal ions, Anal. Chim. Acta 780, 74–80 (2013) L. Feng, X. Li, H. Li, W. Yang, L. Chen, Y. Guan: Enhancement of sensitivity of paper-based sensor array for the identification of heavy-metal ions, Anal. Chim. Acta 780, 74–80 (2013)
16.215
go back to reference B.M. Jayawardane, R.W. Cattrall, S.D. Kolev: The use of a polymer inclusion membrane in a paper-based sensor for the selective determination of Cu (II), Anal. Chim. Acta 803, 106–112 (2013) B.M. Jayawardane, R.W. Cattrall, S.D. Kolev: The use of a polymer inclusion membrane in a paper-based sensor for the selective determination of Cu (II), Anal. Chim. Acta 803, 106–112 (2013)
16.216
go back to reference J. Jokerst, J.A. Adkins, B. Bisha, M. Mentele, L. Goodridge, C. Henry: A Paper-based analytical device for the colorimetric detection of foodborne pathogenic bacteria. In: Proc. 15th Int. Conf. Miniaturized Syst. Chem. Life Sci. (2011) pp. 2116–2118 J. Jokerst, J.A. Adkins, B. Bisha, M. Mentele, L. Goodridge, C. Henry: A Paper-based analytical device for the colorimetric detection of foodborne pathogenic bacteria. In: Proc. 15th Int. Conf. Miniaturized Syst. Chem. Life Sci. (2011) pp. 2116–2118
16.217
go back to reference W. Liu, J. Kou, H. Xing, B. Li: Paper-based chromatographic chemiluminescence chip for the detection of dichlorvos in vegetables, Biosens. Bioelectron. 52, 76–81 (2014) W. Liu, J. Kou, H. Xing, B. Li: Paper-based chromatographic chemiluminescence chip for the detection of dichlorvos in vegetables, Biosens. Bioelectron. 52, 76–81 (2014)
16.218
go back to reference Y. Wang, J. Ping, Z. Ye, J. Wu, Y. Ying: Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of escherichia coli O157:H7, Biosens. Bioelectron. 49, 492–498 (2013) Y. Wang, J. Ping, Z. Ye, J. Wu, Y. Ying: Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of escherichia coli O157:H7, Biosens. Bioelectron. 49, 492–498 (2013)
16.219
go back to reference J. Shi, F. Tang, H. Xing, H. Zheng, B. Lianhua, W. Wei: Electrochemical detection of Pb and Cd in paper-based microfluidic devices, J. Braz. Chem. Soc. 23, 1124–1130 (2012) J. Shi, F. Tang, H. Xing, H. Zheng, B. Lianhua, W. Wei: Electrochemical detection of Pb and Cd in paper-based microfluidic devices, J. Braz. Chem. Soc. 23, 1124–1130 (2012)
16.220
go back to reference D.M. Cate, J.A. Adkins, J. Mettakoonpitak, C.S. Henry: Recent developments in paper-based microfluidic devices, Anal. Chem. 87, 19–41 (2014) D.M. Cate, J.A. Adkins, J. Mettakoonpitak, C.S. Henry: Recent developments in paper-based microfluidic devices, Anal. Chem. 87, 19–41 (2014)
16.221
go back to reference W.K. Tomazelli Coltro, C.M. Cheng, E. Carrilho, D.P. Jesus: Recent advances in low-cost microfluidic platforms for diagnostic applications, Electrophoresis 35, 2309–2324 (2014) W.K. Tomazelli Coltro, C.M. Cheng, E. Carrilho, D.P. Jesus: Recent advances in low-cost microfluidic platforms for diagnostic applications, Electrophoresis 35, 2309–2324 (2014)
16.222
go back to reference D.R. Ballerini, X. Li, W. Shen: Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics, Microfluid. Nanofluidics 13, 769–787 (2012) D.R. Ballerini, X. Li, W. Shen: Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics, Microfluid. Nanofluidics 13, 769–787 (2012)
16.223
go back to reference A. Nilghaz, D. Ballerini, W. Shen: Exploration of microfluidic devices based on multi-filament threads and textiles: A review, Biomicrofluidics 7, 051501 (2013) A. Nilghaz, D. Ballerini, W. Shen: Exploration of microfluidic devices based on multi-filament threads and textiles: A review, Biomicrofluidics 7, 051501 (2013)
16.224
go back to reference A. Nilghaz, D.R. Ballerini, X.-Y. Fang, W. Shen: Semiquantitative analysis on microfluidic thread-based analytical devices by ruler, Sens. Actuat. B: Chem. 191, 586–594 (2014) A. Nilghaz, D.R. Ballerini, X.-Y. Fang, W. Shen: Semiquantitative analysis on microfluidic thread-based analytical devices by ruler, Sens. Actuat. B: Chem. 191, 586–594 (2014)
16.225
go back to reference X. Li, J. Tian, W. Shen: Thread as a versatile material for low-cost microfluidic diagnostics, ACS Appl. Mater. Interfaces 2, 1–6 (2009) X. Li, J. Tian, W. Shen: Thread as a versatile material for low-cost microfluidic diagnostics, ACS Appl. Mater. Interfaces 2, 1–6 (2009)
16.226
go back to reference K.T. Hodgson, J.C. Berg: The effect of surfactants on wicking flow in fiber networks, J. Colloid Interface Sci. 121, 22–31 (1988) K.T. Hodgson, J.C. Berg: The effect of surfactants on wicking flow in fiber networks, J. Colloid Interface Sci. 121, 22–31 (1988)
16.227
go back to reference N. Wang, A. Zha, J. Wang: Study on the wicking property of polyester filament yarns, Fibers Polym 9, 97–100 (2008) N. Wang, A. Zha, J. Wang: Study on the wicking property of polyester filament yarns, Fibers Polym 9, 97–100 (2008)
16.228
go back to reference D.R. Ballerini, X. Li, W. Shen: Flow control concepts for thread-based microfluidic devices, Biomicrofluidics 5, 014105 (2011) D.R. Ballerini, X. Li, W. Shen: Flow control concepts for thread-based microfluidic devices, Biomicrofluidics 5, 014105 (2011)
16.229
go back to reference P. Bhandari, T. Narahari, D. Dendukuri: Fab-Chips: A versatile, fabric-based platform for low-cost, rapid and multiplexed diagnostics, Lab on a Chip 11, 2493–2499 (2011) P. Bhandari, T. Narahari, D. Dendukuri: Fab-Chips: A versatile, fabric-based platform for low-cost, rapid and multiplexed diagnostics, Lab on a Chip 11, 2493–2499 (2011)
16.230
go back to reference R. Safavieh, G.Z. Zhou, D. Juncker: Microfluidics made of yarns and knots: From fundamental properties to simple networks and operations, Lab on a Chip 11, 2618–2624 (2011) R. Safavieh, G.Z. Zhou, D. Juncker: Microfluidics made of yarns and knots: From fundamental properties to simple networks and operations, Lab on a Chip 11, 2618–2624 (2011)
16.231
go back to reference G.O.F. Parikesit, F. Prasetia, G.A. Pribadi, D.C. Simbolon, G.Y. Pradhana, A.R. Prastowo, A. Gunawan, K. Suryopratomo, I. Kusumaningtyas: Textile-based microfluidics: Modulated wetting, mixing, sorting, and energy harvesting, J. Text. Inst. 103, 1077–1087 (2012) G.O.F. Parikesit, F. Prasetia, G.A. Pribadi, D.C. Simbolon, G.Y. Pradhana, A.R. Prastowo, A. Gunawan, K. Suryopratomo, I. Kusumaningtyas: Textile-based microfluidics: Modulated wetting, mixing, sorting, and energy harvesting, J. Text. Inst. 103, 1077–1087 (2012)
16.232
go back to reference S. Xing, J. Jiang, T. Pan: Interfacial microfluidic transport on micropatterned superhydrophobic textile, Lab on a Chip 13, 1937–1947 (2013) S. Xing, J. Jiang, T. Pan: Interfacial microfluidic transport on micropatterned superhydrophobic textile, Lab on a Chip 13, 1937–1947 (2013)
16.233
go back to reference T. Liu, K.-F. Choi, Y. Li: Wicking in twisted yarns, J. Colloid Interface Sci. 318, 134–139 (2008) T. Liu, K.-F. Choi, Y. Li: Wicking in twisted yarns, J. Colloid Interface Sci. 318, 134–139 (2008)
16.234
go back to reference J. Wiener, P. Dejlová: Wicking and wetting in textiles, Autex Res. J. 3, 64–71 (2003) J. Wiener, P. Dejlová: Wicking and wetting in textiles, Autex Res. J. 3, 64–71 (2003)
16.235
go back to reference J. Ráhel’, M. Šimor, M. Černák, M. Štefečka, Y. Imahori, M. Kando: Hydrophilization of polypropylene nonwoven fabric using surface barrier discharge, Surf. Coat. Technol. 169/170, 604–608 (2003) J. Ráhel’, M. Šimor, M. Černák, M. Štefečka, Y. Imahori, M. Kando: Hydrophilization of polypropylene nonwoven fabric using surface barrier discharge, Surf. Coat. Technol. 169/170, 604–608 (2003)
16.236
go back to reference M. Reches, K.A. Mirica, R. Dasgupta, M.D. Dickey, M.J. Butte, G.M. Whitesides: Thread as a matrix for biomedical assays, ACS Appl. Mater. Interfaces 2, 1722–1728 (2010) M. Reches, K.A. Mirica, R. Dasgupta, M.D. Dickey, M.J. Butte, G.M. Whitesides: Thread as a matrix for biomedical assays, ACS Appl. Mater. Interfaces 2, 1722–1728 (2010)
16.237
go back to reference D.R. Ballerini, X. Li, W. Shen: An inexpensive thread-based system for simple and rapid blood grouping, Anal. Bioanal. Chem. 399, 1869–1875 (2011) D.R. Ballerini, X. Li, W. Shen: An inexpensive thread-based system for simple and rapid blood grouping, Anal. Bioanal. Chem. 399, 1869–1875 (2011)
16.238
go back to reference A. Nilghaz, D.H. Wicaksono, D. Gustiono, F.A.A. Majid, E. Supriyanto, M.R.A. Kadir: Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique, Lab Chip 12, 209–218 (2012) A. Nilghaz, D.H. Wicaksono, D. Gustiono, F.A.A. Majid, E. Supriyanto, M.R.A. Kadir: Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique, Lab Chip 12, 209–218 (2012)
16.239
go back to reference R.S. Malon, K.Y. Chua, D.H. Wicaksono, E.P. Corcoles: Cotton fabric-based electrochemical device for lactate measurement in saliva, Analyst 139, 3009–3016 (2014) R.S. Malon, K.Y. Chua, D.H. Wicaksono, E.P. Corcoles: Cotton fabric-based electrochemical device for lactate measurement in saliva, Analyst 139, 3009–3016 (2014)
16.240
go back to reference W. Guan, C. Zhang, F. Liu, M. Liu: Chemiluminescence detection for microfluidic cloth-based analytical devices (muCADs), Biosens. Bioelectron. 72, 114–120 (2015) W. Guan, C. Zhang, F. Liu, M. Liu: Chemiluminescence detection for microfluidic cloth-based analytical devices (muCADs), Biosens. Bioelectron. 72, 114–120 (2015)
16.241
go back to reference W. Guan, M. Liu, C. Zhang: Electrochemiluminescence detection in microfluidic cloth-based analytical devices, Biosens. Bioelectron. 75, 247–253 (2016) W. Guan, M. Liu, C. Zhang: Electrochemiluminescence detection in microfluidic cloth-based analytical devices, Biosens. Bioelectron. 75, 247–253 (2016)
16.242
go back to reference T. Choudhary, G.P. Rajamanickam, D. Dendukuri: Woven electrochemical fabric-based test sensors (WEFTS): A new class of multiplexed electrochemical sensors, Lab Chip 15, 2064–2072 (2015) T. Choudhary, G.P. Rajamanickam, D. Dendukuri: Woven electrochemical fabric-based test sensors (WEFTS): A new class of multiplexed electrochemical sensors, Lab Chip 15, 2064–2072 (2015)
16.243
go back to reference G. Zhou, X. Mao, D. Juncker: Immunochromatographic assay on thread, Anal. Chem. 84, 7736–7743 (2012) G. Zhou, X. Mao, D. Juncker: Immunochromatographic assay on thread, Anal. Chem. 84, 7736–7743 (2012)
16.244
go back to reference D. Agustini, M.F. Bergamini, L.H. Marcolino-Junior: Low cost microfluidic device based on cotton threads for electroanalytical application, Lab Chip 16, 345–352 (2016) D. Agustini, M.F. Bergamini, L.H. Marcolino-Junior: Low cost microfluidic device based on cotton threads for electroanalytical application, Lab Chip 16, 345–352 (2016)
16.245
go back to reference A. Nilghaz, D.R. Ballerini, L. Guan, L. Li, W. Shen: Red blood cell transport mechanisms in polyester thread-based blood typing devices, Anal. Bioanal. Chem. 408, 1365–1371 (2016) A. Nilghaz, D.R. Ballerini, L. Guan, L. Li, W. Shen: Red blood cell transport mechanisms in polyester thread-based blood typing devices, Anal. Bioanal. Chem. 408, 1365–1371 (2016)
16.246
go back to reference Y.-C. Wei, L.-M. Fu, C.-H. Lin: Electrophoresis separation and electrochemical detection on a novel thread-based microfluidic device, Microfluid. Nanofluid. 14, 583–590 (2013) Y.-C. Wei, L.-M. Fu, C.-H. Lin: Electrophoresis separation and electrochemical detection on a novel thread-based microfluidic device, Microfluid. Nanofluid. 14, 583–590 (2013)
16.247
go back to reference B.G. Chung, K.H. Lee, A. Khademhosseini, S.H. Lee: Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering, Lab Chip 12, 45–59 (2012) B.G. Chung, K.H. Lee, A. Khademhosseini, S.H. Lee: Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering, Lab Chip 12, 45–59 (2012)
16.248
go back to reference X. Zhang, L. Li, C. Luo: Gel integration for microfluidic applications, Lab Chip 16, 1757–1776 (2016) X. Zhang, L. Li, C. Luo: Gel integration for microfluidic applications, Lab Chip 16, 1757–1776 (2016)
16.249
go back to reference B.V. Slaughter, S.S. Khurshid, O.Z. Fisher, A. Khademhosseini, N.A. Peppas: Hydrogels in regenerative medicine, Adv. Mater. 21, 3307–3329 (2009) B.V. Slaughter, S.S. Khurshid, O.Z. Fisher, A. Khademhosseini, N.A. Peppas: Hydrogels in regenerative medicine, Adv. Mater. 21, 3307–3329 (2009)
16.250
go back to reference N.A. Peppas, B. Kim: Stimuli-sensitive protein delivery systems, J. Drug Deliv. Sci. Technol. 16, 11–18 (2006) N.A. Peppas, B. Kim: Stimuli-sensitive protein delivery systems, J. Drug Deliv. Sci. Technol. 16, 11–18 (2006)
16.251
go back to reference S.Y. Cheng, S. Heilman, M. Wasserman, S. Archer, M.L. Shuler, M. Wu: A hydrogel-based microfluidic device for the studies of directed cell migration, Lab Chip 7, 763–769 (2007) S.Y. Cheng, S. Heilman, M. Wasserman, S. Archer, M.L. Shuler, M. Wu: A hydrogel-based microfluidic device for the studies of directed cell migration, Lab Chip 7, 763–769 (2007)
16.252
go back to reference B.R. Lee, J.W. Hwang, Y.Y. Choi, S.F. Wong, Y.H. Hwang, D.Y. Lee, S.H. Lee: In situ formation and collagen-alginate composite encapsulation of pancreatic islet spheroids, Biomaterials 33, 837–845 (2012) B.R. Lee, J.W. Hwang, Y.Y. Choi, S.F. Wong, Y.H. Hwang, D.Y. Lee, S.H. Lee: In situ formation and collagen-alginate composite encapsulation of pancreatic islet spheroids, Biomaterials 33, 837–845 (2012)
16.253
go back to reference F.R. Walter, S. Valkai, A. Kincses, A. Petneházi, T. Czeller, S. Veszelka, P. Ormos, M.A. Deli, A. Dér: A versatile lab-on-a-chip tool for modeling biological barriers, Sens. Actuat. B: Chem. 222, 1209–1219 (2016) F.R. Walter, S. Valkai, A. Kincses, A. Petneházi, T. Czeller, S. Veszelka, P. Ormos, M.A. Deli, A. Dér: A versatile lab-on-a-chip tool for modeling biological barriers, Sens. Actuat. B: Chem. 222, 1209–1219 (2016)
16.254
go back to reference J. Wan: Microfluidic-based synthesis of hydrogel particles for cell microencapsulation and cell-based drug delivery, Polymers 4, 1084–1108 (2012) J. Wan: Microfluidic-based synthesis of hydrogel particles for cell microencapsulation and cell-based drug delivery, Polymers 4, 1084–1108 (2012)
16.255
go back to reference G.D. Nicodemus, S.J. Bryant: Cell encapsulation in biodegradable hydrogels for tissue engineering applications, Tissue Eng. Part B: Rev. 14, 149–165 (2008) G.D. Nicodemus, S.J. Bryant: Cell encapsulation in biodegradable hydrogels for tissue engineering applications, Tissue Eng. Part B: Rev. 14, 149–165 (2008)
16.256
go back to reference P. Worthington, D.J. Pochan, S.A. Langhans: Peptide hydrogels-versatile matrices for 3-D cell culture in cancer medicine, Front. Oncol. 5, 92–92 (2014) P. Worthington, D.J. Pochan, S.A. Langhans: Peptide hydrogels-versatile matrices for 3-D cell culture in cancer medicine, Front. Oncol. 5, 92–92 (2014)
16.257
go back to reference E.M. Ahmed: Hydrogel: Preparation, characterization, and applications: A review, J. Adv. Res. 6, 105–121 (2015) E.M. Ahmed: Hydrogel: Preparation, characterization, and applications: A review, J. Adv. Res. 6, 105–121 (2015)
16.258
go back to reference B. Amsden: Solute diffusion within hydrogels, mechanisms and models, Macromolecules 31, 8382–8395 (1998) B. Amsden: Solute diffusion within hydrogels, mechanisms and models, Macromolecules 31, 8382–8395 (1998)
16.259
go back to reference J.-I. Horinaka, R. Yasuda, T. Takigawa: Rheological properties of concentrated solutions of galactomannans in an ionic liquid, Carbohydr. Polym. 89, 1018–1021 (2012) J.-I. Horinaka, R. Yasuda, T. Takigawa: Rheological properties of concentrated solutions of galactomannans in an ionic liquid, Carbohydr. Polym. 89, 1018–1021 (2012)
16.260
go back to reference H. Zhang, W. Davison: Diffusional characteristics of hydrogels used in DGT and DET techniques, Anal. Chim. Acta 398, 329–340 (1999) H. Zhang, W. Davison: Diffusional characteristics of hydrogels used in DGT and DET techniques, Anal. Chim. Acta 398, 329–340 (1999)
16.261
go back to reference V. Normand, D.L. Lootens, E. Amici, K.P. Plucknett, P. Aymard: New insight into agarose gel mechanical properties, Biomacromolecules 1, 730–738 (2000) V. Normand, D.L. Lootens, E. Amici, K.P. Plucknett, P. Aymard: New insight into agarose gel mechanical properties, Biomacromolecules 1, 730–738 (2000)
16.262
go back to reference D. Kim, D.J. Beebe: Hydrogel-based reconfigurable components for microfluidic devices, Lab on a Chip 7, 193–198 (2007) D. Kim, D.J. Beebe: Hydrogel-based reconfigurable components for microfluidic devices, Lab on a Chip 7, 193–198 (2007)
16.263
go back to reference C. Luo, X. Ni, L. Liu, S.I.M. Nomura, Y. Chen: Degassing-assisted patterning of cell culture surfaces, Biotechnol. Bioeng. 105, 854–859 (2010) C. Luo, X. Ni, L. Liu, S.I.M. Nomura, Y. Chen: Degassing-assisted patterning of cell culture surfaces, Biotechnol. Bioeng. 105, 854–859 (2010)
16.264
go back to reference L.M. Bellan, M. Pearsall, D.M. Cropek, R. Langer: A 3-D interconnected microchannel network formed in gelatin by sacrificial shellac microfibers, Adv. Mater. 24, 5187–5191 (2012) L.M. Bellan, M. Pearsall, D.M. Cropek, R. Langer: A 3-D interconnected microchannel network formed in gelatin by sacrificial shellac microfibers, Adv. Mater. 24, 5187–5191 (2012)
16.265
go back to reference X.-Y. Wang, Z.-H. Jin, B.-W. Gan, S.-W. Lv, M. Xie, W.-H. Huang: Engineering interconnected 3-D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template, Lab on a Chip 14, 2709–2716 (2014) X.-Y. Wang, Z.-H. Jin, B.-W. Gan, S.-W. Lv, M. Xie, W.-H. Huang: Engineering interconnected 3-D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template, Lab on a Chip 14, 2709–2716 (2014)
16.266
go back to reference L.M. Bellan, S.P. Singh, P.W. Henderson, T.J. Porri, H.G. Craighead, J.A. Spector: Fabrication of an artificial 3-dimensional vascular network using sacrificial sugar structures, Soft Matter 5, 1354–1357 (2009) L.M. Bellan, S.P. Singh, P.W. Henderson, T.J. Porri, H.G. Craighead, J.A. Spector: Fabrication of an artificial 3-dimensional vascular network using sacrificial sugar structures, Soft Matter 5, 1354–1357 (2009)
16.267
go back to reference A.P. Wong, R. Perez-Castillejos, J.C. Love, G.M. Whitesides: Partitioning microfluidic channels with hydrogel to construct tunable 3-D cellular microenvironments, Biomaterials 29, 1853–1861 (2008) A.P. Wong, R. Perez-Castillejos, J.C. Love, G.M. Whitesides: Partitioning microfluidic channels with hydrogel to construct tunable 3-D cellular microenvironments, Biomaterials 29, 1853–1861 (2008)
16.268
go back to reference S. Chung, R. Sudo, P.J. Mack, C.-R. Wan, V. Vickerman, R.D. Kamm: Cell migration into scaffolds under co-culture conditions in a microfluidic platform, Lab on a Chip 9, 269–275 (2009) S. Chung, R. Sudo, P.J. Mack, C.-R. Wan, V. Vickerman, R.D. Kamm: Cell migration into scaffolds under co-culture conditions in a microfluidic platform, Lab on a Chip 9, 269–275 (2009)
16.269
go back to reference H. Xu, M.M. Ferreira, S.C. Heilshorn: Small-molecule axon-polarization studies enabled by a shear-free microfluidic gradient generator, Lab on a Chip 14, 2047–2056 (2014) H. Xu, M.M. Ferreira, S.C. Heilshorn: Small-molecule axon-polarization studies enabled by a shear-free microfluidic gradient generator, Lab on a Chip 14, 2047–2056 (2014)
16.270
go back to reference S. Park, D. Kim, S.Y. Ko, J.-O. Park, S. Akella, B. Xu, Y. Zhang, S. Fraden: Controlling uniformity of photopolymerized microscopic hydrogels, Lab on a Chip 14, 1551–1563 (2014) S. Park, D. Kim, S.Y. Ko, J.-O. Park, S. Akella, B. Xu, Y. Zhang, S. Fraden: Controlling uniformity of photopolymerized microscopic hydrogels, Lab on a Chip 14, 1551–1563 (2014)
16.271
go back to reference N. Zaari, P. Rajagopalan, S.K. Kim, A.J. Engler, J.Y. Wong: Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response, Adv. Mater. 16, 2133–2137 (2004) N. Zaari, P. Rajagopalan, S.K. Kim, A.J. Engler, J.Y. Wong: Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response, Adv. Mater. 16, 2133–2137 (2004)
16.272
go back to reference D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.-H. Jo: Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature 404, 588–590 (2000) D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.-H. Jo: Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature 404, 588–590 (2000)
16.273
go back to reference A. Aung, I.S. Bhullar, J. Theprungsirikul, S.K. Davey, H.L. Lim, Y.-J. Chiu, X. Ma, S. Dewan, Y.-H. Lo, A. McCulloch: 3D cardiac $$\upmu$$tissues within a microfluidic device with real-time contractile stress readout, Lab on a Chip 16, 153–162 (2016) A. Aung, I.S. Bhullar, J. Theprungsirikul, S.K. Davey, H.L. Lim, Y.-J. Chiu, X. Ma, S. Dewan, Y.-H. Lo, A. McCulloch: 3D cardiac $$\upmu$$tissues within a microfluidic device with real-time contractile stress readout, Lab on a Chip 16, 153–162 (2016)
16.274
go back to reference S. Bersini, J.S. Jeon, G. Dubini, C. Arrigoni, S. Chung, J.L. Charest, M. Moretti, R.D. Kamm: A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone, Biomaterials 35, 2454–2461 (2014) S. Bersini, J.S. Jeon, G. Dubini, C. Arrigoni, S. Chung, J.L. Charest, M. Moretti, R.D. Kamm: A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone, Biomaterials 35, 2454–2461 (2014)
16.275
go back to reference J. Tiren, L. Tenerz, B. Hök: A batch-fabricated non-reverse valve with cantilever beam manufactured by micromachining of silicon, Sens. Actuat. 18, 389–396 (1989) J. Tiren, L. Tenerz, B. Hök: A batch-fabricated non-reverse valve with cantilever beam manufactured by micromachining of silicon, Sens. Actuat. 18, 389–396 (1989)
16.276
go back to reference C.Y. Li, K.R. Stevens, R.E. Schwartz, B.S. Alejandro, J.H. Huang, S.N. Bhatia: Micropatterned cell–cell interactions enable functional encapsulation of primary hepatocytes in hydrogel microtissues, Tissue Eng. Part A 20, 2200–2212 (2014) C.Y. Li, K.R. Stevens, R.E. Schwartz, B.S. Alejandro, J.H. Huang, S.N. Bhatia: Micropatterned cell–cell interactions enable functional encapsulation of primary hepatocytes in hydrogel microtissues, Tissue Eng. Part A 20, 2200–2212 (2014)
16.277
go back to reference S. Trkov, G. Eng, R. Di Liddo, P.P. Parnigotto, G. Vunjak-Novakovic: Micropatterned 3-dimensional hydrogel system to study human endothelial mesenchymal stem cell interactions, J. Tissue Eng. Regen. Medi. 4, 205 (2010) S. Trkov, G. Eng, R. Di Liddo, P.P. Parnigotto, G. Vunjak-Novakovic: Micropatterned 3-dimensional hydrogel system to study human endothelial mesenchymal stem cell interactions, J. Tissue Eng. Regen. Medi. 4, 205 (2010)
16.278
go back to reference J.H. Sung, M.L. Shuler: A micro cell culture analog (μCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs, Lab on a Chip 9, 1385–1394 (2009) J.H. Sung, M.L. Shuler: A micro cell culture analog (μCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs, Lab on a Chip 9, 1385–1394 (2009)
16.279
go back to reference M. Verhulsel, M. Vignes, S. Descroix, L. Malaquin, D.M. Vignjevic, J.-L. Viovy: A review of microfabrication and hydrogel engineering for micro-organs on chips, Biomaterials 35, 1816–1832 (2014) M. Verhulsel, M. Vignes, S. Descroix, L. Malaquin, D.M. Vignjevic, J.-L. Viovy: A review of microfabrication and hydrogel engineering for micro-organs on chips, Biomaterials 35, 1816–1832 (2014)
16.280
go back to reference H.-F. Li, J.-M. Lin: Applications of microfluidic systems in environmental analysis, Anal. Bioanal. Chem. 393, 555–567 (2009) H.-F. Li, J.-M. Lin: Applications of microfluidic systems in environmental analysis, Anal. Bioanal. Chem. 393, 555–567 (2009)
16.281
go back to reference C.D. Chin, T. Laksanasopin, Y.K. Cheung, D. Steinmiller, V. Linder, H. Parsa, J. Wang, H. Moore, R. Rouse, G. Umviligihozo, E. Karita, L. Mwambarangwe, S.L. Braunstein, J. van de Wijgert, R. Sahabo, J.E. Justman, W. El-Sadr, S.K. Sia: Microfluidics-based diagnostics of infectious diseases in the developing world, Nat. Med. 17, 1015–1019 (2011) C.D. Chin, T. Laksanasopin, Y.K. Cheung, D. Steinmiller, V. Linder, H. Parsa, J. Wang, H. Moore, R. Rouse, G. Umviligihozo, E. Karita, L. Mwambarangwe, S.L. Braunstein, J. van de Wijgert, R. Sahabo, J.E. Justman, W. El-Sadr, S.K. Sia: Microfluidics-based diagnostics of infectious diseases in the developing world, Nat. Med. 17, 1015–1019 (2011)
16.282
go back to reference P.S. Dittrich, A. Manz: Lab-on-a-chip: Microfluidics in drug discovery, Nat. Rev. Drug. Discov. 5, 210–218 (2006) P.S. Dittrich, A. Manz: Lab-on-a-chip: Microfluidics in drug discovery, Nat. Rev. Drug. Discov. 5, 210–218 (2006)
16.283
go back to reference I.U. Khan, C.A. Serra, N. Anton, T.F. Vandamme: Production of nanoparticle drug delivery systems with microfluidics tools, Expert Opin. Drug. Deliv. 12, 547–562 (2015) I.U. Khan, C.A. Serra, N. Anton, T.F. Vandamme: Production of nanoparticle drug delivery systems with microfluidics tools, Expert Opin. Drug. Deliv. 12, 547–562 (2015)
16.284
go back to reference A.J. Demello: Control and detection of chemical reactions in microfluidic systems, Nature 442, 394–402 (2006) A.J. Demello: Control and detection of chemical reactions in microfluidic systems, Nature 442, 394–402 (2006)
16.285
go back to reference P.M. Valencia, E.M. Pridgen, M. Rhee, R. Langer, O.C. Farokhzad, R. Karnik: Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy, ACS Nano 7, 10671–10680 (2013) P.M. Valencia, E.M. Pridgen, M. Rhee, R. Langer, O.C. Farokhzad, R. Karnik: Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy, ACS Nano 7, 10671–10680 (2013)
16.286
go back to reference P.S. Glockner, G.F. Naterer: Recent advances in nano-electromechanical and microfluidic power generation, Int. J. Energy Res. 31, 603–618 (2007) P.S. Glockner, G.F. Naterer: Recent advances in nano-electromechanical and microfluidic power generation, Int. J. Energy Res. 31, 603–618 (2007)
16.287
go back to reference A.B. Dababneh, I.T. Ozbolat: Bioprinting technology: A current state-of-the-art review, J. Manuf. Sci. Eng. 136, 061016 (2014) A.B. Dababneh, I.T. Ozbolat: Bioprinting technology: A current state-of-the-art review, J. Manuf. Sci. Eng. 136, 061016 (2014)
16.288
go back to reference G. Cummins, M.P.Y. Desmulliez: Inkjet printing of conductive materials: A review, Circuit World 38, 193–213 (2012) G. Cummins, M.P.Y. Desmulliez: Inkjet printing of conductive materials: A review, Circuit World 38, 193–213 (2012)
16.289
go back to reference R.P. Tortorich, J.-W. Choi: Inkjet printing of carbon nanotubes, Nanomaterials 3, 453–468 (2013) R.P. Tortorich, J.-W. Choi: Inkjet printing of carbon nanotubes, Nanomaterials 3, 453–468 (2013)
16.290
go back to reference H.P. Le: Progress and trends in ink-jet printing technology, J. Imaging Sci. Technol. 42, 49–62 (1998) H.P. Le: Progress and trends in ink-jet printing technology, J. Imaging Sci. Technol. 42, 49–62 (1998)
16.291
go back to reference A.K. Au, H. Lai, B.R. Utela, A. Folch: Microvalves and micropumps for biomems, Micromachines 2, 179–220 (2011) A.K. Au, H. Lai, B.R. Utela, A. Folch: Microvalves and micropumps for biomems, Micromachines 2, 179–220 (2011)
16.292
go back to reference M.W. Ashraf, S. Tayyaba, N. Afzulpurkar: Micro electromechanical systems (MEMS) based microfluidic devices for biomedical applications, Int. J. Mol. Sci. 12, 3648–3704 (2011) M.W. Ashraf, S. Tayyaba, N. Afzulpurkar: Micro electromechanical systems (MEMS) based microfluidic devices for biomedical applications, Int. J. Mol. Sci. 12, 3648–3704 (2011)
16.294
go back to reference D.C.S. Bien, S.J.N. Mitchell, H.S. Gamble: Fabrication and characterization of a micromachined passive valve, J. Micromech. Microeng. 13, 557 (2003) D.C.S. Bien, S.J.N. Mitchell, H.S. Gamble: Fabrication and characterization of a micromachined passive valve, J. Micromech. Microeng. 13, 557 (2003)
16.295
go back to reference E.F. Hasselbrink, T.J. Shepodd, J.E. Rehm: High-pressure microfluidic control in lab-on-a-chip devices using mobile polymer monoliths, Anal. Chem. 74, 4913–4918 (2002) E.F. Hasselbrink, T.J. Shepodd, J.E. Rehm: High-pressure microfluidic control in lab-on-a-chip devices using mobile polymer monoliths, Anal. Chem. 74, 4913–4918 (2002)
16.296
go back to reference M. Yamada, M. Seki: Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices, Anal. Chem. 76, 895–899 (2004) M. Yamada, M. Seki: Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices, Anal. Chem. 76, 895–899 (2004)
16.297
go back to reference H. Andersson, W. van der Wijngaart, P. Griss, F. Niklaus, G. Stemme: Hydrophobic valves of plasma deposited octafluorocyclobutane in DRIE channels, Sens. Actuat B: Chem. 75, 136–141 (2001) H. Andersson, W. van der Wijngaart, P. Griss, F. Niklaus, G. Stemme: Hydrophobic valves of plasma deposited octafluorocyclobutane in DRIE channels, Sens. Actuat B: Chem. 75, 136–141 (2001)
16.298
go back to reference K. Yanagisawa, H. Kuwano, A. Tago: Electromagetically driven microvalve, Microsyst. Technol. 2, 22–25 (1995) K. Yanagisawa, H. Kuwano, A. Tago: Electromagetically driven microvalve, Microsyst. Technol. 2, 22–25 (1995)
16.299
go back to reference B. Byunghoon, K. Nakhoon, K. Hongseok, K. Seon-Ho, L. Yeon, L. Sangho, P. Kyihwan: Feasibility test of an electromagnetically driven valve actuator for glaucoma treatment, J. Microelectromech. Syst. 11, 344–354 (2002) B. Byunghoon, K. Nakhoon, K. Hongseok, K. Seon-Ho, L. Yeon, L. Sangho, P. Kyihwan: Feasibility test of an electromagnetically driven valve actuator for glaucoma treatment, J. Microelectromech. Syst. 11, 344–354 (2002)
16.300
go back to reference K.W. Oh, R. Rong, C.H. Ahn: Miniaturization of pinch-type valves and pumps for practical micro total analysis system integration, J. Micromech. Microeng. 15(12), 2449 (2005) K.W. Oh, R. Rong, C.H. Ahn: Miniaturization of pinch-type valves and pumps for practical micro total analysis system integration, J. Micromech. Microeng. 15(12), 2449 (2005)
16.301
go back to reference J. Schaible, J. Vollmer, R. Zengerle, H. Sandmaier, T. Strobelt: Electrostatic microvalves in silicon with 2-way-function for industrial applications. In: Transducers’ 01 Eurosensors XV, ed. by E. Obermeier (Springer, Berlin, Heidelberg 2001) pp. 900–903 J. Schaible, J. Vollmer, R. Zengerle, H. Sandmaier, T. Strobelt: Electrostatic microvalves in silicon with 2-way-function for industrial applications. In: Transducers’ 01 Eurosensors XV, ed. by E. Obermeier (Springer, Berlin, Heidelberg 2001) pp. 900–903
16.302
go back to reference T. Rogge, Z. Rummler, W.K. Schomburg: Polymer micro valve with a hydraulic piezo-drive fabricated by the Amanda process, Sens. Actuat. A: Phys. 110, 206–212 (2004) T. Rogge, Z. Rummler, W.K. Schomburg: Polymer micro valve with a hydraulic piezo-drive fabricated by the Amanda process, Sens. Actuat. A: Phys. 110, 206–212 (2004)
16.303
go back to reference P.W. Barth: Silicon microvalves for gas flow control. In: The 8th Int. Conf. Solid-State Sensors and Actuators, 1995 and Eurosensors IX Transducers (1995) pp. 276–279CrossRef P.W. Barth: Silicon microvalves for gas flow control. In: The 8th Int. Conf. Solid-State Sensors and Actuators, 1995 and Eurosensors IX Transducers (1995) pp. 276–279CrossRef
16.304
go back to reference C.A. Rich, K.D. Wise: A high-flow thermopneumatic microvalve with improved efficiency and integrated state sensing, J. Microelectromech. Syst. 12, 201–208 (2003) C.A. Rich, K.D. Wise: A high-flow thermopneumatic microvalve with improved efficiency and integrated state sensing, J. Microelectromech. Syst. 12, 201–208 (2003)
16.305
go back to reference M. Kohl, D. Dittmann, E. Quandt, B. Winzek, S. Miyazaki, D.M. Allen: Shape memory microvalves based on thin films or rolled sheets, Mater. Sci. Eng. A 273–275, 784–788 (1999) M. Kohl, D. Dittmann, E. Quandt, B. Winzek, S. Miyazaki, D.M. Allen: Shape memory microvalves based on thin films or rolled sheets, Mater. Sci. Eng. A 273–275, 784–788 (1999)
16.306
go back to reference C.R. Neagu, J.G.E. Gardeniers, M. Elwenspoek, J.J. Kelly: Electrochemical microsystem technologiesan electrochemical active valve, Electrochim. Acta 42, 3367–3373 (1997) C.R. Neagu, J.G.E. Gardeniers, M. Elwenspoek, J.J. Kelly: Electrochemical microsystem technologiesan electrochemical active valve, Electrochim. Acta 42, 3367–3373 (1997)
16.307
go back to reference R.H. Liu, J. Bonanno, J. Yang, R. Lenigk, P. Grodzinski: Single-use, thermally actuated paraffin valves for microfluidic applications, Sens. Actuat. B: Chem. 98, 328–336 (2004) R.H. Liu, J. Bonanno, J. Yang, R. Lenigk, P. Grodzinski: Single-use, thermally actuated paraffin valves for microfluidic applications, Sens. Actuat. B: Chem. 98, 328–336 (2004)
16.308
go back to reference B.J. Kirby, T.J. Shepodd, E.F. Hasselbrink Jr.: Voltage-addressable on–off microvalves for high-pressure microchip separations, J. Chromatogr. A 979, 147–154 (2002) B.J. Kirby, T.J. Shepodd, E.F. Hasselbrink Jr.: Voltage-addressable on–off microvalves for high-pressure microchip separations, J. Chromatogr. A 979, 147–154 (2002)
16.309
go back to reference J. Döpper, M. Clemens, W. Ehrfeld, S. Jung, K.P. Kämper, H. Lehr: Micro gear pumps for dosing of viscous fluids, J. Micromech. Microeng. 7, 230 (1997) J. Döpper, M. Clemens, W. Ehrfeld, S. Jung, K.P. Kämper, H. Lehr: Micro gear pumps for dosing of viscous fluids, J. Micromech. Microeng. 7, 230 (1997)
16.310
go back to reference R. Zengerle, J. Ulrich, S. Kluge, M. Richter, A. Richter: A bidirectional silicon micropump, Sens. Actuat. A: Phys. 50, 81–86 (1995) R. Zengerle, J. Ulrich, S. Kluge, M. Richter, A. Richter: A bidirectional silicon micropump, Sens. Actuat. A: Phys. 50, 81–86 (1995)
16.311
go back to reference P. Dario, N. Croce, M.C. Carrozza, G. Varallo: A fluid handling system for a chemical microanalyzer, J. Micromech. Microeng. 6, 95 (1996) P. Dario, N. Croce, M.C. Carrozza, G. Varallo: A fluid handling system for a chemical microanalyzer, J. Micromech. Microeng. 6, 95 (1996)
16.312
go back to reference H. Andersson, W. van der Wijngaart, P. Nilsson, P. Enoksson, G. Stemme: A valve-less diffuser micropump for microfluidic analytical systems, Sens. Actuat. B: Chem. 72, 259–265 (2001) H. Andersson, W. van der Wijngaart, P. Nilsson, P. Enoksson, G. Stemme: A valve-less diffuser micropump for microfluidic analytical systems, Sens. Actuat. B: Chem. 72, 259–265 (2001)
16.313
go back to reference H.T.G. van Lintel, F.C.M. van De Pol, S. Bouwstra: A piezoelectric micropump based on micromachining of silicon, Sens. Actuat. 15, 153–167 (1988) H.T.G. van Lintel, F.C.M. van De Pol, S. Bouwstra: A piezoelectric micropump based on micromachining of silicon, Sens. Actuat. 15, 153–167 (1988)
16.314
go back to reference E. Stemme, G. Stemme: A valveless diffuser–nozzle-based fluid pump, Sens. Actuat. A: Phys. 39, 159–167 (1993) E. Stemme, G. Stemme: A valveless diffuser–nozzle-based fluid pump, Sens. Actuat. A: Phys. 39, 159–167 (1993)
16.315
go back to reference F.K. Forster, R.L. Bardell, M.A. Afromowitz, N.R. Sharma, A. Blanchard: Design, fabrication and testing of fixed-valve micro-pumps, ASME-Publications-FED 234, 39–44 (1995) F.K. Forster, R.L. Bardell, M.A. Afromowitz, N.R. Sharma, A. Blanchard: Design, fabrication and testing of fixed-valve micro-pumps, ASME-Publications-FED 234, 39–44 (1995)
16.316
go back to reference T. Gerlach, H. Wurmus: Working principle and performance of the dynamic micropump, Sens. Actuat. A: Phys. 50, 135–140 (1995) T. Gerlach, H. Wurmus: Working principle and performance of the dynamic micropump, Sens. Actuat. A: Phys. 50, 135–140 (1995)
16.317
go back to reference O. Anders, E. Peter, S. Göran, S. Erik: A valve-less planar pump isotropically etched in silicon, J. Micromech. Microeng. 6, 87 (1996) O. Anders, E. Peter, S. Göran, S. Erik: A valve-less planar pump isotropically etched in silicon, J. Micromech. Microeng. 6, 87 (1996)
16.318
go back to reference M. Koch, N. Harris, A.G.R. Evans, N.M. White, A. Brunnschweiler: A novel micromachined pump based on thick-film piezoelectric actuation, Sens. Actuat. A: Phys. 70, 98–103 (1998) M. Koch, N. Harris, A.G.R. Evans, N.M. White, A. Brunnschweiler: A novel micromachined pump based on thick-film piezoelectric actuation, Sens. Actuat. A: Phys. 70, 98–103 (1998)
16.319
go back to reference L. Weber: Micropump and method for the production thereof, US Patent (Application) 7771176 (2010) L. Weber: Micropump and method for the production thereof, US Patent (Application) 7771176 (2010)
16.320
go back to reference H.T. Van Lintel, D. Maillefer, S. Gamper: Micromachined fluidic device and method for making same, US Patent (Application) CA241030611 (2001) H.T. Van Lintel, D. Maillefer, S. Gamper: Micromachined fluidic device and method for making same, US Patent (Application) CA241030611 (2001)
16.321
go back to reference J.-H. Tsai, L. Lin: A thermal-bubble-actuated micronozzle-diffuser pump, J. Microelectromech. Syst. 11, 665–671 (2002) J.-H. Tsai, L. Lin: A thermal-bubble-actuated micronozzle-diffuser pump, J. Microelectromech. Syst. 11, 665–671 (2002)
16.322
go back to reference S. Böhm, B. Timmer, W. Olthuis, P. Bergveld: A closed-loop controlled electrochemically actuated micro-dosing system, J. Micromech. Microeng. 10(4), 498 (2000) S. Böhm, B. Timmer, W. Olthuis, P. Bergveld: A closed-loop controlled electrochemically actuated micro-dosing system, J. Micromech. Microeng. 10(4), 498 (2000)
16.323
go back to reference G. Fuhr, T. Schnelle, B. Wagner: Travelling wave-driven microfabricated electrohydrodynamic pumps for liquids, J. Micromech. Microeng. 4, 217 (1994) G. Fuhr, T. Schnelle, B. Wagner: Travelling wave-driven microfabricated electrohydrodynamic pumps for liquids, J. Micromech. Microeng. 4, 217 (1994)
16.324
go back to reference J. Jang, S.S. Lee: Theoretical and experimental study of MHD (magnetohydrodynamic) micropump, Sens. Actuat. A: Phys. 80, 84–89 (2000) J. Jang, S.S. Lee: Theoretical and experimental study of MHD (magnetohydrodynamic) micropump, Sens. Actuat. A: Phys. 80, 84–89 (2000)
16.325
go back to reference S. Debesset, C. Hayden, C. Dalton, J. Eijkel, A. Manz: An AC electroosmotic micropump for circular chromatographic applications, Lab Chip 4, 396–400 (2004) S. Debesset, C. Hayden, C. Dalton, J. Eijkel, A. Manz: An AC electroosmotic micropump for circular chromatographic applications, Lab Chip 4, 396–400 (2004)
16.326
go back to reference R. Huter: Zeta Potential in Colloid Science (Academic, London 1981) R. Huter: Zeta Potential in Colloid Science (Academic, London 1981)
16.327
go back to reference P. Luginbuhl, S.D. Collins, G.A. Racine, M.A. Gretillat, N.F.D. Rooij, K.G. Brooks, N. Setter: Microfabricated Lamb wave device based on PZT sol-gel thin film for mechanical transport of solid particles and liquids, J. Microelectromech. Syst. 6, 337–346 (1997) P. Luginbuhl, S.D. Collins, G.A. Racine, M.A. Gretillat, N.F.D. Rooij, K.G. Brooks, N. Setter: Microfabricated Lamb wave device based on PZT sol-gel thin film for mechanical transport of solid particles and liquids, J. Microelectromech. Syst. 6, 337–346 (1997)
16.328
go back to reference K.S. Yun, I.J. Cho, J.U. Bu, C.J. Kim, E. Yoon: A surface-tension driven micropump for low-voltage and low-power operations, J. Microelectromech. Syst. 11(5), 454–461 (2002) K.S. Yun, I.J. Cho, J.U. Bu, C.J. Kim, E. Yoon: A surface-tension driven micropump for low-voltage and low-power operations, J. Microelectromech. Syst. 11(5), 454–461 (2002)
16.329
go back to reference T. Wang, Q. Ni, N. Crane, R. Guldiken: Surface acoustic wave based pumping in a microchannel, Microsyst. Technol. 23, 1–8 (2016) T. Wang, Q. Ni, N. Crane, R. Guldiken: Surface acoustic wave based pumping in a microchannel, Microsyst. Technol. 23, 1–8 (2016)
16.330
go back to reference A.E. Kamholz, B.H. Weigl, B.A. Finlayson, P. Yager: Quantitative analysis of molecular interaction in a microfluidic channel: The T-sensor, Anal. Chem. 71, 5340–5347 (1999) A.E. Kamholz, B.H. Weigl, B.A. Finlayson, P. Yager: Quantitative analysis of molecular interaction in a microfluidic channel: The T-sensor, Anal. Chem. 71, 5340–5347 (1999)
16.331
go back to reference R.F. Ismagilov, A.D. Stroock, P.J.A. Kenis, G. Whitesides, H.A. Stone: Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels, Appl. Phys. Lett. 76, 2376–2378 (2000) R.F. Ismagilov, A.D. Stroock, P.J.A. Kenis, G. Whitesides, H.A. Stone: Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels, Appl. Phys. Lett. 76, 2376–2378 (2000)
16.332
go back to reference S.H. Wong, M.C.L. Ward, C.W. Wharton: Micro T-mixer as a rapid mixing micromixer, Sens. Actuat. B: Chem. 100, 359–379 (2004) S.H. Wong, M.C.L. Ward, C.W. Wharton: Micro T-mixer as a rapid mixing micromixer, Sens. Actuat. B: Chem. 100, 359–379 (2004)
16.333
go back to reference M. Yi, H.H. Bau: The kinematics of bend-induced mixing in micro-conduits, Int. J. Heat Fluid Flow 24, 645–656 (2003) M. Yi, H.H. Bau: The kinematics of bend-induced mixing in micro-conduits, Int. J. Heat Fluid Flow 24, 645–656 (2003)
16.334
go back to reference G.F. Bessoth, J.A. deMello, A. Manz: Microstructure for efficient continuous flow mixing, Anal. Commun. 36, 213–215 (1999) G.F. Bessoth, J.A. deMello, A. Manz: Microstructure for efficient continuous flow mixing, Anal. Commun. 36, 213–215 (1999)
16.335
go back to reference J.B. Knight, A. Vishwanath, J.P. Brody, R.H. Austin: Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds, Phys. Rev. Lett. 80, 3863–3866 (1998) J.B. Knight, A. Vishwanath, J.P. Brody, R.H. Austin: Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds, Phys. Rev. Lett. 80, 3863–3866 (1998)
16.336
go back to reference R. Miyake, T.S.J. Lammerink, M. Elwenspoek, J.H.J. Fluitman: Micro mixer with fast diffusion. In: MEMS (1993) pp. 248–253CrossRef R. Miyake, T.S.J. Lammerink, M. Elwenspoek, J.H.J. Fluitman: Micro mixer with fast diffusion. In: MEMS (1993) pp. 248–253CrossRef
16.337
go back to reference Y. Lin, G.J. Gerfen, D.L. Rousseau, S.-R. Yeh: Ultrafast microfluidic mixer and freeze-quenching device, Anal. Chem. 75, 5381–5386 (2003) Y. Lin, G.J. Gerfen, D.L. Rousseau, S.-R. Yeh: Ultrafast microfluidic mixer and freeze-quenching device, Anal. Chem. 75, 5381–5386 (2003)
16.338
go back to reference C.-C. Hong, J.-W. Choi, C.H. Ahn: A novel in-plane passive microfluidic mixer with modified Tesla structures, Lab on a Chip 4, 109–113 (2004) C.-C. Hong, J.-W. Choi, C.H. Ahn: A novel in-plane passive microfluidic mixer with modified Tesla structures, Lab on a Chip 4, 109–113 (2004)
16.339
go back to reference A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezić, H.A. Stone, G.M. Whitesides: Chaotic mixer for microchannels, Science 295, 647–651 (2002) A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezić, H.A. Stone, G.M. Whitesides: Chaotic mixer for microchannels, Science 295, 647–651 (2002)
16.340
go back to reference K. Hosokawa, T. Fujii, I. Endo: Droplet-based nano–picoliter mixer using hydrophobic microcapillary vent. In: Proc. MEMS’99 (1999) pp. 388–393 K. Hosokawa, T. Fujii, I. Endo: Droplet-based nano–picoliter mixer using hydrophobic microcapillary vent. In: Proc. MEMS’99 (1999) pp. 388–393
16.341
go back to reference A.A. Deshmukh, D. Liepmann, A.P. Pisano: Continuous micromixer with pulsatile micropumps. In: Technical Digest of the IEEE Solid State Sensor and Actuator Workshop, Hilton Head Island (2000) A.A. Deshmukh, D. Liepmann, A.P. Pisano: Continuous micromixer with pulsatile micropumps. In: Technical Digest of the IEEE Solid State Sensor and Actuator Workshop, Hilton Head Island (2000)
16.342
go back to reference A.O. El Moctar, N. Aubry, J. Batton: Electro-hydrodynamic micro-fluidic mixer, Lab on a Chip 3, 273–280 (2003) A.O. El Moctar, N. Aubry, J. Batton: Electro-hydrodynamic micro-fluidic mixer, Lab on a Chip 3, 273–280 (2003)
16.343
go back to reference J. Deval, P. Tabeling, C.-M. Ho: A dielectrophoretic chaotic mixer. In: Proc. MEMS’02 (2002) pp. 36–39 J. Deval, P. Tabeling, C.-M. Ho: A dielectrophoretic chaotic mixer. In: Proc. MEMS’02 (2002) pp. 36–39
16.344
go back to reference Z. Tang, S. Hong, D. Djukic, V. Modi, A.C. West, J. Yardley, R.M. Osgood: Electrokinetic flow control for composition modulation in a microchannel, J. Micromech. Microeng. 12(6), 870 (2002) Z. Tang, S. Hong, D. Djukic, V. Modi, A.C. West, J. Yardley, R.M. Osgood: Electrokinetic flow control for composition modulation in a microchannel, J. Micromech. Microeng. 12(6), 870 (2002)
16.345
go back to reference H.H. Bau, J. Zhong, M. Yi: A minute magneto hydro dynamic (MHD) mixer, Sens. Actuat. B: Chem. 79, 207–215 (2001) H.H. Bau, J. Zhong, M. Yi: A minute magneto hydro dynamic (MHD) mixer, Sens. Actuat. B: Chem. 79, 207–215 (2001)
16.346
go back to reference V. Vivek, E.S. Kim: Novel acoustic-wave micromixer. In: Proc. MEMS (2000) pp. 668–673 V. Vivek, E.S. Kim: Novel acoustic-wave micromixer. In: Proc. MEMS (2000) pp. 668–673
16.347
go back to reference J.-H. Tsai, L. Lin: A thermal-bubble-actuated micronozzle-diffuser pump, J. Microelectromech. Syst. 11(6), 665–671 (2002) J.-H. Tsai, L. Lin: A thermal-bubble-actuated micronozzle-diffuser pump, J. Microelectromech. Syst. 11(6), 665–671 (2002)
16.348
go back to reference K.S. Elvira, X. Casadevall i Solvas, R.C. Wootton, A.J. deMello: The past, present and potential for microfluidic reactor technology in chemical synthesis, Nat. Chem. 5, 905–915 (2013) K.S. Elvira, X. Casadevall i Solvas, R.C. Wootton, A.J. deMello: The past, present and potential for microfluidic reactor technology in chemical synthesis, Nat. Chem. 5, 905–915 (2013)
16.349
go back to reference T. Rodrigues, P. Schneider, G. Schneider: Accessing new chemical entities through microfluidic systems, Angew. Chem. Int. Ed. Engl. 53, 5750–5758 (2014) T. Rodrigues, P. Schneider, G. Schneider: Accessing new chemical entities through microfluidic systems, Angew. Chem. Int. Ed. Engl. 53, 5750–5758 (2014)
16.350
go back to reference S. Das, V.C. Srivastava: Microfluidic-based photocatalytic microreactor for environmental application: A review of fabrication substrates and techniques, and operating parameters, Photochem. Photobiol. Sci. 15, 714–730 (2016) S. Das, V.C. Srivastava: Microfluidic-based photocatalytic microreactor for environmental application: A review of fabrication substrates and techniques, and operating parameters, Photochem. Photobiol. Sci. 15, 714–730 (2016)
16.351
go back to reference Y. Asano, S. Togashi, H. Tsudome, S. Murakami: Microreactor technology: Innovations in production processes, Pharm. Eng. 30, 32 (2010) Y. Asano, S. Togashi, H. Tsudome, S. Murakami: Microreactor technology: Innovations in production processes, Pharm. Eng. 30, 32 (2010)
16.352
go back to reference D. Roberge: Lonza–hazardous flow chemistry for streamlined large scale synthesis, Green Process. Synth. 1, 129–130 (2012) D. Roberge: Lonza–hazardous flow chemistry for streamlined large scale synthesis, Green Process. Synth. 1, 129–130 (2012)
16.353
go back to reference T. Frank: Fabrication and assembling of microreactors made from glass and silicon. In: Microreactors in Organic Synthesis and Catalysis, ed. by T. Wirth (Wiley, Weinheim 2008) pp. 19–41CrossRef T. Frank: Fabrication and assembling of microreactors made from glass and silicon. In: Microreactors in Organic Synthesis and Catalysis, ed. by T. Wirth (Wiley, Weinheim 2008) pp. 19–41CrossRef
16.354
go back to reference C.-C. Lee, G. Sui, A. Elizarov, C.J. Shu, Y.-S. Shin, A.N. Dooley, J. Huang, A. Daridon, P. Wyatt, D. Stout: Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics, Science 310, 1793–1796 (2005) C.-C. Lee, G. Sui, A. Elizarov, C.J. Shu, Y.-S. Shin, A.N. Dooley, J. Huang, A. Daridon, P. Wyatt, D. Stout: Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics, Science 310, 1793–1796 (2005)
16.355
go back to reference J.S. Moore, K.F. Jensen: Automated multitrajectory method for reaction optimization in a microfluidic system using online IR analysis, Organ. Process. Res. Dev. 16, 1409–1415 (2012) J.S. Moore, K.F. Jensen: Automated multitrajectory method for reaction optimization in a microfluidic system using online IR analysis, Organ. Process. Res. Dev. 16, 1409–1415 (2012)
16.356
go back to reference P.R. Selvaganapathy, E.T. Carlen, C.H. Mastrangelo: Recent progress in microfluidic devices for nucleic acid and antibody assays, Proc. IEEE 91, 954–975 (2003) P.R. Selvaganapathy, E.T. Carlen, C.H. Mastrangelo: Recent progress in microfluidic devices for nucleic acid and antibody assays, Proc. IEEE 91, 954–975 (2003)
16.357
go back to reference Y. Zhang, H.R. Jiang: A review on continuous-flow microfluidic PCR in droplets: Advances, challenges and future, Anal. Chim. Acta 914, 7–16 (2016) Y. Zhang, H.R. Jiang: A review on continuous-flow microfluidic PCR in droplets: Advances, challenges and future, Anal. Chim. Acta 914, 7–16 (2016)
16.358
go back to reference C. Zhang, J. Xu, W. Ma, W. Zheng: PCR microfluidic devices for DNA amplification, Biotechnol. Adv. 24, 243–284 (2006) C. Zhang, J. Xu, W. Ma, W. Zheng: PCR microfluidic devices for DNA amplification, Biotechnol. Adv. 24, 243–284 (2006)
16.359
go back to reference N.R. Beer, B.J. Hindson, E.K. Wheeler, S.B. Hall, K.A. Rose, I.M. Kennedy, B.W. Colston: On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets, Anal. Chem. 79, 8471–8475 (2007) N.R. Beer, B.J. Hindson, E.K. Wheeler, S.B. Hall, K.A. Rose, I.M. Kennedy, B.W. Colston: On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets, Anal. Chem. 79, 8471–8475 (2007)
16.360
go back to reference J. Daniel, S. Iqbal, R. Millington, D. Moore, C. Lowe, D. Leslie, M. Lee, M. Pearce: Silicon microchambers for DNA amplification, Sens. Actuat A: Phys. 71, 81–88 (1998) J. Daniel, S. Iqbal, R. Millington, D. Moore, C. Lowe, D. Leslie, M. Lee, M. Pearce: Silicon microchambers for DNA amplification, Sens. Actuat A: Phys. 71, 81–88 (1998)
16.361
go back to reference J. Khandurina, T.E. McKnight, S.C. Jacobson, L.C. Waters, R.S. Foote, J.M. Ramsey: Integrated system for rapid PCR-based DNA analysis in microfluidic devices, Anal. Chem. 72, 2995–3000 (2000) J. Khandurina, T.E. McKnight, S.C. Jacobson, L.C. Waters, R.S. Foote, J.M. Ramsey: Integrated system for rapid PCR-based DNA analysis in microfluidic devices, Anal. Chem. 72, 2995–3000 (2000)
16.362
go back to reference C.G. Koh, W. Tan, M.-Q. Zhao, A.J. Ricco, Z.H. Fan: Integrating polymerase chain reaction, valving, and electrophoresis in a plastic device for bacterial detection, Anal. Chem. 75, 4591–4598 (2003) C.G. Koh, W. Tan, M.-Q. Zhao, A.J. Ricco, Z.H. Fan: Integrating polymerase chain reaction, valving, and electrophoresis in a plastic device for bacterial detection, Anal. Chem. 75, 4591–4598 (2003)
16.363
go back to reference C.T. Wittwer, G.C. Fillmore, D. Hillyard: Automated polymerase chain reaction in capillary tubes with hot air, Nucl. Acids Res. 17, 4353–4357 (1989) C.T. Wittwer, G.C. Fillmore, D. Hillyard: Automated polymerase chain reaction in capillary tubes with hot air, Nucl. Acids Res. 17, 4353–4357 (1989)
16.364
go back to reference R. Oda, M. Strausbauch, A. Huhmer, N. Borson, S. Jurrens, J. Craighead, P.J. Wettstein, B. Eckloff, B. Kline, J. Landers: Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA, Anal. Chem. 70, 4361–4368 (1998) R. Oda, M. Strausbauch, A. Huhmer, N. Borson, S. Jurrens, J. Craighead, P.J. Wettstein, B. Eckloff, B. Kline, J. Landers: Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA, Anal. Chem. 70, 4361–4368 (1998)
16.365
go back to reference Y. Tanaka, M.N. Slyadnev, A. Hibara, M. Tokeshi, T. Kitamori: Non-contact photothermal control of enzyme reactions on a microchip by using a compact diode laser, J. Chromatogr. A 894, 45–51 (2000) Y. Tanaka, M.N. Slyadnev, A. Hibara, M. Tokeshi, T. Kitamori: Non-contact photothermal control of enzyme reactions on a microchip by using a compact diode laser, J. Chromatogr. A 894, 45–51 (2000)
16.366
go back to reference C. Fermér, P. Nilsson, M. Larhed: Microwave-assisted high-speed PCR, Eur. J. Pharm. Sci. 18, 129–132 (2003) C. Fermér, P. Nilsson, M. Larhed: Microwave-assisted high-speed PCR, Eur. J. Pharm. Sci. 18, 129–132 (2003)
16.367
go back to reference P. Belgrader, W. Benett, D. Hadley, J. Richards, P. Stratton, R. Mariella, F. Milanovich: PCR detection of bacteria in 7 minutes, Science 284, 449–450 (1999) P. Belgrader, W. Benett, D. Hadley, J. Richards, P. Stratton, R. Mariella, F. Milanovich: PCR detection of bacteria in 7 minutes, Science 284, 449–450 (1999)
16.368
go back to reference J. Liu, M. Enzelberger, S. Quake: A nanoliter rotary device for polymerase chain reaction, Electrophoresis 23, 1531–1536 (2002) J. Liu, M. Enzelberger, S. Quake: A nanoliter rotary device for polymerase chain reaction, Electrophoresis 23, 1531–1536 (2002)
16.369
go back to reference M. Bu, T. Melvin, G. Ensell, J.S. Wilkinson, A.G. Evans: Design and theoretical evaluation of a novel microfluidic device to be used for PCR, J. Micromech. Microeng. 13, S125 (2003) M. Bu, T. Melvin, G. Ensell, J.S. Wilkinson, A.G. Evans: Design and theoretical evaluation of a novel microfluidic device to be used for PCR, J. Micromech. Microeng. 13, S125 (2003)
16.370
go back to reference K. Perez-Toralla, D. Pekin, J.-F. Bartolo, F. Garlan, P. Nizard, P. Laurent-Puig, J.-C. Baret, V. Taly: PCR digitale en micro-compartiments, Med. Sci. 31, 84–92 (2015) K. Perez-Toralla, D. Pekin, J.-F. Bartolo, F. Garlan, P. Nizard, P. Laurent-Puig, J.-C. Baret, V. Taly: PCR digitale en micro-compartiments, Med. Sci. 31, 84–92 (2015)
16.371
go back to reference Z. Hua, J.L. Rouse, A.E. Eckhardt, V. Srinivasan, V.K. Pamula, W.A. Schell, J.L. Benton, T.G. Mitchell, M.G. Pollack: Multiplexed real-time polymerase chain reaction on a digital microfluidic platform, Anal. Chem. 82, 2310–2316 (2010) Z. Hua, J.L. Rouse, A.E. Eckhardt, V. Srinivasan, V.K. Pamula, W.A. Schell, J.L. Benton, T.G. Mitchell, M.G. Pollack: Multiplexed real-time polymerase chain reaction on a digital microfluidic platform, Anal. Chem. 82, 2310–2316 (2010)
16.372
go back to reference D. Pekin, Y. Skhiri, J.-C. Baret, D. Le Corre, L. Mazutis, C.B. Salem, F. Millot, A. El Harrak, J.B. Hutchison, J.W. Larson: Quantitative and sensitive detection of rare mutations using droplet-based microfluidics, Lab on a Chip 11, 2156–2166 (2011) D. Pekin, Y. Skhiri, J.-C. Baret, D. Le Corre, L. Mazutis, C.B. Salem, F. Millot, A. El Harrak, J.B. Hutchison, J.W. Larson: Quantitative and sensitive detection of rare mutations using droplet-based microfluidics, Lab on a Chip 11, 2156–2166 (2011)
16.373
go back to reference M. Leman, F. Abouakil, A.D. Griffiths, P. Tabeling: Droplet-based microfluidics at the femtolitre scale, Lab Chip 15, 753–765 (2015) M. Leman, F. Abouakil, A.D. Griffiths, P. Tabeling: Droplet-based microfluidics at the femtolitre scale, Lab Chip 15, 753–765 (2015)
16.375
go back to reference C.-W. Kan, C.P. Fredlake, E.A.S. Doherty, A.E. Barron: DNA sequencing and genotyping in miniaturized electrophoresis systems, Electrophoresis 25, 3564–3588 (2004) C.-W. Kan, C.P. Fredlake, E.A.S. Doherty, A.E. Barron: DNA sequencing and genotyping in miniaturized electrophoresis systems, Electrophoresis 25, 3564–3588 (2004)
16.376
go back to reference Y. Zhang, P. Ozdemir: Microfluidic DNA amplification – A review, Anal. Chim. Acta 638, 115–125 (2009) Y. Zhang, P. Ozdemir: Microfluidic DNA amplification – A review, Anal. Chim. Acta 638, 115–125 (2009)
16.377
go back to reference B.M. Paegel, R.G. Blazej, R.A. Mathies: Microfluidic devices for DNA sequencing: sample preparation and electrophoretic analysis, Curr. Opin. Biotechnol. 14, 42–50 (2003) B.M. Paegel, R.G. Blazej, R.A. Mathies: Microfluidic devices for DNA sequencing: sample preparation and electrophoretic analysis, Curr. Opin. Biotechnol. 14, 42–50 (2003)
16.378
go back to reference M.L. Metzker: Emerging technologies in DNA sequencing, Genome Res 15, 1767–1776 (2005) M.L. Metzker: Emerging technologies in DNA sequencing, Genome Res 15, 1767–1776 (2005)
16.379
go back to reference S. Goodwin, J.D. McPherson, W.R. McCombie: Coming of age: Ten years of next-generation sequencing technologies, Nat. Rev. Genet. 17, 333–351 (2016) S. Goodwin, J.D. McPherson, W.R. McCombie: Coming of age: Ten years of next-generation sequencing technologies, Nat. Rev. Genet. 17, 333–351 (2016)
16.380
go back to reference B.P. Hodkinson, E.A. Grice: Next-generation sequencing: A review of technologies and tools for wound microbiome research, Adv. Wound Care (New Rochelle) 4, 50–58 (2015) B.P. Hodkinson, E.A. Grice: Next-generation sequencing: A review of technologies and tools for wound microbiome research, Adv. Wound Care (New Rochelle) 4, 50–58 (2015)
16.381
go back to reference E.R. Mardis: Next-generation sequencing platforms, Annu. Rev. Anal. Chem. (Palo Alto Calif.) 6, 287–303 (2013) E.R. Mardis: Next-generation sequencing platforms, Annu. Rev. Anal. Chem. (Palo Alto Calif.) 6, 287–303 (2013)
16.382
go back to reference H.P. Buermans, J.T. den Dunnen: Next generation sequencing technology: Advances and applications, Biochim. Biophys. Acta 1842, 1932–1941 (2014) H.P. Buermans, J.T. den Dunnen: Next generation sequencing technology: Advances and applications, Biochim. Biophys. Acta 1842, 1932–1941 (2014)
16.383
go back to reference M. Kircher, J. Kelso: High-throughput DNA sequencing – Concepts and limitations, BioEssays 32, 524–536 (2010) M. Kircher, J. Kelso: High-throughput DNA sequencing – Concepts and limitations, BioEssays 32, 524–536 (2010)
16.384
go back to reference M.L. Metzker: Sequencing technologies the next generation, Nat. Rev. Genet. 11, 31–46 (2010) M.L. Metzker: Sequencing technologies the next generation, Nat. Rev. Genet. 11, 31–46 (2010)
16.385
go back to reference L. Wang, P.C.H. Li: Microfluidic DNA microarray analysis: A review, Anal. Chim. Acta 687, 12–27 (2011) L. Wang, P.C.H. Li: Microfluidic DNA microarray analysis: A review, Anal. Chim. Acta 687, 12–27 (2011)
16.386
go back to reference F. Sanger, S. Nicklen, A.R. Coulson: DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. 74, 5463–5467 (1977) F. Sanger, S. Nicklen, A.R. Coulson: DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. 74, 5463–5467 (1977)
16.387
go back to reference C.S. Effenhauser, A. Paulus, A. Manz, H.M. Widmer: High-speed separation of antisense oligonucleotides on a micromachined capillary electrophoresis device, Anal. Chem. 66, 2949–2953 (1994) C.S. Effenhauser, A. Paulus, A. Manz, H.M. Widmer: High-speed separation of antisense oligonucleotides on a micromachined capillary electrophoresis device, Anal. Chem. 66, 2949–2953 (1994)
16.388
go back to reference A.T. Woolley, R.A. Mathies: Ultra-high-speed DNA sequencing using capillary electrophoresis chips, Anal. Chem. 67, 3676–3680 (1995) A.T. Woolley, R.A. Mathies: Ultra-high-speed DNA sequencing using capillary electrophoresis chips, Anal. Chem. 67, 3676–3680 (1995)
16.389
go back to reference R.G. Blazej, P. Kumaresan, R.A. Mathies: Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing, Proc. Natl. Acad. Sci. 103, 7240–7245 (2006) R.G. Blazej, P. Kumaresan, R.A. Mathies: Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing, Proc. Natl. Acad. Sci. 103, 7240–7245 (2006)
16.390
go back to reference M. Knapp, J. Baker, A. Chow, A. Kopf-Sill, M. Spaid: Single molecule amplification and detection of DNA length, US Patent (Application) 20050042639 A1 (2004) M. Knapp, J. Baker, A. Chow, A. Kopf-Sill, M. Spaid: Single molecule amplification and detection of DNA length, US Patent (Application) 20050042639 A1 (2004)
16.391
go back to reference D.R. Bentley, S. Balasubramanian, H.P. Swerdlow, G.P. Smith, J. Milton, C.G. Brown, K.P. Hall, D.J. Evers, C.L. Barnes, H.R. Bignell, J.M. Boutell, J. Bryant, R.J. Carter, R.K. Cheetham, A.J. Cox, D.J. Ellis, M.R. Flatbush, N.A. Gormley, S.J. Humphray, L.J. Irving, M.S. Karbelashvili, S.M. Kirk, H. Li, X. Liu, K.S. Maisinger, L.J. Murray, B. Obradovic, T. Ost, M.L. Parkinson, M.R. Pratt, I.M. Rasolonjatovo, M.T. Reed, R. Rigatti, C. Rodighiero, M.T. Ross, A. Sabot, S.V. Sankar, A. Scally, G.P. Schroth, M.E. Smith, V.P. Smith, A. Spiridou, P.E. Torrance, S.S. Tzonev, E.H. Vermaas, K. Walter, X. Wu, L. Zhang, M.D. Alam, C. Anastasi, I.C. Aniebo, D.M. Bailey, I.R. Bancarz, S. Banerjee, S.G. Barbour, P.A. Baybayan, V.A. Benoit, K.F. Benson, C. Bevis, P.J. Black, A. Boodhun, J.S. Brennan, J.A. Bridgham, R.C. Brown, A.A. Brown, D.H. Buermann, A.A. Bundu, J.C. Burrows, N.P. Carter, N. Castillo, E.C.M. Chiara, S. Chang: R. Neil Cooley, N.R. Crake, O.O. Dada, K.D. Diakoumakos, B. Dominguez-Fernandez, D.J. Earnshaw, U.C. Egbujor, D.W. Elmore, S.S. Etchin, M.R. Ewan, M. Fedurco, L.J. Fraser, K.V. Fuentes Fajardo, W. Scott Furey, D. George, K.J. Gietzen, C.P. Goddard, G.S. Golda, P.A. Granieri, D.E. Green, D.L. Gustafson, N.F. Hansen, K. Harnish, C.D. Haudenschild, N.I. Heyer, M.M. Hims, J.T. Ho, A.M. Horgan, K. Hoschler, S. Hurwitz, D.V. Ivanov, M.Q. Johnson, T. James, T.A. Huw Jones, G.D. Kang, T.H. Kerelska, A.D. Kersey, I. Khrebtukova, A.P. Kindwall, Z. Kingsbury, P.I. Kokko-Gonzales, A. Kumar, M.A. Laurent, C.T. Lawley, S.E. Lee, X. Lee, A.K. Liao, J.A. Loch, M. Lok, S. Luo, R.M. Mammen, J.W. Martin, P.G. McCauley, P. McNitt, P. Mehta, K.W. Moon, J.W. Mullens, T. Newington, Z. Ning, B. Ling Ng, S.M. Novo, M.J. O’Neill, M.A. Osborne, A. Osnowski, O. Ostadan, L.L. Paraschos, L. Pickering, A.C. Pike, A.C. Pike, D. Chris Pinkard, D.P. Pliskin, J. Podhasky, V.J. Quijano, C. Raczy, V.H. Rae, S.R. Rawlings, A. Chiva Rodriguez, P.M. Roe, J. Rogers, M.C. Rogert Bacigalupo, N. Romanov, A. Romieu, R.K. Roth, N.J. Rourke, S.T. Ruediger, E. Rusman, R.M. Sanches-Kuiper, M.R. Schenker, J.M. Seoane, R.J. Shaw, M.K. Shiver, S.W. Short, N.L. Sizto, J.P. Sluis, M.A. Smith, J. Ernest Sohna Sohna, E.J. Spence, K. Stevens, N. Sutton, L. Szajkowski, C.L. Tregidgo, G. Turcatti, S. Vandevondele, Y. Verhovsky, S.M. Virk, S. Wakelin, G.C. Walcott, J. Wang, G.J. Worsley, J. Yan, L. Yau, M. Zuerlein, J. Rogers, J.C. Mullikin, M.E. Hurles, N.J. McCooke, J.S. West, F.L. Oaks, P.L. Lundberg, D. Klenerman, R. Durbin, A.J. Smith: Accurate whole human genome sequencing using reversible terminator chemistry, Nature 456, 53–59 (2008) D.R. Bentley, S. Balasubramanian, H.P. Swerdlow, G.P. Smith, J. Milton, C.G. Brown, K.P. Hall, D.J. Evers, C.L. Barnes, H.R. Bignell, J.M. Boutell, J. Bryant, R.J. Carter, R.K. Cheetham, A.J. Cox, D.J. Ellis, M.R. Flatbush, N.A. Gormley, S.J. Humphray, L.J. Irving, M.S. Karbelashvili, S.M. Kirk, H. Li, X. Liu, K.S. Maisinger, L.J. Murray, B. Obradovic, T. Ost, M.L. Parkinson, M.R. Pratt, I.M. Rasolonjatovo, M.T. Reed, R. Rigatti, C. Rodighiero, M.T. Ross, A. Sabot, S.V. Sankar, A. Scally, G.P. Schroth, M.E. Smith, V.P. Smith, A. Spiridou, P.E. Torrance, S.S. Tzonev, E.H. Vermaas, K. Walter, X. Wu, L. Zhang, M.D. Alam, C. Anastasi, I.C. Aniebo, D.M. Bailey, I.R. Bancarz, S. Banerjee, S.G. Barbour, P.A. Baybayan, V.A. Benoit, K.F. Benson, C. Bevis, P.J. Black, A. Boodhun, J.S. Brennan, J.A. Bridgham, R.C. Brown, A.A. Brown, D.H. Buermann, A.A. Bundu, J.C. Burrows, N.P. Carter, N. Castillo, E.C.M. Chiara, S. Chang: R. Neil Cooley, N.R. Crake, O.O. Dada, K.D. Diakoumakos, B. Dominguez-Fernandez, D.J. Earnshaw, U.C. Egbujor, D.W. Elmore, S.S. Etchin, M.R. Ewan, M. Fedurco, L.J. Fraser, K.V. Fuentes Fajardo, W. Scott Furey, D. George, K.J. Gietzen, C.P. Goddard, G.S. Golda, P.A. Granieri, D.E. Green, D.L. Gustafson, N.F. Hansen, K. Harnish, C.D. Haudenschild, N.I. Heyer, M.M. Hims, J.T. Ho, A.M. Horgan, K. Hoschler, S. Hurwitz, D.V. Ivanov, M.Q. Johnson, T. James, T.A. Huw Jones, G.D. Kang, T.H. Kerelska, A.D. Kersey, I. Khrebtukova, A.P. Kindwall, Z. Kingsbury, P.I. Kokko-Gonzales, A. Kumar, M.A. Laurent, C.T. Lawley, S.E. Lee, X. Lee, A.K. Liao, J.A. Loch, M. Lok, S. Luo, R.M. Mammen, J.W. Martin, P.G. McCauley, P. McNitt, P. Mehta, K.W. Moon, J.W. Mullens, T. Newington, Z. Ning, B. Ling Ng, S.M. Novo, M.J. O’Neill, M.A. Osborne, A. Osnowski, O. Ostadan, L.L. Paraschos, L. Pickering, A.C. Pike, A.C. Pike, D. Chris Pinkard, D.P. Pliskin, J. Podhasky, V.J. Quijano, C. Raczy, V.H. Rae, S.R. Rawlings, A. Chiva Rodriguez, P.M. Roe, J. Rogers, M.C. Rogert Bacigalupo, N. Romanov, A. Romieu, R.K. Roth, N.J. Rourke, S.T. Ruediger, E. Rusman, R.M. Sanches-Kuiper, M.R. Schenker, J.M. Seoane, R.J. Shaw, M.K. Shiver, S.W. Short, N.L. Sizto, J.P. Sluis, M.A. Smith, J. Ernest Sohna Sohna, E.J. Spence, K. Stevens, N. Sutton, L. Szajkowski, C.L. Tregidgo, G. Turcatti, S. Vandevondele, Y. Verhovsky, S.M. Virk, S. Wakelin, G.C. Walcott, J. Wang, G.J. Worsley, J. Yan, L. Yau, M. Zuerlein, J. Rogers, J.C. Mullikin, M.E. Hurles, N.J. McCooke, J.S. West, F.L. Oaks, P.L. Lundberg, D. Klenerman, R. Durbin, A.J. Smith: Accurate whole human genome sequencing using reversible terminator chemistry, Nature 456, 53–59 (2008)
16.392
go back to reference M. Lebl, D.L. Heiner, C. Zhao, D. Barker, L. David: Microfabrication methods for the optimal patterning of substrates, US Patent (Application) 20130096034 A1 (2013) M. Lebl, D.L. Heiner, C. Zhao, D. Barker, L. David: Microfabrication methods for the optimal patterning of substrates, US Patent (Application) 20130096034 A1 (2013)
16.393
go back to reference N. Rusk: Torrents of sequence, Nat. Methods 8, 44–44 (2011) N. Rusk: Torrents of sequence, Nat. Methods 8, 44–44 (2011)
16.394
go back to reference M.J. Levene, J. Korlach, S.W. Turner, M. Foquet, H.G. Craighead, W.W. Webb: Zero-Mode waveguides for single-molecule analysis at high concentrations, Science 299, 682–686 (2003) M.J. Levene, J. Korlach, S.W. Turner, M. Foquet, H.G. Craighead, W.W. Webb: Zero-Mode waveguides for single-molecule analysis at high concentrations, Science 299, 682–686 (2003)
16.395
go back to reference D. Stoddart, A.J. Heron, E. Mikhailova, G. Maglia, H. Bayley: Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore, Proc. Natl. Acad. Sci. U.S.A. 106, 7702–7707 (2009) D. Stoddart, A.J. Heron, E. Mikhailova, G. Maglia, H. Bayley: Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore, Proc. Natl. Acad. Sci. U.S.A. 106, 7702–7707 (2009)
16.396
go back to reference E.Z. Macosko, A. Basu, R. Satija, J. Nemesh, K. Shekhar, M. Goldman, I. Tirosh, A.R. Bialas, N. Kamitaki, E.M. Martersteck: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets, Cell 161, 1202–1214 (2015) E.Z. Macosko, A. Basu, R. Satija, J. Nemesh, K. Shekhar, M. Goldman, I. Tirosh, A.R. Bialas, N. Kamitaki, E.M. Martersteck: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets, Cell 161, 1202–1214 (2015)
16.397
go back to reference E.M. Southern, U. Maskos: Support-bound oligonucleotides, US Patent (Application) 5436327 (1995) E.M. Southern, U. Maskos: Support-bound oligonucleotides, US Patent (Application) 5436327 (1995)
16.398
go back to reference R.J. Lipshutz, S.P. Fodor, T.R. Gingeras, D.J. Lockhart: High density synthetic oligonucleotide arrays, Nature Genet 21, 20–24 (1999) R.J. Lipshutz, S.P. Fodor, T.R. Gingeras, D.J. Lockhart: High density synthetic oligonucleotide arrays, Nature Genet 21, 20–24 (1999)
16.399
go back to reference M. Schena, D. Shalon, R.W. Davis, P.O. Brown: Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science 270, 467 (1995) M. Schena, D. Shalon, R.W. Davis, P.O. Brown: Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science 270, 467 (1995)
16.400
go back to reference M. Schena: Microarray biochip technology eaton publishing, Pharmacogenomics 1, 289–307 (2000) M. Schena: Microarray biochip technology eaton publishing, Pharmacogenomics 1, 289–307 (2000)
16.401
go back to reference K. Dill, A. McShea: Recent advances in microarrays, Drug Discov. Today: Technol. 2, 261–266 (2005) K. Dill, A. McShea: Recent advances in microarrays, Drug Discov. Today: Technol. 2, 261–266 (2005)
16.402
go back to reference D. Gershon: DNA microarrays: More than gene expression, Nature 437, 1195–1198 (2005) D. Gershon: DNA microarrays: More than gene expression, Nature 437, 1195–1198 (2005)
16.403
go back to reference R.T. Kelly, A.T. Woolley: Microfluidic systems for integrated, high-throughput DNA analysis, Anal. Chem. 77, 96A–102A (2005) R.T. Kelly, A.T. Woolley: Microfluidic systems for integrated, high-throughput DNA analysis, Anal. Chem. 77, 96A–102A (2005)
16.404
go back to reference R.H. Liu, K. Dill, H.S. Fuji, A. McShea: Integrated microfluidic biochips for DNA microarray analysis, Expert Rev. Mol. Diagn. 6, 253–261 (2006) R.H. Liu, K. Dill, H.S. Fuji, A. McShea: Integrated microfluidic biochips for DNA microarray analysis, Expert Rev. Mol. Diagn. 6, 253–261 (2006)
16.406
go back to reference D. Huh, B.D. Matthews, A. Mammoto, M. Montoya-Zavala, H.Y. Hsin, D.E. Ingber: Reconstituting organ-level lung functions on a chip, Science 328, 1662–1668 (2010) D. Huh, B.D. Matthews, A. Mammoto, M. Montoya-Zavala, H.Y. Hsin, D.E. Ingber: Reconstituting organ-level lung functions on a chip, Science 328, 1662–1668 (2010)
16.407
go back to reference J.W. Song, S.P. Cavnar, A.C. Walker, K.E. Luker, M. Gupta, Y.C. Tung, G.D. Luker, S. Takayama: Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells, PLoS One 4, e5756 (2009) J.W. Song, S.P. Cavnar, A.C. Walker, K.E. Luker, M. Gupta, Y.C. Tung, G.D. Luker, S. Takayama: Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells, PLoS One 4, e5756 (2009)
16.408
go back to reference A.R. Aref, R.Y. Huang, W. Yu, K.N. Chua, W. Sun, T.Y. Tu, J. Bai, W.J. Sim, I.K. Zervantonakis, J.P. Thiery, R.D. Kamm: Screening therapeutic EMT blocking agents in a three-dimensional microenvironment, Integr. Biol. (Camb.) 5, 381–389 (2013) A.R. Aref, R.Y. Huang, W. Yu, K.N. Chua, W. Sun, T.Y. Tu, J. Bai, W.J. Sim, I.K. Zervantonakis, J.P. Thiery, R.D. Kamm: Screening therapeutic EMT blocking agents in a three-dimensional microenvironment, Integr. Biol. (Camb.) 5, 381–389 (2013)
16.409
go back to reference H.J. Kim, D. Huh, G. Hamilton, D.E. Ingber: Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow, Lab Chip 12, 2165–2174 (2012) H.J. Kim, D. Huh, G. Hamilton, D.E. Ingber: Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow, Lab Chip 12, 2165–2174 (2012)
16.410
go back to reference Y. Kim, M.E. Lobatto, T. Kawahara, B.L. Chung, A.J. Mieszawska, B.L. Sanchez-Gaytan, F. Fay, M.L. Senders, C. Calcagno, J. Becraft, M. Tun Saung, R.E. Gordon, E.S. Stroes, M. Ma, O.C. Farokhzad, Z.A. Fayad, W.J. Mulder, R. Langer: Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis, Proc. Natl. Acad. Sci. A 111, 1078–1083 (2014) Y. Kim, M.E. Lobatto, T. Kawahara, B.L. Chung, A.J. Mieszawska, B.L. Sanchez-Gaytan, F. Fay, M.L. Senders, C. Calcagno, J. Becraft, M. Tun Saung, R.E. Gordon, E.S. Stroes, M. Ma, O.C. Farokhzad, Z.A. Fayad, W.J. Mulder, R. Langer: Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis, Proc. Natl. Acad. Sci. A 111, 1078–1083 (2014)
16.411
go back to reference S.A. Sundberg: High-throughput and ultra-high-throughput screening: Solution-and cell-based approaches, Curr. Opin. Biotechnol. 11, 47–53 (2000) S.A. Sundberg: High-throughput and ultra-high-throughput screening: Solution-and cell-based approaches, Curr. Opin. Biotechnol. 11, 47–53 (2000)
16.412
go back to reference J. Hong, J.B. Edel: Micro- and nanofluidic systems for high-throughput biological screening, Drug Discov. Today 14, 134–146 (2009) J. Hong, J.B. Edel: Micro- and nanofluidic systems for high-throughput biological screening, Drug Discov. Today 14, 134–146 (2009)
16.413
go back to reference R. Ghaemi, P.R. Selvaganapathy: Microfluidic devices for automation of assays on drosophila melanogaster for applications in drug discovery and biological studies, Curr. Pharm. Biotechnol. 17, 822–836 (2016) R. Ghaemi, P.R. Selvaganapathy: Microfluidic devices for automation of assays on drosophila melanogaster for applications in drug discovery and biological studies, Curr. Pharm. Biotechnol. 17, 822–836 (2016)
16.414
go back to reference I. Barbulovic-Nad, A.R. Wheeler: Cell assays in microfluidics. In: Encyclopedia of Microfluidics and Nanofluidics, ed. by D. Li (Springer, New York 2008) pp. 209–216 I. Barbulovic-Nad, A.R. Wheeler: Cell assays in microfluidics. In: Encyclopedia of Microfluidics and Nanofluidics, ed. by D. Li (Springer, New York 2008) pp. 209–216
16.415
go back to reference V.I. Chin, P. Taupin, S. Sanga, J. Scheel, F.H. Gage, S.N. Bhatia: Microfabricated platform for studying stem cell fates, Biotechnol. Bioeng. 88, 399–415 (2004) V.I. Chin, P. Taupin, S. Sanga, J. Scheel, F.H. Gage, S.N. Bhatia: Microfabricated platform for studying stem cell fates, Biotechnol. Bioeng. 88, 399–415 (2004)
16.416
go back to reference E. Delamarche, D. Juncker, H. Schmid: Microfluidics for processing surfaces and miniaturizing biological assays, Adv. Mater. 17, 2911–2933 (2005) E. Delamarche, D. Juncker, H. Schmid: Microfluidics for processing surfaces and miniaturizing biological assays, Adv. Mater. 17, 2911–2933 (2005)
16.417
go back to reference R. Ghaemi, P. Rezai, B.G. Iyengar, P.R. Selvaganapathy: Microfluidic devices for imaging neurological response of Drosophila melanogaster larva to auditory stimulus, Lab on a Chip 15, 1116–1122 (2015) R. Ghaemi, P. Rezai, B.G. Iyengar, P.R. Selvaganapathy: Microfluidic devices for imaging neurological response of Drosophila melanogaster larva to auditory stimulus, Lab on a Chip 15, 1116–1122 (2015)
16.418
go back to reference P. Rezai, S. Salam, P. Selvaganapathy, B.P. Gupta: Microfluidic systems to study the biology of human diseases and identify potential therapeutic targets in C. elegans. In: Integrated Microsystems, ed. by K. Iniewski (CRC Press, Boca Raton 2011) pp. 581–608 P. Rezai, S. Salam, P. Selvaganapathy, B.P. Gupta: Microfluidic systems to study the biology of human diseases and identify potential therapeutic targets in C. elegans. In: Integrated Microsystems, ed. by K. Iniewski (CRC Press, Boca Raton 2011) pp. 581–608
16.419
go back to reference P. Rezai, S. Salam, P.R. Selvaganapathy, B.P. Gupta: Electrical sorting of caenorhabditis elegans, Lab Chip 12, 1831–1840 (2012) P. Rezai, S. Salam, P.R. Selvaganapathy, B.P. Gupta: Electrical sorting of caenorhabditis elegans, Lab Chip 12, 1831–1840 (2012)
16.420
go back to reference C. Mandrycky, Z. Wang, K. Kim, D.H. Kim: 3-D bioprinting for engineering complex tissues, Biotechnol. Adv. 34, 422–434 (2016) C. Mandrycky, Z. Wang, K. Kim, D.H. Kim: 3-D bioprinting for engineering complex tissues, Biotechnol. Adv. 34, 422–434 (2016)
16.421
go back to reference M. Safdar, J. Janis, S. Sanchez: Microfluidic fuel cells for energy generation, Lab Chip 16, 2754–2758 (2016) M. Safdar, J. Janis, S. Sanchez: Microfluidic fuel cells for energy generation, Lab Chip 16, 2754–2758 (2016)
16.422
go back to reference H. Lee, S. Choi: A micro-sized bio-solar cell for self-sustaining power generation, Lab Chip 15, 391–398 (2015) H. Lee, S. Choi: A micro-sized bio-solar cell for self-sustaining power generation, Lab Chip 15, 391–398 (2015)
16.423
go back to reference L. Li, G. Wang, R. Chen, X. Zhu, H. Wang, Q. Liao, Y. Yu: Optofluidics based micro-photocatalytic fuel cell for efficient wastewater treatment and electricity generation, Lab Chip 14, 3368–3375 (2014) L. Li, G. Wang, R. Chen, X. Zhu, H. Wang, Q. Liao, Y. Yu: Optofluidics based micro-photocatalytic fuel cell for efficient wastewater treatment and electricity generation, Lab Chip 14, 3368–3375 (2014)
16.424
go back to reference J.P. Esquivel, M. Castellarnau, T. Senn, B. Lochel, J. Samitier, N. Sabate: Fuel cell-powered microfluidic platform for lab-on-a-chip applications, Lab Chip 12, 74–79 (2012) J.P. Esquivel, M. Castellarnau, T. Senn, B. Lochel, J. Samitier, N. Sabate: Fuel cell-powered microfluidic platform for lab-on-a-chip applications, Lab Chip 12, 74–79 (2012)
Metadata
Title
Microfluidic Devices and Their Applications
Authors
Aditya Aryasomayajula
Pouriya Bayat
Pouya Rezai
P. Ravi Selvaganapathy
Copyright Year
2017
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-54357-3_16