Abstract
This chapter provides a survey of micromechanical models that seek to predict and explain auxetic behavior, based on re-entrant microstructures, nodule-fibril microstructure, 3D tethered-nodule model, rotating squares, rectangles, triangles and tetrahedrals models, hard cyclic hexamers
model, missing rib models, chiral and anti-chiral models, interlocking hexagon model, and the “egg rack” model. All the micromechanical models exhibit a common trait—auxeticity is highly dependent on the microstructural geometry. In some of the micromechanical geometries, comparisons between analytical results have been made with experimental or computational results.