Skip to main content
Top

2017 | OriginalPaper | Chapter

17. Microfluidic Micro/Nano Droplets

Authors : Gopakumar Kamalakshakurup, Derek Vallejo, Abraham Lee

Published in: Springer Handbook of Nanotechnology

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microfluidic droplet technology has evolved rapidly since the first microfluidic droplet generator was reported over a decade ago. It has subsequently branched out and emerged as a practical solution to enhance the capabilities of many other fields, including, but not limited to: high-throughput screening, biosensing, drug delivery and synthetic biology. In this chapter, we will report on recent advancements in droplet microfluidic technologies that have emerged since Teh et al.'s comprehensive 2007 review. We begin with a brief history of droplet microfluidics and introduce methods of droplet production, manipulation, and sensing methodologies. The remainder of the chapter is dedicated to design considerations for various droplet production configurations, concluding with a discussion on applications, trends and the general direction that the field is headed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
17.1
go back to reference G.M. Whitesides: The origins and the future of microfluidics, Nature 442(7101), 368–373 (2006)CrossRef G.M. Whitesides: The origins and the future of microfluidics, Nature 442(7101), 368–373 (2006)CrossRef
17.2
go back to reference T. Thorsen, S.J. Maerkl, S.R. Quake: Microfluidic large-scale integration, Science 298(5593), 580–584 (2002)CrossRef T. Thorsen, S.J. Maerkl, S.R. Quake: Microfluidic large-scale integration, Science 298(5593), 580–584 (2002)CrossRef
17.3
go back to reference J. Melin, S.R. Quake: Microfluidic large-scale integration: The evolution of design rules for biological automation, Annu. Rev. Biophys. Biomol. Struct. 36(1), 213–231 (2007)CrossRef J. Melin, S.R. Quake: Microfluidic large-scale integration: The evolution of design rules for biological automation, Annu. Rev. Biophys. Biomol. Struct. 36(1), 213–231 (2007)CrossRef
17.4
go back to reference H. Song, D.L. Chen, R.F. Ismagilov: Reactions in droplets in microfluidic channels, Angew. Chem. Int. Ed. 45(44), 7336–7356 (2006)CrossRef H. Song, D.L. Chen, R.F. Ismagilov: Reactions in droplets in microfluidic channels, Angew. Chem. Int. Ed. 45(44), 7336–7356 (2006)CrossRef
17.5
go back to reference T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake: Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett. 86(18), 4163–4166 (2001)CrossRef T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake: Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett. 86(18), 4163–4166 (2001)CrossRef
17.6
go back to reference B. Zheng, J.D. Tice, R.F. Ismagilov: Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays, Anal. Chem. 76(17), 4977–4982 (2004)CrossRef B. Zheng, J.D. Tice, R.F. Ismagilov: Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays, Anal. Chem. 76(17), 4977–4982 (2004)CrossRef
17.7
go back to reference S.L. Anna, N. Bontoux, H.A. Stone: Formation of dispersions using flow focusing in microchannels, Appl. Phys. Lett. 82(3), 364 (2003)CrossRef S.L. Anna, N. Bontoux, H.A. Stone: Formation of dispersions using flow focusing in microchannels, Appl. Phys. Lett. 82(3), 364 (2003)CrossRef
17.8
go back to reference J. Shim, R.T. Ranasinghe, C.A. Smith, S.M. Ibrahim, F. Hollfelder, W.T.S. Huck, D. Klenerman, C. Abell: Ultrarapid generation of femtoliter microfluidic droplets for single-molecule-counting immunoassays, ACS Nano 7(7), 5955–5964 (2013)CrossRef J. Shim, R.T. Ranasinghe, C.A. Smith, S.M. Ibrahim, F. Hollfelder, W.T.S. Huck, D. Klenerman, C. Abell: Ultrarapid generation of femtoliter microfluidic droplets for single-molecule-counting immunoassays, ACS Nano 7(7), 5955–5964 (2013)CrossRef
17.9
go back to reference H.-H. Jeong, V.R. Yelleswarapu, S. Yadavali, D. Issadore, D. Lee: Kilo-scale droplet generation in three-dimensional monolithic elastomer device (3-D MED), Lab. Chip 15(23), 4387–4392 (2015)CrossRef H.-H. Jeong, V.R. Yelleswarapu, S. Yadavali, D. Issadore, D. Lee: Kilo-scale droplet generation in three-dimensional monolithic elastomer device (3-D MED), Lab. Chip 15(23), 4387–4392 (2015)CrossRef
17.10
go back to reference Y. Xia, G.M. Whitesides: Soft lithography, Annu. Rev. Mater. Sci. 28(1), 153–184 (1998)CrossRef Y. Xia, G.M. Whitesides: Soft lithography, Annu. Rev. Mater. Sci. 28(1), 153–184 (1998)CrossRef
17.11
go back to reference Y.-C. Tan, J.S. Fisher, A.I. Lee, V. Cristini, A.P. Lee: Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting, Lab. Chip 4(4), 292 (2004)CrossRef Y.-C. Tan, J.S. Fisher, A.I. Lee, V. Cristini, A.P. Lee: Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting, Lab. Chip 4(4), 292 (2004)CrossRef
17.12
go back to reference X. Niu, S. Gulati, J.B. Edel, A.J. deMello: Pillar-induced droplet merging in microfluidic circuits, Lab. Chip 8(11), 1837 (2008)CrossRef X. Niu, S. Gulati, J.B. Edel, A.J. deMello: Pillar-induced droplet merging in microfluidic circuits, Lab. Chip 8(11), 1837 (2008)CrossRef
17.13
go back to reference P. Singh, N. Aubry: Transport and deformation of droplets in a microdevice using dielectrophoresis, Electrophoresis 28(4), 644–657 (2007)CrossRef P. Singh, N. Aubry: Transport and deformation of droplets in a microdevice using dielectrophoresis, Electrophoresis 28(4), 644–657 (2007)CrossRef
17.14
go back to reference C. Priest, S. Herminghaus, R. Seemann: Controlled electrocoalescence in microfluidics: Targeting a single lamella, Appl. Phys. Lett. 89(13), 134101 (2006)CrossRef C. Priest, S. Herminghaus, R. Seemann: Controlled electrocoalescence in microfluidics: Targeting a single lamella, Appl. Phys. Lett. 89(13), 134101 (2006)CrossRef
17.15
go back to reference J. Köhler, T. Henkel, A. Grodrian, T. Kirner, M. Roth, K. Martin, J. Metze: Digital reaction technology by micro segmented flow–components, concepts and applications, Chem. Eng. J. 101(1–3), 201–216 (2004)CrossRef J. Köhler, T. Henkel, A. Grodrian, T. Kirner, M. Roth, K. Martin, J. Metze: Digital reaction technology by micro segmented flow–components, concepts and applications, Chem. Eng. J. 101(1–3), 201–216 (2004)CrossRef
17.16
go back to reference R.M. Lorenz, J.S. Edgar, G.D.M. Jeffries, D.T. Chiu: Microfluidic and optical systems for the on-demand generation and manipulation of single femtoliter-volume aqueous droplets, Anal. Chem. 78(18), 6433–6439 (2006)CrossRef R.M. Lorenz, J.S. Edgar, G.D.M. Jeffries, D.T. Chiu: Microfluidic and optical systems for the on-demand generation and manipulation of single femtoliter-volume aqueous droplets, Anal. Chem. 78(18), 6433–6439 (2006)CrossRef
17.18
go back to reference D.N. Adamson, D. Mustafi, J.X.J. Zhang, B. Zheng, R.F. Ismagilov: Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices, Lab. Chip 6(9), 1178 (2006)CrossRef D.N. Adamson, D. Mustafi, J.X.J. Zhang, B. Zheng, R.F. Ismagilov: Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices, Lab. Chip 6(9), 1178 (2006)CrossRef
17.19
go back to reference S.K. Cho, H. Moon, C.-J. Kim: Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits, J. Microelectromech. Syst. 12(1), 70–80 (2003)CrossRef S.K. Cho, H. Moon, C.-J. Kim: Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits, J. Microelectromech. Syst. 12(1), 70–80 (2003)CrossRef
17.20
go back to reference J.J. Agresti, E. Antipov, A.R. Abate, K. Ahn, A.C. Rowat, J.-C. Baret, M. Marquez, A.M. Klibanov, A.D. Griffiths, D.A. Weitz: Ultrahigh-throughput screening in drop-based microfluidics for directed evolution, Proc. Natl. Acad. Sci. 107(9), 4004–4009 (2010)CrossRef J.J. Agresti, E. Antipov, A.R. Abate, K. Ahn, A.C. Rowat, J.-C. Baret, M. Marquez, A.M. Klibanov, A.D. Griffiths, D.A. Weitz: Ultrahigh-throughput screening in drop-based microfluidics for directed evolution, Proc. Natl. Acad. Sci. 107(9), 4004–4009 (2010)CrossRef
17.21
go back to reference J. Lim, P. Gruner, M. Konrad, J.-C. Baret: Micro-optical lens array for fluorescence detection in droplet-based microfluidics, Lab. Chip 13(8), 1472 (2013)CrossRef J. Lim, P. Gruner, M. Konrad, J.-C. Baret: Micro-optical lens array for fluorescence detection in droplet-based microfluidics, Lab. Chip 13(8), 1472 (2013)CrossRef
17.22
go back to reference M. Kim, M. Pan, Y. Gai, S. Pang, C. Han, C. Yang, S.K.Y. Tang: Optofluidic ultrahigh-throughput detection of fluorescent drops, Lab. Chip 15(6), 1417–1423 (2015)CrossRef M. Kim, M. Pan, Y. Gai, S. Pang, C. Han, C. Yang, S.K.Y. Tang: Optofluidic ultrahigh-throughput detection of fluorescent drops, Lab. Chip 15(6), 1417–1423 (2015)CrossRef
17.23
go back to reference D.-K. Kang, M.M. Ali, K. Zhang, S.S. Huang, E. Peterson, M.A. Digman, E. Gratton, W. Zhao: Rapid detection of single bacteria in unprocessed blood using integrated comprehensive droplet digital detection, Nat. Commun. 5, 5427 (2014)CrossRef D.-K. Kang, M.M. Ali, K. Zhang, S.S. Huang, E. Peterson, M.A. Digman, E. Gratton, W. Zhao: Rapid detection of single bacteria in unprocessed blood using integrated comprehensive droplet digital detection, Nat. Commun. 5, 5427 (2014)CrossRef
17.24
go back to reference S. Liu, Y. Gu, R.B. Le Roux, S.M. Matthews, D. Bratton, K. Yunus, A.C. Fisher, W.T.S. Huck: The electrochemical detection of droplets in microfluidic devices, Lab. Chip 8(11), 1937 (2008)CrossRef S. Liu, Y. Gu, R.B. Le Roux, S.M. Matthews, D. Bratton, K. Yunus, A.C. Fisher, W.T.S. Huck: The electrochemical detection of droplets in microfluidic devices, Lab. Chip 8(11), 1937 (2008)CrossRef
17.25
go back to reference L.M. Fidalgo, G. Whyte, B.T. Ruotolo, J.L.P. Benesch, F. Stengel, C. Abell, C.V. Robinson, W.T.S. Huck: Coupling microdroplet microreactors with mass spectrometry: Reading the contents of single droplets online, Angew. Chem. Int. Ed. 48(20), 3665–3668 (2009)CrossRef L.M. Fidalgo, G. Whyte, B.T. Ruotolo, J.L.P. Benesch, F. Stengel, C. Abell, C.V. Robinson, W.T.S. Huck: Coupling microdroplet microreactors with mass spectrometry: Reading the contents of single droplets online, Angew. Chem. Int. Ed. 48(20), 3665–3668 (2009)CrossRef
17.26
go back to reference X.Z. Niu, B. Zhang, R.T. Marszalek, O. Ces, J.B. Edel, D.R. Klug, A.J. deMello: Droplet-based compartmentalization of chemically separated components in two-dimensional separations, Chem. Commun. (2009) doi:10.1039/b918100h X.Z. Niu, B. Zhang, R.T. Marszalek, O. Ces, J.B. Edel, D.R. Klug, A.J. deMello: Droplet-based compartmentalization of chemically separated components in two-dimensional separations, Chem. Commun. (2009) doi:10.​1039/​b918100h
17.27
go back to reference M.P. Cecchini, J. Hong, C. Lim, J. Choo, T. Albrecht, A.J. deMello, J.B. Edel: Ultrafast surface enhanced resonance raman scattering detection in droplet-based microfluidic systems, Anal. Chem. 83(8), 3076–3081 (2011)CrossRef M.P. Cecchini, J. Hong, C. Lim, J. Choo, T. Albrecht, A.J. deMello, J.B. Edel: Ultrafast surface enhanced resonance raman scattering detection in droplet-based microfluidic systems, Anal. Chem. 83(8), 3076–3081 (2011)CrossRef
17.28
go back to reference Y.-C. Tan, Y.L. Ho, A.P. Lee: Microfluidic sorting of droplets by size, Microfluid. Nanofluidics 4(4), 343–348 (2007)CrossRef Y.-C. Tan, Y.L. Ho, A.P. Lee: Microfluidic sorting of droplets by size, Microfluid. Nanofluidics 4(4), 343–348 (2007)CrossRef
17.29
go back to reference M. Chabert, J.-L. Viovy: Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells, Proc. Natl. Acad. Sci. 105(9), 3191–3196 (2008)CrossRef M. Chabert, J.-L. Viovy: Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells, Proc. Natl. Acad. Sci. 105(9), 3191–3196 (2008)CrossRef
17.30
go back to reference H.N. Joensson, M. Uhlén, H.A. Svahn: Droplet size based separation by deterministic lateral displacement–separating droplets by cell-induced shrinking, Lab. Chip 11(7), 1305 (2011)CrossRef H.N. Joensson, M. Uhlén, H.A. Svahn: Droplet size based separation by deterministic lateral displacement–separating droplets by cell-induced shrinking, Lab. Chip 11(7), 1305 (2011)CrossRef
17.31
go back to reference A.C. Hatch, A. Patel, N.R. Beer, A.P. Lee: Passive droplet sorting using viscoelastic flow focusing, Lab. Chip 13(7), 1308 (2013)CrossRef A.C. Hatch, A. Patel, N.R. Beer, A.P. Lee: Passive droplet sorting using viscoelastic flow focusing, Lab. Chip 13(7), 1308 (2013)CrossRef
17.32
go back to reference J.-C. Baret, O.J. Miller, V. Taly, M. Ryckelynck, A. El-Harrak, L. Frenz, C. Rick, M.L. Samuels, J.B. Hutchison, J.J. Agresti, D.R. Link, D.A. Weitz, A.D. Griffiths: Fluorescence-activated droplet sorting (FADS): Efficient microfluidic cell sorting based on enzymatic activity, Lab. Chip 9(13), 1850 (2009)CrossRef J.-C. Baret, O.J. Miller, V. Taly, M. Ryckelynck, A. El-Harrak, L. Frenz, C. Rick, M.L. Samuels, J.B. Hutchison, J.J. Agresti, D.R. Link, D.A. Weitz, A.D. Griffiths: Fluorescence-activated droplet sorting (FADS): Efficient microfluidic cell sorting based on enzymatic activity, Lab. Chip 9(13), 1850 (2009)CrossRef
17.33
go back to reference K. Ahn, C. Kerbage, T.P. Hunt, R.M. Westervelt, D.R. Link, D.A. Weitz: Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices, Appl. Phys. Lett. 88(2), 24104 (2006)CrossRef K. Ahn, C. Kerbage, T.P. Hunt, R.M. Westervelt, D.R. Link, D.A. Weitz: Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices, Appl. Phys. Lett. 88(2), 24104 (2006)CrossRef
17.34
go back to reference T. Franke, A.R. Abate, D.A. Weitz, A. Wixforth: Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices, Lab. Chip 9(18), 2625 (2009)CrossRef T. Franke, A.R. Abate, D.A. Weitz, A. Wixforth: Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices, Lab. Chip 9(18), 2625 (2009)CrossRef
17.35
go back to reference A.R. Abate, J.J. Agresti, D.A. Weitz: Microfluidic sorting with high-speed single-layer membrane valves, Appl. Phys. Lett. 96(20), 203509 (2010)CrossRef A.R. Abate, J.J. Agresti, D.A. Weitz: Microfluidic sorting with high-speed single-layer membrane valves, Appl. Phys. Lett. 96(20), 203509 (2010)CrossRef
17.36
go back to reference C.N. Baroud, M.R. de Saint Vincent, J.-P. Delville: An optical toolbox for total control of droplet microfluidics, Lab. Chip 7(8), 1029 (2007)CrossRef C.N. Baroud, M.R. de Saint Vincent, J.-P. Delville: An optical toolbox for total control of droplet microfluidics, Lab. Chip 7(8), 1029 (2007)CrossRef
17.37
go back to reference S.-Y. Teh, R. Lin, L.-H. Hung, A.P. Lee: Droplet microfluidics, Lab. Chip 8(2), 198 (2008)CrossRef S.-Y. Teh, R. Lin, L.-H. Hung, A.P. Lee: Droplet microfluidics, Lab. Chip 8(2), 198 (2008)CrossRef
17.38
go back to reference G.F. Christopher, S.L. Anna: Microfluidic methods for generating continuous droplet streams, J. Phys. Appl. Phys. 40(19), R319–R336 (2007)CrossRef G.F. Christopher, S.L. Anna: Microfluidic methods for generating continuous droplet streams, J. Phys. Appl. Phys. 40(19), R319–R336 (2007)CrossRef
17.39
17.40
go back to reference A.R. Abate, T. Hung, R.A. Sperling, P. Mary, A. Rotem, J.J. Agresti, M.A. Weiner, D.A. Weitz: DNA sequence analysis with droplet-based microfluidics, Lab. Chip 13(24), 4864 (2013)CrossRef A.R. Abate, T. Hung, R.A. Sperling, P. Mary, A. Rotem, J.J. Agresti, M.A. Weiner, D.A. Weitz: DNA sequence analysis with droplet-based microfluidics, Lab. Chip 13(24), 4864 (2013)CrossRef
17.41
go back to reference S. Abalde-Cela, A. Gould, X. Liu, E. Kazamia, A.G. Smith, C. Abell: High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform, J. R. Soc. Interface 12(106), 20150216–20150216 (2015)CrossRef S. Abalde-Cela, A. Gould, X. Liu, E. Kazamia, A.G. Smith, C. Abell: High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform, J. R. Soc. Interface 12(106), 20150216–20150216 (2015)CrossRef
17.42
go back to reference P.S. Dittrich, A. Manz: Lab-on-a-chip: Microfluidics in drug discovery, Nat. Rev. Drug Discov. 5(3), 210–218 (2006)CrossRef P.S. Dittrich, A. Manz: Lab-on-a-chip: Microfluidics in drug discovery, Nat. Rev. Drug Discov. 5(3), 210–218 (2006)CrossRef
17.43
go back to reference E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J.B. Hutchison, J.M. Rothberg, D.R. Link, N. Perrimon, M.L. Samuels: Droplet microfluidic technology for single-cell high-throughput screening, Proc. Natl. Acad. Sci. 106(34), 14195–14200 (2009)CrossRef E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J.B. Hutchison, J.M. Rothberg, D.R. Link, N. Perrimon, M.L. Samuels: Droplet microfluidic technology for single-cell high-throughput screening, Proc. Natl. Acad. Sci. 106(34), 14195–14200 (2009)CrossRef
17.44
go back to reference A.C. Larsen, M.R. Dunn, A. Hatch, S.P. Sau, C. Youngbull, J.C. Chaput: A general strategy for expanding polymerase function by droplet microfluidics, Nat. Commun. 7, 11235 (2016)CrossRef A.C. Larsen, M.R. Dunn, A. Hatch, S.P. Sau, C. Youngbull, J.C. Chaput: A general strategy for expanding polymerase function by droplet microfluidics, Nat. Commun. 7, 11235 (2016)CrossRef
17.45
go back to reference P.B. Umbanhowar, V. Prasad, D.A. Weitz: Monodisperse emulsion generation via drop break off in a coflowing stream, Langmuir 16(2), 347–351 (2000)CrossRef P.B. Umbanhowar, V. Prasad, D.A. Weitz: Monodisperse emulsion generation via drop break off in a coflowing stream, Langmuir 16(2), 347–351 (2000)CrossRef
17.46
go back to reference C. Cramer, P. Fischer, E.J. Windhab: Drop formation in a co-flowing ambient fluid, Chem. Eng. Sci. 59(15), 3045–3058 (2004)CrossRef C. Cramer, P. Fischer, E.J. Windhab: Drop formation in a co-flowing ambient fluid, Chem. Eng. Sci. 59(15), 3045–3058 (2004)CrossRef
17.47
go back to reference G.F. Christopher, N.N. Noharuddin, J.A. Taylor, S.L. Anna: Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions, Phys. Rev. E 78(3), 36317 (2008)CrossRef G.F. Christopher, N.N. Noharuddin, J.A. Taylor, S.L. Anna: Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions, Phys. Rev. E 78(3), 36317 (2008)CrossRef
17.48
go back to reference J. Husny, J.J. Cooper-White: The effect of elasticity on drop creation in T-shaped microchannels, J. Non-Newton. Fluid Mech. 137(1–3), 121–136 (2006)CrossRef J. Husny, J.J. Cooper-White: The effect of elasticity on drop creation in T-shaped microchannels, J. Non-Newton. Fluid Mech. 137(1–3), 121–136 (2006)CrossRef
17.49
go back to reference J. Xu, G. Luo, G. Chen, J. Wang: Experimental and theoretical approaches on droplet formation from a micrometer screen hole, J. Membr. Sci. 266(1–2), 121–131 (2005)CrossRef J. Xu, G. Luo, G. Chen, J. Wang: Experimental and theoretical approaches on droplet formation from a micrometer screen hole, J. Membr. Sci. 266(1–2), 121–131 (2005)CrossRef
17.50
go back to reference J.D. Tice, A.D. Lyon, R.F. Ismagilov: Effects of viscosity on droplet formation and mixing in microfluidic channels, Anal. Chim. Acta 507(1), 73–77 (2004)CrossRef J.D. Tice, A.D. Lyon, R.F. Ismagilov: Effects of viscosity on droplet formation and mixing in microfluidic channels, Anal. Chim. Acta 507(1), 73–77 (2004)CrossRef
17.51
17.52
go back to reference P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides: Formation of droplets and bubbles in a microfluidic T-junction–scaling and mechanism of break-up, Lab. Chip 6(3), 437 (2006)CrossRef P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides: Formation of droplets and bubbles in a microfluidic T-junction–scaling and mechanism of break-up, Lab. Chip 6(3), 437 (2006)CrossRef
17.53
go back to reference S.L. Anna, H.C. Mayer: Microscale tipstreaming in a microfluidic flow focusing device, Phys. Fluids 18(12), 121512 (2006)CrossRef S.L. Anna, H.C. Mayer: Microscale tipstreaming in a microfluidic flow focusing device, Phys. Fluids 18(12), 121512 (2006)CrossRef
17.54
go back to reference A.S. Utada: Monodisperse double emulsions generated from a microcapillary device, Science 308(5721), 537–541 (2005)CrossRef A.S. Utada: Monodisperse double emulsions generated from a microcapillary device, Science 308(5721), 537–541 (2005)CrossRef
17.55
go back to reference T. Ward, M. Faivre, M. Abkarian, H.A. Stone: Microfluidic flow focusing: Drop size and scaling in pressureversus flow-rate-driven pumping, Electrophoresis 26(19), 3716–3724 (2005)CrossRef T. Ward, M. Faivre, M. Abkarian, H.A. Stone: Microfluidic flow focusing: Drop size and scaling in pressureversus flow-rate-driven pumping, Electrophoresis 26(19), 3716–3724 (2005)CrossRef
17.56
go back to reference C. Zhou, P. Yue, J.J. Feng: Formation of simple and compound drops in microfluidic devices, Phys. Fluids 18(9), 92105 (2006)CrossRef C. Zhou, P. Yue, J.J. Feng: Formation of simple and compound drops in microfluidic devices, Phys. Fluids 18(9), 92105 (2006)CrossRef
17.57
go back to reference B. Beulen, J. de Jong, H. Reinten, M. van den Berg, H. Wijshoff, R. van Dongen: Flows on the nozzle plate of an inkjet printhead, Exp. Fluids 42(2), 217–224 (2007)CrossRef B. Beulen, J. de Jong, H. Reinten, M. van den Berg, H. Wijshoff, R. van Dongen: Flows on the nozzle plate of an inkjet printhead, Exp. Fluids 42(2), 217–224 (2007)CrossRef
17.61
go back to reference A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J.B. Edel, A.J. deMello: Microdroplets: A sea of applications?, Lab. Chip 8(8), 1244 (2008)CrossRef A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J.B. Edel, A.J. deMello: Microdroplets: A sea of applications?, Lab. Chip 8(8), 1244 (2008)CrossRef
17.62
go back to reference A.K. Price, B.M. Paegel: Discovery in droplets, Anal. Chem. 88(1), 339–353 (2016)CrossRef A.K. Price, B.M. Paegel: Discovery in droplets, Anal. Chem. 88(1), 339–353 (2016)CrossRef
17.63
go back to reference I. Shestopalov, J.D. Tice, R.F. Ismagilov: Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system, Lab. Chip 4(4), 316 (2004)CrossRef I. Shestopalov, J.D. Tice, R.F. Ismagilov: Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system, Lab. Chip 4(4), 316 (2004)CrossRef
17.64
go back to reference V. Noireaux, A. Libchaber: A vesicle bioreactor as a step toward an artificial cell assembly, Proc. Natl. Acad. Sci. 101(51), 17669–17674 (2004)CrossRef V. Noireaux, A. Libchaber: A vesicle bioreactor as a step toward an artificial cell assembly, Proc. Natl. Acad. Sci. 101(51), 17669–17674 (2004)CrossRef
17.65
go back to reference B. Ahmed, D. Barrow, T. Wirth: Enhancement of reaction rates by segmented fluid flow in capillary scale reactors, Adv. Synth. Catal. 348(9), 1043–1048 (2006)CrossRef B. Ahmed, D. Barrow, T. Wirth: Enhancement of reaction rates by segmented fluid flow in capillary scale reactors, Adv. Synth. Catal. 348(9), 1043–1048 (2006)CrossRef
17.66
go back to reference J.R. Burns, C. Ramshaw: The intensification of rapid reactions in multiphase systems using slug flow in capillaries, Lab. Chip 1(1), 10 (2001)CrossRef J.R. Burns, C. Ramshaw: The intensification of rapid reactions in multiphase systems using slug flow in capillaries, Lab. Chip 1(1), 10 (2001)CrossRef
17.67
go back to reference K.-I. Sotowa, K. Irie, T. Fukumori, K. Kusakabe, S. Sugiyama: Droplet formation by the collision of two aqueous solutions in a microchannel and application to particle synthesis, Chem. Eng. Technol. 30(3), 383–388 (2007)CrossRef K.-I. Sotowa, K. Irie, T. Fukumori, K. Kusakabe, S. Sugiyama: Droplet formation by the collision of two aqueous solutions in a microchannel and application to particle synthesis, Chem. Eng. Technol. 30(3), 383–388 (2007)CrossRef
17.68
go back to reference H. Song, H.-W. Li, M.S. Munson, T.G. Van Ha, R.F. Ismagilov: On-chip titration of an anticoagulant argatroban and determination of the clotting time within whole blood or plasma using a plug-based microfluidic system, Anal. Chem. 78(14), 4839–4849 (2006)CrossRef H. Song, H.-W. Li, M.S. Munson, T.G. Van Ha, R.F. Ismagilov: On-chip titration of an anticoagulant argatroban and determination of the clotting time within whole blood or plasma using a plug-based microfluidic system, Anal. Chem. 78(14), 4839–4849 (2006)CrossRef
17.69
go back to reference Z.T. Cygan, J.T. Cabral, K.L. Beers, E.J. Amis: Microfluidic platform for the generation of organic-phase microreactors, Langmuir 21(8), 3629–3634 (2005)CrossRef Z.T. Cygan, J.T. Cabral, K.L. Beers, E.J. Amis: Microfluidic platform for the generation of organic-phase microreactors, Langmuir 21(8), 3629–3634 (2005)CrossRef
17.70
go back to reference A. Huebner, M. Srisa-Art, D. Holt, C. Abell, F. Hollfelder, A.J. deMello, J.B. Edel: Quantitative detection of protein expression in single cells using droplet microfluidics, Chem. Commun. (2007) doi:10.1039/b618570c A. Huebner, M. Srisa-Art, D. Holt, C. Abell, F. Hollfelder, A.J. deMello, J.B. Edel: Quantitative detection of protein expression in single cells using droplet microfluidics, Chem. Commun. (2007) doi:10.​1039/​b618570c
17.71
go back to reference M.S. Long, C.D. Jones, M.R. Helfrich, L.K. Mangeney-Slavin, C.D. Keating: Dynamic microcompartmentation in synthetic cells, Proc. Natl. Acad. Sci. 102(17), 5920–5925 (2005)CrossRef M.S. Long, C.D. Jones, M.R. Helfrich, L.K. Mangeney-Slavin, C.D. Keating: Dynamic microcompartmentation in synthetic cells, Proc. Natl. Acad. Sci. 102(17), 5920–5925 (2005)CrossRef
17.72
go back to reference V. Taly, D. Pekin, A.E. Abed, P. Laurent-Puig: Detecting biomarkers with microdroplet technology, Trends Mol. Med. 18(7), 405–416 (2012)CrossRef V. Taly, D. Pekin, A.E. Abed, P. Laurent-Puig: Detecting biomarkers with microdroplet technology, Trends Mol. Med. 18(7), 405–416 (2012)CrossRef
17.73
go back to reference W. Wang, Z.-X. Li, R. Luo, S.-H. Lü, A.-D. Xu, Y.-J. Yang: Droplet-based micro oscillating-flow PCR chip, J. Micromech. Microeng. 15(8), 1369–1377 (2005)CrossRef W. Wang, Z.-X. Li, R. Luo, S.-H. Lü, A.-D. Xu, Y.-J. Yang: Droplet-based micro oscillating-flow PCR chip, J. Micromech. Microeng. 15(8), 1369–1377 (2005)CrossRef
17.74
go back to reference B.J. Hindson, K.D. Ness, D.A. Masquelier, P. Belgrader, N.J. Heredia, A.J. Makarewicz, I.J. Bright, M.Y. Lucero, A.L. Hiddessen, T.C. Legler, T.K. Kitano, M.R. Hodel, J.F. Petersen, P.W. Wyatt, E.R. Steenblock, P.H. Shah, L.J. Bousse, C.B. Troup, J.C. Mellen, D.K. Wittmann, N.G. Erndt, T.H. Cauley, R.T. Koehler, A.P. So, S. Dube, K.A. Rose, L. Montesclaros, S. Wang, D.P. Stumbo, S.P. Hodges, S. Romine, F.P. Milanovich, H.E. White, J.F. Regan, G.A. Karlin-Neumann, C.M. Hindson, S. Saxonov, B.W. Colston: High-throughput droplet digital PCR system for absolute quantitation of DNA copy number, Anal. Chem. 83(22), 8604–8610 (2011)CrossRef B.J. Hindson, K.D. Ness, D.A. Masquelier, P. Belgrader, N.J. Heredia, A.J. Makarewicz, I.J. Bright, M.Y. Lucero, A.L. Hiddessen, T.C. Legler, T.K. Kitano, M.R. Hodel, J.F. Petersen, P.W. Wyatt, E.R. Steenblock, P.H. Shah, L.J. Bousse, C.B. Troup, J.C. Mellen, D.K. Wittmann, N.G. Erndt, T.H. Cauley, R.T. Koehler, A.P. So, S. Dube, K.A. Rose, L. Montesclaros, S. Wang, D.P. Stumbo, S.P. Hodges, S. Romine, F.P. Milanovich, H.E. White, J.F. Regan, G.A. Karlin-Neumann, C.M. Hindson, S. Saxonov, B.W. Colston: High-throughput droplet digital PCR system for absolute quantitation of DNA copy number, Anal. Chem. 83(22), 8604–8610 (2011)CrossRef
17.75
go back to reference T. Hatakeyama, D.L. Chen, R.F. Ismagilov: Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS, J. Am. Chem. Soc. 128(8), 2518–2519 (2006)CrossRef T. Hatakeyama, D.L. Chen, R.F. Ismagilov: Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS, J. Am. Chem. Soc. 128(8), 2518–2519 (2006)CrossRef
17.76
go back to reference A.R. Wheeler, H. Moon, C.A. Bird, R.R.O. Loo, C.-J. Kim, J.A. Loo, R.L. Garrell: Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS, Anal. Chem. 77(2), 534–540 (2005)CrossRef A.R. Wheeler, H. Moon, C.A. Bird, R.R.O. Loo, C.-J. Kim, J.A. Loo, R.L. Garrell: Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS, Anal. Chem. 77(2), 534–540 (2005)CrossRef
17.77
go back to reference B.T.C. Lau, C.A. Baitz, X.P. Dong, C.L. Hansen: A complete microfluidic screening platform for rational protein crystallization, J. Am. Chem. Soc. 129(3), 454–455 (2007)CrossRef B.T.C. Lau, C.A. Baitz, X.P. Dong, C.L. Hansen: A complete microfluidic screening platform for rational protein crystallization, J. Am. Chem. Soc. 129(3), 454–455 (2007)CrossRef
17.78
go back to reference H. Song, R.F. Ismagilov: Millisecond kinetics on a microfluidic chip using nanoliters of reagents, J. Am. Chem. Soc. 125(47), 14613–14619 (2003)CrossRef H. Song, R.F. Ismagilov: Millisecond kinetics on a microfluidic chip using nanoliters of reagents, J. Am. Chem. Soc. 125(47), 14613–14619 (2003)CrossRef
17.79
go back to reference B. Kintses, C. Hein, M.F. Mohamed, M. Fischlechner, F. Courtois, C. Lainé, F. Hollfelder: Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution, Chem. Biol. 19(8), 1001–1009 (2012)CrossRef B. Kintses, C. Hein, M.F. Mohamed, M. Fischlechner, F. Courtois, C. Lainé, F. Hollfelder: Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution, Chem. Biol. 19(8), 1001–1009 (2012)CrossRef
17.80
go back to reference D.J. Eastburn, A. Sciambi, A.R. Abate: Ultrahigh-throughput mammalian single-cell reverse-transcriptase polymerase chain reaction in microfluidic drops, Anal. Chem. 85(16), 8016–8021 (2013)CrossRef D.J. Eastburn, A. Sciambi, A.R. Abate: Ultrahigh-throughput mammalian single-cell reverse-transcriptase polymerase chain reaction in microfluidic drops, Anal. Chem. 85(16), 8016–8021 (2013)CrossRef
17.81
go back to reference E.Z. Macosko, A. Basu, R. Satija, J. Nemesh, K. Shekhar, M. Goldman, I. Tirosh, A.R. Bialas, N. Kamitaki, E.M. Martersteck, J.J. Trombetta, D.A. Weitz, J.R. Sanes, A.K. Shalek, A. Regev, S.A. McCarroll: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets, Cell 161(5), 1202–1214 (2015)CrossRef E.Z. Macosko, A. Basu, R. Satija, J. Nemesh, K. Shekhar, M. Goldman, I. Tirosh, A.R. Bialas, N. Kamitaki, E.M. Martersteck, J.J. Trombetta, D.A. Weitz, J.R. Sanes, A.K. Shalek, A. Regev, S.A. McCarroll: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets, Cell 161(5), 1202–1214 (2015)CrossRef
Metadata
Title
Microfluidic Micro/Nano Droplets
Authors
Gopakumar Kamalakshakurup
Derek Vallejo
Abraham Lee
Copyright Year
2017
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-54357-3_17