Skip to main content
Top

2019 | OriginalPaper | Chapter

35. Micromechanics of Dual-Phase Steels: Deformation, Damage, and Fatigue

Authors : Behnam Anbarlooie, Javad Kadkhodapour, Hossein Hosseini Toudeshky, Siegfried Schmauder

Published in: Handbook of Mechanics of Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ferritic–martensitic dual-phase (DP) steels are increasingly being used in various automotive components because of their favorable material behavior for lightweight and crash-safe designs. DP steels deform with strong strain and stress partitioning at the microscale. Deformation pattern of ferrite and martensite phases under tensile loading condition is the most important issue which can be effective on the prediction of mechanical behavior of DP steel. Deformation pattern and strain localization play an important role in the process of damage initiation and final fracture. Failure in DP steels is a phenomenon that has been extensively investigated in the last decade through experimental tests and simulation methods. Experimental procedures have shown that failure has a ductile pattern and that shear failure of ferrite matrix is dominant in these materials. On the other hand, experimental findings have shown that failure due to fatigue loading occurred with different pattern comparing to the other loading conditions. To understand and improve DP steels, it is important to identify connections between the microstructural parameters and the mechanical behavior of these materials at macroscale. This work provides a detailed micromechanical investigation of DP steels focusing on micro-deformation, micro-damage, and micro-fatigue analysis of DP steels based on experimental and numerical approaches to highlight the current and future directions and open problems about these materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. G. Davies. The deformation behavior of a vanadium-strengthened dual phase steel. Metall Trans A. 1978;9(1):41–52.CrossRef R. G. Davies. The deformation behavior of a vanadium-strengthened dual phase steel. Metall Trans A. 1978;9(1):41–52.CrossRef
2.
go back to reference Peng-Heng C, Preban AG. The effect of ferrite grain size and martensite volume fraction on the tensile properties of dual phase steel. Acta Metall. 1985;33(5):897–903.CrossRef Peng-Heng C, Preban AG. The effect of ferrite grain size and martensite volume fraction on the tensile properties of dual phase steel. Acta Metall. 1985;33(5):897–903.CrossRef
3.
go back to reference R. G. Davies. Early stages of yielding and strain aging of a vanadium-containing dual-phase steel. Metall Trans A. 1979;10(10):1549–55.CrossRef R. G. Davies. Early stages of yielding and strain aging of a vanadium-containing dual-phase steel. Metall Trans A. 1979;10(10):1549–55.CrossRef
4.
go back to reference Mazinani M, Poole WJ. Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel. Metall Mater Trans A. 2007;38A:328.CrossRef Mazinani M, Poole WJ. Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel. Metall Mater Trans A. 2007;38A:328.CrossRef
5.
go back to reference Paul SK. Micromechanics based modeling of Dual Phase steels: prediction of ductility and failure modes. Comput Mater Sci. 2012;56:34–42.CrossRef Paul SK. Micromechanics based modeling of Dual Phase steels: prediction of ductility and failure modes. Comput Mater Sci. 2012;56:34–42.CrossRef
6.
go back to reference Calcagnotto M, Adachi Y, Ponge D, Raabe D. Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater. 2011;59(2):658–70.CrossRef Calcagnotto M, Adachi Y, Ponge D, Raabe D. Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater. 2011;59(2):658–70.CrossRef
7.
go back to reference Ghadbeigi H, Pinna C, Celotto S. Failure mechanisms in DP600 steel: initiation, evolution and fracture. Mater Sci Eng A. 2013;588:420–31.CrossRef Ghadbeigi H, Pinna C, Celotto S. Failure mechanisms in DP600 steel: initiation, evolution and fracture. Mater Sci Eng A. 2013;588:420–31.CrossRef
8.
go back to reference Marvi-Mashhadi M, Mazinani M, Rezaee-Bazzaz A. FEM modeling of the flow curves and failure modes of dual phase steels with different martensite volume fractions using actual microstructure as the representative volume. Comput Mater Sci. 2012;65:197–202.CrossRef Marvi-Mashhadi M, Mazinani M, Rezaee-Bazzaz A. FEM modeling of the flow curves and failure modes of dual phase steels with different martensite volume fractions using actual microstructure as the representative volume. Comput Mater Sci. 2012;65:197–202.CrossRef
9.
go back to reference Kadkhodapour J, Butz A, Ziaei-Rad S, Schmauder S. A micro mechanical study on failure initiation of dual phase steels under tension using single crystal plasticity model. Int J Plast. 2011;27:1103–25.MATHCrossRef Kadkhodapour J, Butz A, Ziaei-Rad S, Schmauder S. A micro mechanical study on failure initiation of dual phase steels under tension using single crystal plasticity model. Int J Plast. 2011;27:1103–25.MATHCrossRef
10.
go back to reference Kim S, Lee S. Effects of martensite morphology and volume fraction on quasi-static and dynamic deformation behavior of dual-phase steels. Metall Mater Trans A. 2000;31A:1753.CrossRef Kim S, Lee S. Effects of martensite morphology and volume fraction on quasi-static and dynamic deformation behavior of dual-phase steels. Metall Mater Trans A. 2000;31A:1753.CrossRef
11.
go back to reference Uthaisangsuk V, Prahl U, Bleck W. Modelling of damage and failure in multiphase high strength DP and TRIP steels. Eng Fract Mech. 2011;78:469–86.CrossRef Uthaisangsuk V, Prahl U, Bleck W. Modelling of damage and failure in multiphase high strength DP and TRIP steels. Eng Fract Mech. 2011;78:469–86.CrossRef
12.
go back to reference Vajragupta N, Uthaisangsuk V, Schmaling B, Münstermann S, Hartmaier A, Bleck W. A micromechanical damage simulation of dual phase steels using XFEM. Comput Mater Sci. 2012;54:271–9.CrossRef Vajragupta N, Uthaisangsuk V, Schmaling B, Münstermann S, Hartmaier A, Bleck W. A micromechanical damage simulation of dual phase steels using XFEM. Comput Mater Sci. 2012;54:271–9.CrossRef
13.
go back to reference Ramazani A, Schwedt A, Aretz A, Prahl U, Bleck W. Characterization and modelling of failure initiation in DP steel. Comput Mater Sci. 2013;75:35–44.CrossRef Ramazani A, Schwedt A, Aretz A, Prahl U, Bleck W. Characterization and modelling of failure initiation in DP steel. Comput Mater Sci. 2013;75:35–44.CrossRef
14.
go back to reference Paul SK, Kumar A. Micromechanics based modeling to predict flow behavior and plastic strain localization of dual phase steels. Comput Mater Sci. 2012;63:66–74.CrossRef Paul SK, Kumar A. Micromechanics based modeling to predict flow behavior and plastic strain localization of dual phase steels. Comput Mater Sci. 2012;63:66–74.CrossRef
15.
go back to reference Sun X, Choi KS, Soulami A, Liu WN, Khaleel MA. On key factors influencing ductile fractures of dual phase (DP) steels. Mater Sci Eng A. 2009;526:140–9.CrossRef Sun X, Choi KS, Soulami A, Liu WN, Khaleel MA. On key factors influencing ductile fractures of dual phase (DP) steels. Mater Sci Eng A. 2009;526:140–9.CrossRef
16.
go back to reference Katani S, Ziaei-Rad S, Nouri N, Saeidi N, Kadkhodapour J, Torabian N, Schmauder S. Microstructure modelling of dual-phase steel using SEM micrographs and voronoi polycrystal models. Metallogr Microstruct Anal. 2013;2(3):156–69.CrossRef Katani S, Ziaei-Rad S, Nouri N, Saeidi N, Kadkhodapour J, Torabian N, Schmauder S. Microstructure modelling of dual-phase steel using SEM micrographs and voronoi polycrystal models. Metallogr Microstruct Anal. 2013;2(3):156–69.CrossRef
17.
go back to reference Tasan CC, Diehl M, Yan D, Zambaldi C, Shanthraj P, Roters F, Raabe D. Integrated experimental–simulation analysis of stress and strain partitioning in multiphase alloys. Acta Mater. 2014;81:386–400.CrossRef Tasan CC, Diehl M, Yan D, Zambaldi C, Shanthraj P, Roters F, Raabe D. Integrated experimental–simulation analysis of stress and strain partitioning in multiphase alloys. Acta Mater. 2014;81:386–400.CrossRef
18.
go back to reference Chen P, Ghassemi-Armaki H, Kumar S, Bower A, Bhat S, Sadagopan S. Microscale-calibrated modeling of the deformation response of dual-phase steels. Acta Mater. 2014;65:133–49.CrossRef Chen P, Ghassemi-Armaki H, Kumar S, Bower A, Bhat S, Sadagopan S. Microscale-calibrated modeling of the deformation response of dual-phase steels. Acta Mater. 2014;65:133–49.CrossRef
19.
go back to reference Woo W, Em VT, Kim E-Y, Han SH, Han YS, Choi S-H. Stress–strain relationship between ferrite and martensite in a dual-phase steel studied by in situ neutron diffraction and crystal plasticity theories. Acta Mater. 2012;60(20):6972–81.CrossRef Woo W, Em VT, Kim E-Y, Han SH, Han YS, Choi S-H. Stress–strain relationship between ferrite and martensite in a dual-phase steel studied by in situ neutron diffraction and crystal plasticity theories. Acta Mater. 2012;60(20):6972–81.CrossRef
20.
go back to reference Sperle JO. Fatigue strength of high strength dual phase steel sheet. Int J Fatigue. 1985;7(2):79–86.CrossRef Sperle JO. Fatigue strength of high strength dual phase steel sheet. Int J Fatigue. 1985;7(2):79–86.CrossRef
21.
go back to reference Wännman L, Melander A. Influence of martensite contents and properties on fatigue behaviour of dual-phase sheet steels. Mater Des. 1991;12(3):129–32.CrossRef Wännman L, Melander A. Influence of martensite contents and properties on fatigue behaviour of dual-phase sheet steels. Mater Des. 1991;12(3):129–32.CrossRef
22.
go back to reference Miller KJ. The behavior of short fatigue cracks and their initiation Part II. A general summery. Fatigue Fract Eng Mater Struct. 1987;10(2):93–113.CrossRef Miller KJ. The behavior of short fatigue cracks and their initiation Part II. A general summery. Fatigue Fract Eng Mater Struct. 1987;10(2):93–113.CrossRef
23.
go back to reference Jezernik N, Kramberger J, Lassen T, Glodez S. Numerical modelling of fatigue crack initiation and growth of martensitic steels. Fatigue Fract Eng Mater Struct. 2010;33:714–23.MATH Jezernik N, Kramberger J, Lassen T, Glodez S. Numerical modelling of fatigue crack initiation and growth of martensitic steels. Fatigue Fract Eng Mater Struct. 2010;33:714–23.MATH
24.
go back to reference Gündüz S. Effect of chemical composition, martensite volume fraction and tempering on tensile behaviour of dual phase steels. Mater Lett. 2009;63(27):2381–3.CrossRef Gündüz S. Effect of chemical composition, martensite volume fraction and tempering on tensile behaviour of dual phase steels. Mater Lett. 2009;63(27):2381–3.CrossRef
25.
go back to reference Hüper T, Endo S, Ishikawa N, Osawa K. Effect of volume fraction of constituent phases on the stress-strain relationship of dual phase steels. ISIJ Int. 1999;39(3):288–94.CrossRef Hüper T, Endo S, Ishikawa N, Osawa K. Effect of volume fraction of constituent phases on the stress-strain relationship of dual phase steels. ISIJ Int. 1999;39(3):288–94.CrossRef
26.
go back to reference Bag A, Ray KK, Dwarakadasa ES. Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels. Metall Mater Trans A. 1999;30(5):1193–202.CrossRef Bag A, Ray KK, Dwarakadasa ES. Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels. Metall Mater Trans A. 1999;30(5):1193–202.CrossRef
27.
go back to reference Hosseini-Toudeshky H, Anbarlooie B, Kadkhodapour J, Shadalooyi G. Microstructural deformation pattern and mechanical behavior analyses of DP600 dual phase steel. Mater Sci Eng A. 2014;600:108–21.CrossRef Hosseini-Toudeshky H, Anbarlooie B, Kadkhodapour J, Shadalooyi G. Microstructural deformation pattern and mechanical behavior analyses of DP600 dual phase steel. Mater Sci Eng A. 2014;600:108–21.CrossRef
28.
go back to reference Rodriguez R, Gutierrez I. In: Lamberigts M, editor. Proceedings of the TMP, 2004. Düsseldorf: Verlag Stahleisen GMBH; 2004. p. 356. Rodriguez R, Gutierrez I. In: Lamberigts M, editor. Proceedings of the TMP, 2004. Düsseldorf: Verlag Stahleisen GMBH; 2004. p. 356.
29.
go back to reference Rodriguez R, Gutierrez I. Unified formulation to predict the tensile curves of steels with different microstructures. Mater Sci Forum. 2003;426–432:4525–30.CrossRef Rodriguez R, Gutierrez I. Unified formulation to predict the tensile curves of steels with different microstructures. Mater Sci Forum. 2003;426–432:4525–30.CrossRef
30.
go back to reference Sodjit S, Uthaisangsuk V. Microstructure based prediction of strain hardening behavior of dual phase steels. Mater Des. 2012;41:370–9.CrossRef Sodjit S, Uthaisangsuk V. Microstructure based prediction of strain hardening behavior of dual phase steels. Mater Des. 2012;41:370–9.CrossRef
31.
go back to reference Saeidi N, Ashrafizadeh F, Niroumand B. Development of a new ultrafine grained dual phase steel and examination of the effect of grain size on tensile deformation behavior. Mater Sci Eng A. 2014;599(2):145–9.CrossRef Saeidi N, Ashrafizadeh F, Niroumand B. Development of a new ultrafine grained dual phase steel and examination of the effect of grain size on tensile deformation behavior. Mater Sci Eng A. 2014;599(2):145–9.CrossRef
32.
go back to reference Park K, Nishiyama M, Nakada N, Tsuchiyama T, Takaki S. Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel. Mater Sci Eng A. 2014;604(16):135–41.CrossRef Park K, Nishiyama M, Nakada N, Tsuchiyama T, Takaki S. Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel. Mater Sci Eng A. 2014;604(16):135–41.CrossRef
33.
go back to reference Ghassemi-Armaki H, Maaß R, Bhat SP, Sriram S, Greer JR, Kumar KS. Deformation response of ferrite and martensite in a dual-phase steel. Acta Mater. 2014;62:197–211.CrossRef Ghassemi-Armaki H, Maaß R, Bhat SP, Sriram S, Greer JR, Kumar KS. Deformation response of ferrite and martensite in a dual-phase steel. Acta Mater. 2014;62:197–211.CrossRef
34.
go back to reference Zhao Z, Tong T, Liang J, Yin H, Zhao A, Tang D. Microstructure, mechanical properties and fracture behavior of ultra-high strength dual-phase steel. Mater Sci Eng A. 2014;618(17):182–8.CrossRef Zhao Z, Tong T, Liang J, Yin H, Zhao A, Tang D. Microstructure, mechanical properties and fracture behavior of ultra-high strength dual-phase steel. Mater Sci Eng A. 2014;618(17):182–8.CrossRef
35.
go back to reference Zhang J, Di H, Deng Y, Misra RDK. Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite–ferrite dual phase steel. Mater Sci Eng A. 2015;627(11):230–40.CrossRef Zhang J, Di H, Deng Y, Misra RDK. Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite–ferrite dual phase steel. Mater Sci Eng A. 2015;627(11):230–40.CrossRef
36.
go back to reference Tasan CC, Hoefnagels JPM, Geers MGD. A critical assessment of indentation-based ductile damage quantification. Acta Mater. 2009;57:4957–66.CrossRef Tasan CC, Hoefnagels JPM, Geers MGD. A critical assessment of indentation-based ductile damage quantification. Acta Mater. 2009;57:4957–66.CrossRef
37.
go back to reference Avramovic-Cingara G, Ososkov Y, Jain MK, Wilkinson DS. Effect of martensite distribution on damage behaviour in DP600 dual phase steels. Mater Sci Eng A. 2009;516:7–16.CrossRef Avramovic-Cingara G, Ososkov Y, Jain MK, Wilkinson DS. Effect of martensite distribution on damage behaviour in DP600 dual phase steels. Mater Sci Eng A. 2009;516:7–16.CrossRef
38.
go back to reference Avramovic-Cingara G, Saleh CAR, Jain MK, Wilkinson DS. Void nucleation and growth in dual-phase steel 600 during uniaxial tensile testing. Metall Mater Trans A. 2009;40A:3117.CrossRef Avramovic-Cingara G, Saleh CAR, Jain MK, Wilkinson DS. Void nucleation and growth in dual-phase steel 600 during uniaxial tensile testing. Metall Mater Trans A. 2009;40A:3117.CrossRef
39.
go back to reference Han Q, Kang Y, Hodgson PD, Stanford N. Quantitative measurement of strain partitioning and slip systems in a dual-phase steel. Scr Mater. 2013;69(1):13–6.CrossRef Han Q, Kang Y, Hodgson PD, Stanford N. Quantitative measurement of strain partitioning and slip systems in a dual-phase steel. Scr Mater. 2013;69(1):13–6.CrossRef
40.
go back to reference Joo S-H, Lee JK, Koo J-M, Lee S, Suh D-W, Kim HS. Method for measuring nanoscale local strain in a dual phase steel using digital image correlation with nanodot patterns. Scr Mater. 2013;68(5):245–8.CrossRef Joo S-H, Lee JK, Koo J-M, Lee S, Suh D-W, Kim HS. Method for measuring nanoscale local strain in a dual phase steel using digital image correlation with nanodot patterns. Scr Mater. 2013;68(5):245–8.CrossRef
41.
go back to reference Alaie A, Kadkhodapour J, Ziaei Rad S, Asadi Asadabad M, Schmauder S. Formation and coalescence of strain localized regions in ferrite phase of DP600 steels under uniaxial tensile deformation. Mater Sci Eng A. 2015;623:133–44.CrossRef Alaie A, Kadkhodapour J, Ziaei Rad S, Asadi Asadabad M, Schmauder S. Formation and coalescence of strain localized regions in ferrite phase of DP600 steels under uniaxial tensile deformation. Mater Sci Eng A. 2015;623:133–44.CrossRef
42.
go back to reference Alaie A, Ziaei Rad S, Kadkhodapour J, Jafari M, Asadi Asadabad M, Schmauder S. Effect of microstructure pattern on the strain localization in DP600 steels analyzed using combined in-situ experimental test and numerical simulation. Mater Sci Eng A. 2015;638:251–61.CrossRef Alaie A, Ziaei Rad S, Kadkhodapour J, Jafari M, Asadi Asadabad M, Schmauder S. Effect of microstructure pattern on the strain localization in DP600 steels analyzed using combined in-situ experimental test and numerical simulation. Mater Sci Eng A. 2015;638:251–61.CrossRef
43.
go back to reference Tasan CC, Diehl M, Yan D, Bechtold M, Roters F, Schemmann L, Zheng C, Peranio N, Ponge D, Koyama M, Tsuzaki K, Raabe D. An overview of dual-phase steels: advances in processing and micromechanically guided design. Annu Rev Mater Res. 2015;45:391–431.CrossRef Tasan CC, Diehl M, Yan D, Bechtold M, Roters F, Schemmann L, Zheng C, Peranio N, Ponge D, Koyama M, Tsuzaki K, Raabe D. An overview of dual-phase steels: advances in processing and micromechanically guided design. Annu Rev Mater Res. 2015;45:391–431.CrossRef
44.
go back to reference Al-Abbasi FM, Nemes JA. Micromechanical modeling of the effect of particle size difference in dual phase steels. Int J Solids Struct. 2003;40:3379–91.CrossRef Al-Abbasi FM, Nemes JA. Micromechanical modeling of the effect of particle size difference in dual phase steels. Int J Solids Struct. 2003;40:3379–91.CrossRef
45.
go back to reference Sun X, Choi KS, Liu WN, Khaleel MA. Predicting failure modes and ductility of dual phase steels using plastic strain localization. Int J Plast. 2009;25:1888–909.CrossRef Sun X, Choi KS, Liu WN, Khaleel MA. Predicting failure modes and ductility of dual phase steels using plastic strain localization. Int J Plast. 2009;25:1888–909.CrossRef
46.
go back to reference Mori T, Tanaka K. Average stress in matrix and avegare elastic energy of materials with misfitting inclusions. Acta Metall. 1973;21:571–4.CrossRef Mori T, Tanaka K. Average stress in matrix and avegare elastic energy of materials with misfitting inclusions. Acta Metall. 1973;21:571–4.CrossRef
47.
go back to reference Paul SK. Effect of material inhomogeneity on the cyclic plastic deformation behavior at the microstructural level: micromechanics-based modeling of dual phase steel. Model Simul Mater Sci Eng. 2013;21:055001.CrossRef Paul SK. Effect of material inhomogeneity on the cyclic plastic deformation behavior at the microstructural level: micromechanics-based modeling of dual phase steel. Model Simul Mater Sci Eng. 2013;21:055001.CrossRef
48.
go back to reference Ramazani A, Mukherjee K, Quade H, Prahl U, Bleck W. Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure based RVE approach. Mater Sci Eng A. 2013;560:129–39.CrossRef Ramazani A, Mukherjee K, Quade H, Prahl U, Bleck W. Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure based RVE approach. Mater Sci Eng A. 2013;560:129–39.CrossRef
49.
go back to reference Amirmaleki M, Samei J, Green DE, van Riemsdijk I, Stewart L. 3D micromechanical modeling of dual phase steels using the representative volume element method. Mech Mater. 2016;101:27–39.CrossRef Amirmaleki M, Samei J, Green DE, van Riemsdijk I, Stewart L. 3D micromechanical modeling of dual phase steels using the representative volume element method. Mech Mater. 2016;101:27–39.CrossRef
50.
go back to reference Spitzig WA, Smelser RE, Richmond O. The evolution of damage and fracture in iron compacts with various initial porosities. Acta Metall. 1988;36(5):1201–11.CrossRef Spitzig WA, Smelser RE, Richmond O. The evolution of damage and fracture in iron compacts with various initial porosities. Acta Metall. 1988;36(5):1201–11.CrossRef
51.
go back to reference Le Roy G, Embury JD, Edwards G, Ashby MF. A model of ductile fracture based on the nucleation and growth of voids. Acta Metall. 1981;29(8):1509–22.CrossRef Le Roy G, Embury JD, Edwards G, Ashby MF. A model of ductile fracture based on the nucleation and growth of voids. Acta Metall. 1981;29(8):1509–22.CrossRef
52.
go back to reference Qiu H, Mori H, Enoki M, Kishi T. Evaluation of ductile fracture of structural steels by microvoid model. ISIJ Int. 1999;39(4):358–64.CrossRef Qiu H, Mori H, Enoki M, Kishi T. Evaluation of ductile fracture of structural steels by microvoid model. ISIJ Int. 1999;39(4):358–64.CrossRef
53.
go back to reference Kadkhodapour J, Anbarlooie B, Hosseini-Toudeshky H, Schmauder S. Simulation of shear failure in dual phase steels using localization criteria and experimental observation. Comput Mater Sci. 2014;94:106–13.CrossRef Kadkhodapour J, Anbarlooie B, Hosseini-Toudeshky H, Schmauder S. Simulation of shear failure in dual phase steels using localization criteria and experimental observation. Comput Mater Sci. 2014;94:106–13.CrossRef
54.
go back to reference Hosseini-Toudeshky H, Anbarlooie B, Kadkhodapour J. Micromechanics stress–strain behavior prediction of dual phase steel considering plasticity and grain boundaries debonding. Mater Des. 2015;68:167–76.CrossRef Hosseini-Toudeshky H, Anbarlooie B, Kadkhodapour J. Micromechanics stress–strain behavior prediction of dual phase steel considering plasticity and grain boundaries debonding. Mater Des. 2015;68:167–76.CrossRef
55.
go back to reference Babout L, Maire E, Fougères R. Damage initiation in model metallic materials: X-ray tomography and modelling. Acta Mater. 2004;52(8):2475–87.CrossRef Babout L, Maire E, Fougères R. Damage initiation in model metallic materials: X-ray tomography and modelling. Acta Mater. 2004;52(8):2475–87.CrossRef
56.
go back to reference Martin CF, Josserond C, Salvo L, Blandin JJ, Cloetens P, Boller E. Characterisation by X-ray micro-tomography of cavity coalescence during superplastic deformation. Scr Mater. 2000;42(4):375–81.CrossRef Martin CF, Josserond C, Salvo L, Blandin JJ, Cloetens P, Boller E. Characterisation by X-ray micro-tomography of cavity coalescence during superplastic deformation. Scr Mater. 2000;42(4):375–81.CrossRef
57.
go back to reference Landron C, Maire E, Bouaziz O, Adrien J, Lecarme L, Bareggi A. Validation of void growth models using X-ray microtomography characterization of damage in dual phase steels. Acta Mater. 2011;59:7564–73.CrossRef Landron C, Maire E, Bouaziz O, Adrien J, Lecarme L, Bareggi A. Validation of void growth models using X-ray microtomography characterization of damage in dual phase steels. Acta Mater. 2011;59:7564–73.CrossRef
58.
go back to reference Maire E, Bouaziz O, Di Michiel M, Verdu C. Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography. Acta Mater. 2008;56:4954–64.CrossRef Maire E, Bouaziz O, Di Michiel M, Verdu C. Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography. Acta Mater. 2008;56:4954–64.CrossRef
59.
go back to reference Rice JR, Tracey DM. On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids. 1969;17(3):201–17.CrossRef Rice JR, Tracey DM. On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids. 1969;17(3):201–17.CrossRef
60.
go back to reference Buffière JY, Maire E, Cloetens P, Lormand G, Fougères R. Characterization of internal damage in a MMCp using X-ray synchrotron phase contrast microtomography. Acta Mater. 1999;47(5):1613–25.CrossRef Buffière JY, Maire E, Cloetens P, Lormand G, Fougères R. Characterization of internal damage in a MMCp using X-ray synchrotron phase contrast microtomography. Acta Mater. 1999;47(5):1613–25.CrossRef
61.
go back to reference Hu W, Wang CH, Barter S. Analysis of cyclic mean stress relaxation and strain ratchetting behaviour of aluminum 7050. DSTO-RR-0153. DSTO Aeronautical and Maritime Research Laboratory, Defense Technical Information Center, 1999. Hu W, Wang CH, Barter S. Analysis of cyclic mean stress relaxation and strain ratchetting behaviour of aluminum 7050. DSTO-RR-0153. DSTO Aeronautical and Maritime Research Laboratory, Defense Technical Information Center, 1999.
62.
go back to reference Sinha S, Ghosh S. Modeling cyclic ratcheting based fatigue life of HSLA steels using crystal plasticity FEM simulations and experiments. Int J Fatigue. 2006;28:1690–704.CrossRef Sinha S, Ghosh S. Modeling cyclic ratcheting based fatigue life of HSLA steels using crystal plasticity FEM simulations and experiments. Int J Fatigue. 2006;28:1690–704.CrossRef
63.
go back to reference Lee C-H, Van Do VN, Chang K-H. Analysis of uniaxial ratcheting behavior and cyclic mean stress relaxation of a duplex stainless steel. Int J Plast. 2014;62:17–33.CrossRef Lee C-H, Van Do VN, Chang K-H. Analysis of uniaxial ratcheting behavior and cyclic mean stress relaxation of a duplex stainless steel. Int J Plast. 2014;62:17–33.CrossRef
64.
go back to reference Paul SK, Stanford N, Taylor A, Hilditch T. The effect of low cycle fatigue, ratcheting and mean stress relaxation on stress–strain response and microstructural development in a dual phase steel. Int J Fatigue. 2015;80:341–8.CrossRef Paul SK, Stanford N, Taylor A, Hilditch T. The effect of low cycle fatigue, ratcheting and mean stress relaxation on stress–strain response and microstructural development in a dual phase steel. Int J Fatigue. 2015;80:341–8.CrossRef
65.
go back to reference Paul SK, Stanford N, Hilditch T. Effect of martensite volume fraction on low cycle fatigue behavior of dual phase steels: experimental and microstructural investigation. Mater Sci Eng A. 2015;638:296–304.CrossRef Paul SK, Stanford N, Hilditch T. Effect of martensite volume fraction on low cycle fatigue behavior of dual phase steels: experimental and microstructural investigation. Mater Sci Eng A. 2015;638:296–304.CrossRef
66.
go back to reference Tayanc M, Aytac A, Bayram A. The effect of carbon content on fatigue strength of dual-phase steels. Mater Des. 2007;28:1827–35.CrossRef Tayanc M, Aytac A, Bayram A. The effect of carbon content on fatigue strength of dual-phase steels. Mater Des. 2007;28:1827–35.CrossRef
67.
go back to reference Hadianfard MJ. Low cycle fatigue behavior and failure mechanism of a dual-phase steel. Mater Sci Eng A. 2009;499:493–9.CrossRef Hadianfard MJ. Low cycle fatigue behavior and failure mechanism of a dual-phase steel. Mater Sci Eng A. 2009;499:493–9.CrossRef
68.
go back to reference Lemaitre J. A course on damage mechanics. 2nd edition, Springer-Verlag Berlin Heidelberg, 1996.MATHCrossRef Lemaitre J. A course on damage mechanics. 2nd edition, Springer-Verlag Berlin Heidelberg, 1996.MATHCrossRef
69.
go back to reference Ritchie RO. Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int J Fract. 1999;100:55–83.CrossRef Ritchie RO. Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int J Fract. 1999;100:55–83.CrossRef
70.
go back to reference Ritchie RO. Influence of microstructure on near-threshold fatigue crack propagation in ultra-high strength steel. Met Sci. 1977;11:368–81.CrossRef Ritchie RO. Influence of microstructure on near-threshold fatigue crack propagation in ultra-high strength steel. Met Sci. 1977;11:368–81.CrossRef
71.
go back to reference McDowell DL, Dunne FPE. Microstructure-sensitive computational modeling of fatigue crack formation. Int J Fatigue. 2010;32:1521–42.CrossRef McDowell DL, Dunne FPE. Microstructure-sensitive computational modeling of fatigue crack formation. Int J Fatigue. 2010;32:1521–42.CrossRef
72.
go back to reference Miller KJ. The short crack problem. Fatigue Fract Eng Mater Struct. 1982;5(3):223–32.CrossRef Miller KJ. The short crack problem. Fatigue Fract Eng Mater Struct. 1982;5(3):223–32.CrossRef
73.
go back to reference Tokaji K, Ogawa T, Harada Y, Ando Z. Limitation of linear elastic fracture mechanics in respect of small fatigue cracks and microstructure. Fatigue Fract Eng Mater Struct. 1986;9(1):1–14.CrossRef Tokaji K, Ogawa T, Harada Y, Ando Z. Limitation of linear elastic fracture mechanics in respect of small fatigue cracks and microstructure. Fatigue Fract Eng Mater Struct. 1986;9(1):1–14.CrossRef
74.
go back to reference Anbarlooie B, Hosseini-Toudeshky H, Kadkhodapour J. High cycle fatigue micromechanical behavior of dual phase steel: Damage initiation, propagation and final failure. Mech Mater. 2017;106:8–19.CrossRef Anbarlooie B, Hosseini-Toudeshky H, Kadkhodapour J. High cycle fatigue micromechanical behavior of dual phase steel: Damage initiation, propagation and final failure. Mech Mater. 2017;106:8–19.CrossRef
75.
go back to reference Motoyashiki Y, Bruckner-Foit A, Sugeta A. Microstructural influence on small fatigue cracks in a ferritic–martensitic steel. Eng Fract Mech. 2008;75:768–78.CrossRef Motoyashiki Y, Bruckner-Foit A, Sugeta A. Microstructural influence on small fatigue cracks in a ferritic–martensitic steel. Eng Fract Mech. 2008;75:768–78.CrossRef
Metadata
Title
Micromechanics of Dual-Phase Steels: Deformation, Damage, and Fatigue
Authors
Behnam Anbarlooie
Javad Kadkhodapour
Hossein Hosseini Toudeshky
Siegfried Schmauder
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6884-3_70

Premium Partners